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ABSTRACT 

Forth is unique among programming languages in that its development and proliferation has been a 
grass-roots effort unsupported by any major corporate or academic sponsors. Onginally conceived and 
developed by a single individual, its later development has progressed under two significant influences: 
professional programmers who developed tools to solve application problems and then commercialized 
them, and the interests of hobbyists concerned with free distribution of Forth. These influences have 
produced a language markedly different from traditional programming languages. 
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13.1 CHUCK MOORE'S PROGRAMMING LANGUAGE 

Forth was invented by Charles H. (Chuck) Moore. A direct outgrowth of Moore's work in the 1960s, 
the first program to be called Forth was written in about 1970 [Moore 1970a]. This section covers the 
early work leading to Forth. 

13.1.1 Early Development 

Moore's programming career began in the late ! 950s at the Smithsonian Astrophysical Observatory 
with programs to compute ephemerides, orbital elements, satellite station positions, and so forth 
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[Moore 1958; Veis, 1960]. His source code filled two card trays. To minimize recompiling this large 
program, he developed a simple interpreter to read cards controlling the program. This enabled him 
to compose different equations for several satellites without recompiling. This interpreter featured 
several commands and concepts that survived into modern Forth, principally a command to read 
"words" separated by spaces, and one to convert numbers from external to internal form, plus an 
IF ... ELSE construct. He found free-form input to be both more efficient (smaller and faster code) 
and reliable than the more common FORTRAN practice of formatting into specific columns, which 
had resulted in numerous reruns due to misaligned columns. 

In 1961, Moore received his BA in Physics from MIT and entered graduate school at Stanford. He 
also took a part-time programming position at the Stanford Linear Accelerator (SLAC), writing code 
to optimize beam steering for the (then) pending two-mile electron accelerator, using an extension of 
some of his prior work with least-squares fitting. A key outgrowth of this work was a program called 
CURVE, coded in ALGOL (1964), a general-purpose nonlinear differential-corrections data fitting 
program. To control this program, he used an enhanced version of his interpreter, extended to manage 
a push-down stack for parameter passing, variables (with the ability to explicitly fetch and store 
values), arithmetic and comparison operators, and the ability to define and interpret procedures. 

In 1965, he moved to New York City to become a free lance programmer. Working in FORTRAN, 
ALGOL, JOVIAL, PL/I and various assemblers, he continued to use his interpreter as much as 
possible, literally carrying around his card deck and recoding it as necessary. Minicomputers appeared 
in the late '60s, and with them teletype terminals, for which Moore added operators to manage 
character input and output. One project involved writing a FORTRAN-ALGOL translator and 
file-editing utilities. This reinforced for him the value of spaces between words, which were not 
required in FORTRAN source. 

Newly married and seeking a small town environment, Moore joined Mohasco Industries in 
Amsterdam, NY, in 1968. Here he developed computer graphics programs for an IBM 1130 
minicomputer with a 2250 graphic display. This computer had a 16-bit CPU, 8K RAM, his first disk, 
keyboard, printer, card reader/punch (used as disk backup!), and FORTRAN compiler. He added a 
cross-assembler to his program to generate code for the 2250, as well as a primitive editor and 
source-management tools. This system could draw animated 3-D images, at a time when IBM's 
software for that configuration drew only static 2-D images. For fun, he also wrote a version of 
Spacewar, an early video game, and converted his ALGOL Chess program into the new language, 
now (for the first time) called FORTH. He was impressed by how much simpler it became. 

The name FORTH was intended to suggest software for the fourth (next) generation computers, 
which Moore saw as being characterized by distributed small computers. The operating system he 
used at the time restricted file names to five characters, so the "U" was discarded. FORTH was spelled 
in upper case until the late '70s because of the prevalence of upper-case-only I/O devices. The usage 
"Forth" was generally adopted when lower case became widely available, because the word was not 
an acronym. 

Moore found the Forth-based 1130 environment for programming the 2250 superior to the 
FORTRAN environment in which the 1130 software was developed, so he extended it into an 1130 
compiler. This added looping commands, the concept of keeping source in 1024-byte blocks and tools 
for managing them, and most of the compiler features we recognize in Forth today. 

Most important, there was now a dictionary. Procedures now had names, and the interpreter 
searched a linked list of names for a match. Names were compiled with a count and three characters, 
a practice learned from the compiler writers of Stanford and which prevailed in Forth until the 1980s. 
Within a dictionary entry was a "code field" containing the address of code to be executed for that 
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routine. This was an indirect threaded code implementation (see Section 13.5.2) and was in use five 
years before Dewar's paper on indirect threaded code appeared in Communications of the ACM 
[Dewar 1975]. The use of  indirect threaded code was an important innovation, because an indirect 
jump was the only overhead once a word had been found. Dictionary entries could consist either of  
pointers to other "high-level" routines or of  machine instructions. 

Finally, in order to provide a simple mechanism for nesting routines, a second stack called the 
"return stack" was added. The benefit of  having a stack reserved for return addresses was that the 
other stack could be used freely for parameter passing, without having to be "balanced" before and 
after calls. 

The first paper on Forth was written at Mohasco [Moore 1970a]. 
In 1970, Mohasco assigned Moore to an ambitious project involving a new Univac 1108, handling 

a network of  leased lines for an order-entry system. He ported Forth onto the 1108, and arranged for 
it to interface to COBOL modules that did the transaction processing. The 1108 Forth was coded in 
assembler. It buffered input and output messages and shared the CPU among tasks handling each line. 
It also interpreted the input and executed the appropriate COBOL modules. This version of  Forth 
added mechanisms for defining and managing tasks, and also added an efficient scheme for managing 
disk block buffers similar to schemes in use today. 

Unfortunately, an economic downturn led Mohasco to cancel the 1108 project before completion. 
Moore immediately gave notice, then wrote an angry poem and a book on Forth [Moore 1970b] that 
was never published. It described how to develop Forth software and encouraged simplicity and 
innovation. 

13.1.2 Philosophy and Goals 

To Moore, Forth was a personal response to his frustration with existing software tools, which he 
viewed as a sort of"Tower of  Babel": 

The software provided with large computers supplies a hierarchy of languages: the assembler defines the 
language for describing the compiler and supervisor; the supervisor the language for job control; the compiler 
the language for application programs; the application program the language for its input. The user may not 
know, or know of, all these languages: but they are there. They stand between him and his computer, imposing 
their restrictions on what he can do and what it will cost. 

And cost it does, for this vast hierarchy of languages requires a huge investment of man and machine time to 
produce, and an equally large effort to maintain. The cost of documenting these programs and of reading the 
documentation is enormous. And after all this effort the programs are still full of bugs, awkward to use and 
satisfying to no one. [Moore 1970a] 

Moore conceived of  Forth as replacing the entire "vast hierarchy" with a single layer, requiring 
only two elements: a programmer-to-Forth interface, consisting of  minimal documentation (minimal 
because the interface should be simple and natural), and the Forth-machine interface, consisting of  
the program itself. 

His view was entirely personal, considering his own needs in light of  his own experience. The 
following excerpts from his unpublished book [Moore 1970b], describe this view: 

I've written many programs over the years, l've tried to write good programs, and I've observed the manner 
in which I write them rather critically. My goal has been to decrease the effort required and increase the quality 
produced. 
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In the course of these observations, I've found myself making the same mistakes repeatedly. Mistakes that 
are obvious in retrospect, but difficult to recognize in context. I thought that if I wrote a prescription for 
programming, I could at least remind myself of problems. And if the result is of value to me, it should be of 
value to others .... 

Above all, his guiding principle, which he called the "Basic Principle," was, "Keep it simple!" 
Throughout his career he has observed this principle with religious dedication. 

As the number of capabilities you add to a program increases, the complexity of the program increases 
exponentially. The problem of maintaining compatibility among these capabilities, to say nothing of some 
sort of internal consistency in the program, can easily get out of hand. You can avoid this if you apply the 
Basic Pnnciple. You may be acquainted with an operating system that ignored the Basic Principle. 

It is very hard to apply. All the pressures, internal and external, conspire to add features to your program. 
After all, it only takes a half-dozen instructions, so why not? The only opposing pressure is the Basic Principle, 
and if you ignore it, there is no opposing pressure. 

The main enemy of  simplicity was, in his view, the siren call of  generality that led programmers 
to attempt to speculate on future needs and provide for them. So he added a corollary to the Basic 
Principle: "Do not speculate!" 

Do not put code in your program that might be used. Do not leave hooks on which you can hang extensions. 
The things you might want to do are infinite; that means that each has 0 probability of realization. If you need 
an extension later, you can code it later--and probably do a better job than if you did it now. And if someone 
else adds the extension, will he notice the hooks you left? Will you document this aspect of your program? 

This approach flew in the face of  accepted practice then, as now. A second corollary was even more 
heretical: ~'Do it yourself!" 

The conventional approach, enforced to a greater or lesser extent, is that you shall use a standard subroutine. 
I say that you should write your own subroutines. 

Before you can write your own subroutines, you have to know how. This means, to be practical, that you have 
written it before; which makes it difficult to get started. But give it a try. After writing the same subroutine a 
dozen times on as many computers and languages, you'll be pretty good at it. 

Moore followed this to an astounding extent. Throughout the '70s, as he implemented Forth on 
eighteen different CPUs (Table 13.1). He invariably wrote for each his own assembler, his own disk 
and terminal drivers, even his own multiply and divide subroutines (on machines that required them, 
as many did). When there were manufacturer-supplied routines for these functions, he read them for 
ideas, but never used them verbatim. By knowing exactly how Forth would use these resources, by 
omitting hooks and generalities, and by sheer skill and experience (he speculated that most multi- 
ply/divide subroutines were written by someone who had never done one before and never would 
again), his versions were invariably smaller and faster, usually significantly so. 

Moreover, he was never satisfied with his own solutions to problems. Revisiting a computer, or an 
application, after a few years, he often rewrote key code routines. He never reused his own code 
without re-examining it for possible improvements. This later became a source of  frustration to Rather, 
who, as the marketing arm of  FORTH, Inc. (see Section 13.2.2), often bid jobs  on the assumption that 
inasmuch as Moore had just done a similar project, this one would be e a sy - -on ly  to watch helplessly 
as he tore up all his past code and started over. 

Today, Moore is designing Forth-based microprocessors using his own Forth-based CAD system, 
which he has rewritten (and sometimes rebuilt, with his own hardware) almost continuously since 
1979. 
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TABLE 13.1 

Table showing computers for which Chuck Moore personally implemented Forth systems. In 1978, his implementations of 
Forth on the Level 6 and 8086 represented the first resident software on both CPUs, anticipating their manufacturers' systems 
by many months. 

Year Model Customer Forth Applications 

1970-71 Honeywell H316 National Radio Astronomy Data acquisition, on-line analysis 
Observatory (NRAO) w/graphics terminal 

1971 Honeywell DDP116 NRAO Radio telescope control 

1971-2 IBM 370/30 NRAO Data analysis 

1972 Varian 620 Kitt Peak National Observatory Optical telescope control and 
(KPNO) instrumentation 

1972 HP2100 KPNO Instrumentation 

1972-3 Modcomp NRAO Data analysis 

1973 PDP- 11 NRAO Radio telescope control, data 
acquisition, analysis, graphics 

1973 DG Nova Steward Observatory Data acquisition and analysis 

1974 SPC- 16 Steward Observatory Ground control of balloon-borne 
telescope 

1975 SDS920 Aerospace Corp. Antenna control 

1975 Prime Gen'l Dynamics, P o m o n a  Environmental controls 

1976 Four-Phase Source Data Systems Data entry and database 
management 

1977 lnterdata Series 32 County of Alameda, CA Database management 

1977 CA LSI-4 MICOA Business systems 

1978 Honeywell Level 6 Source Data Systems Data entry and database 
management 

1978 lntel 8086 Aydin Controls Graphics and Image Processing 

1980 Raytheon PTS-100 American Airlines Airline display and workstations 

Moore considered himself primarily an applications programmer, and regarded this as a high 
calling. He perceived that "systems programmers" who built tools for "applications programmers" to 
use had a patronizing attitude toward their constituents. He felt that he had spent a great portion of 
his professional life trying to work around barriers erected by systems programmers to protect the 
system from programmers and programmers from themselves, and he resolved that Forth would be 
different. Forth was designed for a programmer who was intelligent, highly skilled, and professional; 

it was intended to empower, not constrain. 
The net result of Moore's philosophy was a system that was small, simple, c lean- -and  extremely 

flexible: in order to put this philosophy into practice, flexible software is essential. The reason people 
leave hooks for future extensions is that it's generally too difficult and time-consuming to re-imple- 
ment something when requirements change. Moore saw a clear distinction between being able to teach 
a computer to do "anything" (using simple, flexible tools) and attempting to enable it to do 
"everything" with a huge, general-purpose OS. Committing himself to the former, he provided himself 

with the ideal toolset to follow his vision. 
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13.2 DEVELOPMENT AND DISSEMINATION 

By the early 1970s, Forth had reached a level of maturity that not only enabled it to be used in 
significant applications, but that attracted the attention of other programmers and organizations. 
Responding to their needs, Moore implemented it on more computers and adapted it to handle ever 
larger classes of application. 

13.2.1 Forth at NRAO 

Moore developed the first complete, stand-alone implementation of Forth in 1971 for the 11-meter 
radio telescope operated by the National Radio Astronomy Observatory (NRAO) at Kitt Peak, 
Arizona. This system ran on two early minicomputers (a 16 KB DDP-116 and a 32 KB H316) joined 
by a serial link. Both a multiprogrammed system and a multiprocessor system (in that both computers 
shared responsibility for controlling the telescope and its scientific instruments), it was responsible 
for pointing and tracking the telescope, collecting data and recording it on magnetic tape, and 
supporting an interactive graphics terminal on which an astronomer could analyze previously recorded 
data. The multiprogrammed nature of the system allowed all these functions to be performed 
concurrently, without timing conflicts or other interference. 

The system was also unique for that time in that, all software development took place on the minis 
themselves, using magnetic tape for source. Not only did these Forth systems support application 
development, they even supported themselves. Forth itself was written in Forth, using a "metacom- 
piler" to generate a new system kernel when needed. 

To place these software capabilities in context, it's important to realize that manufacturer-supplied 
system software for these early minicomputers was extremely primitive. The main tools were 
cross-assemblers and FORTRAN cross-compilers running on mainframes (although the FORTRAN 
cross-compilers were too inefficient to do anything complex, given the tiny memories on the target 
machines). On-line programming support was limited to assemblers loaded from paper tape, with 
source maintained on paper tape. Digital Equipment Corporation had just announced its RT-11 OS 
for its PDP-11 line, which offered limited foreground-background operation; no form of concurrency 
was available for the H316 family. Multi-user operation of the sort that enabled NRAO's astronomers 
to graphically analyze data while an operator controlled the telescope and live data was flowing in, 
was unheard of. 

Edward K. Conklin, head of the Tucson division of NRAO, which operated the 1 i-meter telescope, 
found it difficult to maintain the software as Moore was based at NRAO's headquarters in Charlot- 
tesville, VA. So, in 1971, he brought in Elizabeth Rather, a systems analyst at the University of Arizona, 
to provide local support on a part-time basis. Rather was appalled to find this critical system written 
in a unique language, undocumented, and known to only one human. Her instinctive reaction was to 
rewrite the whole thing in FORTRAN to get it under control. Alas, however, there was neither time 
nor budget for this, so she set out to learn and document the system, as best she could. 

After about two months, Rather began to realize that something extraordinary was happening: 
despite the incredibly primitive nature of the on-line computers, despite the weirdness of the language, 
despite the lack of any local experts or resources, she could accomplish more in the few hours she 
spent on the Forth computers once a week than in the entire rest of the week when she had virtually 
unlimited access to several large mainframes. 

She wondered why. The obvious answer seemed to lie in the interactive nature of Forth. (The 
programmer's attention is never broken by the procedural overhead of opening and closing files, 
loading and running compilers, linkers, loaders, debuggers, and the like. But there's more to it than 
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that. For example, all the tools used by Forth's OS, compiler, and other internal functions are available 
to the programmer. And, as Chuck Moore intended, its constraints are minimal and its attitude is 
permissive. Forth devotees still love to debate the source and magnitude of such productivity 
increases !) 

Rather immediately left the University and began working for NRAO jointly with Kitt Peak 
National Observatory (KPNO), an optical observatory with which NRAO shared facilities, maintain- 
ing the Forth system for NRAO and developing one for KPNO (which was later used on KPNO's 
156" Mayall telescope and other instruments [Phys. Sci. 1975]). During the next two years she wrote 
the first Forth manual [Rather 1972] and gave a number of papers and colloquia within the observatory 
and related astronomical organizations [Moore 1974a]. 

In 1973, Moore and Rather replaced the twin-computer system by a single disk-based PDP-11 
computer [Moore 1974a&b]. This was a multi-user system, supporting four terminals, in addition to 
the tasks of controlling the telescope and taking data. It was so successful that the control portions of 
it were still in use in 1991 (data acquisition and analysis functions are more dependent on experimental 
equipment and techniques, which have changed radically over the years). The system was so advanced 
that astronomers from all over the world began asking for copies of the software. Versions were 
installed at Steward Observatory, MIT, Imperial College (London), the Cerro Tololo (Chile) Inter- 
American Observatory, and the University of Utrecht (Netherlands). Its use spread rapidly, and in 
1976 Forth was adopted as a standard language by the International Astronomical Union. 

13.2.2 Commercial Minicomputer Systems 

Following completion of the upgraded system in 1973, Moore and his colleagues Rather and Conklin 
formed FORTH, Inc. to explore commercial uses of the language. FORTH, Inc. developed multi-user 
versions of Forth [Rather 1976a] for most of the minicomputers then in use (see Table 13.1 ), selling 
these as components of custom applications in a widely diverse market, ranging from database 
applications to scientific applications, such as image processing. The minicomputers and applications 
of the '70s provided the environment in which Forth developed and stabilized, to the extent that all 
the innovations contributed by independent implementors in the years that followed, represented 
relatively minor variants on this theme. Because of this, we shall take a close look at the design and 
structure of these systems. 

13.2.2.1 Environmental constraints 

Minicomputers of the 1970s were much less powerful than the smallest microcomputers of today. In 
the first half of the decade not all systems even had disks--l/2" tape was often the only mass storage 
available. Memory sizes ranged from 16 to 64 Kbytes, although the latter were considered large. In 
the early '70s, most programming for minis was done in assembly language. By the middle of the 
decade, compilers for FORTRAN and BASIC were available, and manufacturer-supplied executives 
such as DEC's RT-11 supported foreground-background operation. Multi-user systems were also 
becoming common: a PDP-I 1 or Nova could be expected to support up to eight users, although the 
performance in a system with eight active users was poor. 

On this hardware, Moore's Forth systems offered an integrated development toolkit including 
interactive access to an assembler, editor, and the high-level Forth language, combined with a 
multitasking, multi-user operating environment supporting 64 users without visible degradation, all 
resident without run-time overlays. 
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Although time-critical portions of the system were written in assembler, as most applications 
required very high performance, Moore could port an entire Forth development environment to a new 
computer in about two weeks. He achieved this by writing Forth in Forth--any Forth computer could 
generate Forth for another, given the target system's assembler and code for about 60 primitives. 
Because the first step in a port was designing and writing the target assembler, it is possible that Moore 
has written more assemblers for different processors than anyone else. 

Being able to port the system easily to new architectures was important, as the minicomputer 
market was extremely fragmented. A large number of CPUs was available, and each was supported 
by a large number of possible disk controller and drive combinations. Today, by contrast, the 
microcomputer market is dominated by a very short list of processor families, and adherence to de 
facto standards such as the PC/AT is the norm. 

Installations were done on site, because it was impractical to ship the minicomputers. When 
LSI- 11 s first became available, Moore bought one and mounted it in a carry-on suitcase, with a single 
8" floppy drive in a second suitcase. This portable personal computer accompanied him everywhere 
until 1982, acting as a "friendly" host for generating new Forths. 

13.2.2.2 Application Requirements 

If the principal environmental constraints were memory limitations and a need to serve a broad 
spectrum of CPU architectures, the application requirements were dominated by a need for perform- 
ance. Here are some of the principal application areas in which Forth achieved success in this period: 

1. Commercial/business data base systems: First developed for Cybek Corporation under the 
guidance of Arthur A. Gravina, these systems supported multiple terminals on a Data General 
Nova, handling high-speed transaction processing. The first was written for Vernon Graphics, 
Inc., a service bureau to Pacific Telephone, in 1974. It supported 32 terminals processing 
transactions against a 300 MB database. In its first week the system handled over 100,000 
transactions a day (40,000 was the requirement). The system was subsequently upgraded to 
support 64 terminals and a 600 MB database, with no discernable degradation in response 
times, which remained under one second. 

Cybek subsequently marketed this system for business applications in banking and hospital 
management; its current version is marketed by a division of McDonnell Douglas. A similar 
effort by Source Data Systems in Iowa produced a multi-terminal data-entry system marketed 
by NCR Corp. for hospital management and similar applications. 

The performance of such a system is overwhelmingly dominated by operating system issues, 
principally the ability of the native Forth block-based file system to read and write data files 
very quickly. 

2. Image Processing: FORTH, Inc. developed a series of image processing applications for the 
Naval Weapons Research Center, NASA's Goddard Space Flight Center, the Royal Greenwich 
Observatory in England, and others. Central to these was a need for performing standardized 
operations (e.g., enhancement, windowing, etc.) on images residing on different kinds of 
hardware. The approach taken included many features now associated with object-oriented 
programming: encapsulation (the basic object was an "image," with characteristic parameters 
and methods), inheritance (you could add new images that would inherit characteristics of 
previously defined classes of images) and dynamic binding of manipulation methods. Moore, 
the principal architect of this approach, was unaware of any academic work in this area. Striving 
to achieve the same goals as later OOPS writers, he independently derived similar solutions. 
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. 

Image processing systems are also distinguished by a need to manipulate and move large 
quantities of data very fast; a 512x512x 16 image, for example, occupies 512 KB. In addition 
to the high-speed disk performance that characterized Forth database systems, these also 
required fast processing speed and the ability to handle algorithms such as FFTs. As many 
minicomputers lacked hardware floating-point arithmetic, Forth included flexible integer and 
fixed-point fraction operators, as well as specialized array primitives. 

Instrumentation and control: Forth was first developed and used for this purpose at NRAO, 
and Forth is widely used for instrumentation and controls today. FORTH, Inc. produced several 
more astronomical systems (for the Universities of Wyoming [Gehrz 1978], Minnesota, Hawaii 
and Illinois; Cal Tech; plus the Royal Greenwich Observatory and St Andrews University in 
the UK). In addition, a number of commercial instrument manufacturers, such as Princeton 
Applied Research (now a division of EG&G) and Nicolet Instruments, adopted Forth as a 
language for internal development. 

These applications are characterized by high data rates, as much as 20 KHz in some cases, 
which really strained the CPU speed of th~ processors available. Fast interrupt response was 
essential, along with high-speed multitasking to allow data acquisition to proceed concurrently 
with operator activity and instrument control. 

13.2.2.3 Influences 

The evolution of Forth prior to 1978 was completely dominated by Moore himself. As we have seen, 
Moore was, and is, a fanatic minimalist, dedicated to the principle of zero-based design in which every 
feature, and every instruction, must justify its existence or be ruthlessly scrapped. 

Moore originally developed the system for his own use. It surprised him a little to find that Rather, 
and the other early users, also liked it and found it enhanced their productivity as much as it did his. 
But even after the formation of FORTH, Inc. and its open marketing of the system, the selection and 
design of support tools and the general programming interface was dominated by his personal tastes. 

Moore was working primarily as a consultant, supported by others within FORTH, Inc., installing 
a Forth system on a customer's computer as the first step in developing a custom application. Because 
the customer was primarily interested in the application, it was imperative that the port be completed 
quickly and inexpensively. The extreme simplicity of Forth made this possible without compromising 
the performance of the application. 

Each of these projects contributed its own lessons, tools, and techniques. Moore carried microfiche 
listings of all previous projects in his briefcase, and often referred to them to get the code for some 
unique primitive or driver from the past. Frequently used words might become a standard fixture of 
the system. Also, improved techniques for solving common problems were integrated into the system. 

This pattern of continual evolution created customer support headaches for FORTH, Inc., however, 
as no two installed systems were the same. In most cases the installation included a five-day Forth 
programming course taught by Rather, who had to check every evening to make sure that the system 
still behaved the way it was being taught. 

13.2.3 Early Microprocessor Systems 

In 1976, Robert O. Winder, of RCA's Semiconductor Division, engaged FORTH, Inc. to implement 
Forth on its new CDP-1802 8-bit microprocessor [Rather 1976b; Electronics 1976]. The new product, 
called "microFORTH," was subsequently implemented on the Intel 8080, Motorola 6800, and Zilog 
Z80, and sold by FORTH, Inc. as an off-the-shelf product, microFORTH was successfully used in 
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numerous embedded microprocessor instrumentation and control applications in the United States, 
Britain, and Japan. 

13.2.3.1 Environment and Applications 

microFORTH was FORTH, Inc.'s first experience with off-the-shelf, mail-order software packages; 
the minicomputer systems were all installed on-site. The mail-order operation was made possible by 
the rapid standardization of the industry on 8" "IBM-format" floppy disks, and the relatively small 
number of development systems for each CPU type. 

These microprocessors were all 8-bit devices, typically with 16K bytes of memory in the 
development system. The target systems were usually custom boards (although Intel's Single Board 
Computer series quickly became popular), and the software was expected to run from PROM in an 
embedded environment without disk or (usually) terminal. This was significantly different from the 
minicomputer environment, where there was always a disk, and a program was expected to run on 
the same (or identical) computer as the one used for development. 

Most microprocessor manufacturers offered development platforms consisting of the same micro- 
processor as in the target, up to 64K bytes of RAM, a serial line for a terminal, a parallel printer port, 
and two 8" floppy disk drives. Software support was mainly assembler, although Intel soon introduced 
PL/M. In-circuit emulators and separate utilities were introduced for debugging. 

microFORTH was principally marketed as an interactive alternative to assembler which, unlike 
PL/M, was available across most microprocessor families and therefore offered a higher degree of 
transportability. 

13.2.3.2 Language Definition 

Following some initial experimentation with 8-bit stack width and 128-byte block buffers, it was 
quickly decided to maintain the same basic internal architecture as on the minicomputer systems. The 
organization of the program changed significantly, however. 

microFORTH came with a target nucleus designed to run from PROM. This nucleus was only 1K 
in size, containing primitives such as single-precision arithmetic and other very basic functions. The 
development environment supported writing and testing code interactively, and then compiling a 
version of that code designed to mate to the run-time nucleus. A version of'VARIABLE was provided 
to support segregated ROM/RAM data space (CONSTANTs were in PROM), and defining words 
were adapted so that user-defined structures could be made to reside in either. And whereas previously, 
VARIABLEs could be initialized at compile time, that capability was removed, as it is difficult to 
initialize target RAM when a ROM is being compiled without setting up a "shadow" table: ROM 
space was considered too precious for that. 

The multiprogramming support was initially stripped out, although it later came back using a new, 
faster task-swapping algorithm, and the database tools vanished completely. 

FORTH, Inc. never released the metacompiler used to generate Forth on new minicomputer CPUs. 
A variant of this metacompiler became an integral part of microFORTH, however, as it was used to 
generate the ROMable code for the target application. This was significant, as we shall see in the next 
section. 

13.2.3.3 Influences 

The principal architect of microFORTH was Dean Sanderson. Although Sanderson worked closely 
with Moore and shared most of his basic philosophies, differences in style and approach were 
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inevitable. But the major new influence came from the broader customer base that resulted from the 
wider marketing of microFORTH. It was customer pressure that brought back muitiprogramming, 
and this larger customer base also caused standards groups to form. 

13.2.4 Language Definition 

The commercial mini and microcomputer implementations produced by FORTH, Inc. in the early- 
and mid-1970s, for the first time encapsulated the principles and elements of Forth as it is used today. 
For this reason, we shall summarize these briefly. 

13.2.4.1 Design Principles 

Much as algebra was the "metaphor" for FORTRAN, Forth was conceived on the model of English 
prose (though some have suggested that its postfix notation tends to resemble verb-at-the-end 
languages such as German). Its elements ("words") are named data items (roughly equivalent to 
nouns), named procedures (equivalent to verbs), and defining words (special kinds of verbs capable 
of creating data items with customized characteristics). Words may be defined in terms of previously 
defined words or in machine code (using the embedded assembler). 

Forth "words" are functionally analogous to subroutines in other languages. They are also 
equivalent to commands in other languages--Forth blurs the distinction between linguistic elements 
and functional elements. 

Words are referenced (either from the keyboard or in program source) by name. As a result, the 
term "word" is applied both to program (and linguistic) units and to their text names. In parsing text, 
Forth considers a word to be any string of characters bounded by spaces (or "white space" characters 
in some file-based systems). Except for these, there are no special characters that cannot be included 
in a word or start a word, although many programming teams adopt naming conventions to improve 
readability. Words encountered in text fall into three categories: defined words (i.e., Forth routines), 
numbers, and undefined words. 

There are no explicit typing mechanisms in Forth, a feature that sometimes surprises newcomers, 
but is generally admired by experienced Forth programmers. 

13.2.4.2 Structured Programming Disciplines 

Architecturally, Forth words adhere strictly to the principles of "structured programming" as articu- 
lated by Dijkstra [Dijkstra 1970] and "modular programming" [Parnas 1972]. These principles may 
be summarized as follows: 

• Every program is described as a linear sequence of self-contained modules; 

• A module has one entry point, one exit point, and ideally performs one function, given a set of 
inputs and a set of outputs; 

• A module can contain: 

references to other modules; 

decision structures (IF THEN statements); 

looping structures. 

Top-down design and bottom-up coding and testing are strongly encouraged by Forth's structure. 
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As was the case with Moore's independent development of OOPs-like features in his image 
processing system, Moore was unfamiliar with the contemporary literature on structured program- 
ming. These principles were first called to his attention in 1973 by Rather, who received several 
comments on the apparent relationship between Forth and structured programming in seminars she 
was giving on Forth. On reading one of Djikstra's papers, Moore observed, "it just seems like good 
programming practice to me." 

In fact, advanced Forth programmers with knowledge of the underlying implementation know 
ways of "cheating," but such practices are frowned upon, and definitely not supported or encouraged 
by the structure of the language. 

13.2.4.3 Elements of Forth 

Moore's Forth systems of the early 1970s were built on a nucleus of only 4K bytes. This tiny program 
included disk (or tape) and terminal drivers and the ability to search and build the dictionary. This 
nucleus was then used to compile from source the balance of the programming environment, including 
the assembler, editor, multiuser support, and several hundred general commands. Booting the system, 
including compiling most of it from source into executable form, took only a few seconds. 

A metacompiler, also written in Forth, was used to compile the nucleus. The entire source for the 
system was about 40 pages long. 

These systems were "native," that is, running without any host OS or executive. This was a 
necessity in the early days, as OSs weren't available. Later, it was regarded as a significant advantage, 
as I/O services in a native Forth environment were much faster than could be supplied by a general 
purpose OS. 

The principal elements of Forth are discussed briefly in the sections that follow. 

Dictionary: A Forth program is organized into an extensible dictionary that occupies almost all the 
memory used by the system. The dictionary is classically implemented as a linked list of variable- 
length items, each of which defines a word. The content of each definition depends upon the type of 
word (data item, constant, sequence of operations, etc.). On multi-user Forth systems, individual users 
may have private dictionaries, each of which is connected to a shared, re-entrant system dictionary. 

Push-Down Stacks: Forth maintains two push-down stacks, or LIFO lists (on a multiprogrammed 
version, a pair for each task). These are used to pass data between Forth words and for controlling 
logical flow. A stack contains one-cell items, where a cell is 16 bits wide on 8-bit and 16-bit computers, 
and 32 bits wide on most implementations for 32-bit processors such as the 680x0 family. Extended- 
precision numbers occupy two stack positions, with the most significant part on top. Items on either 
stack may be addresses or data items of various kinds. Stacks are of indefinite size, and usually grow 
towards low memory. 

Forth's explicit use of stacks leads to a "postfix" notation in which operands precede operators. 
Because results of operations are left on the stack, operations may be strung together effortlessly, and 
there is little need to define variables to use for temporary storage. 

Interpreters: Forth is an interpretive system, in that program execution is typically controlled by a 
small machine-code routine (often only two or three instructions) interpreting lists of pointers or 
tokens for abstract machine functions. This architecture is much faster than classical interpreters, as 
used in BASIC and PROLOG for example, enabling it to perform satisfactorily in the real-time 
applications for which it was designed. 
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This internal engine is often referred to as the "inner" or "address" interpreter, as distinct from 
Forth's more traditional text interpreter which processes source and user input. The text interpreter 
extracts strings separated by spaces from the terminal or mass storage, looking each word up in the 
dictionary. If  a word is found it is executed by invoking the address interpreter, which processes a 
string of addresses compiled in a word definition by executing the definition pointed to by each. The 
text is not stored in memory, even in condensed form. If  a word is not found, the system attempts to 
convert it as a number and push it onto the stack. If number conversion fails (due to a nonnumeric 
character), the interpreter aborts with an error message. 

The address interpreter has two important properties. First, it is fast, often requiring as few as one 
or two machine instructions per address. Second, it makes Forth definitions extremely compact, as 
each reference requires only one cell (or computer word; Forth users prefer to avoid the use of "word" 
as a hardware unit because of its use to denote an element in the language). In contrast, a subroutine 
call constructed by most compilers requires instructions for handling the calling sequence before and 
after a CALL or JSR instruction and address, and typically, save and restore registers within the 
subroutine. Forth's stack architecture obviates the need for an explicit calling sequence, and most 
implementations make global register assignments, in which certain system state variables are 
assigned to dedicated registers, and all other registers are designated scratch registers for use in code 
words. 

Assembler: Most Forth systems include a macro assembler for the CPU on which they run. When 
using CODE, the programmer has full control over the CPU, as with any other assembler, and CODE 
definitions run at full machine speed. The assembler lets the programmer use explicit CPU-dependent 
code in manageable pieces with machine-independent interfacing conventions. To move an applica- 
tion to a different processor requires recoding only the CODE words, which will interact with other 
Forth words in exactly the same manner. 

Forth assemblers feature an unusual design, which has two goals: (1) to improve transportability 
between processors by standardizing assembler notation as much as possible without impairing the 
programmer's control of the processor; and (2) to yield a compact assembler that can be resident at 
all times to facilitate interactive programming and debugging. 

In a classical Forth assembler, the op-code itself is a Forth word that assembles the instruction 
according to operands passed on the stack giving the addressing information. This leads to a format 
in which the addressing mode specifiers precede the op-code (consistent with the postfix notation 
used elsewhere in Forth). Moore also standardized notation for addressing modes, although he usually 
used the manufacturer's instruction mnemonics. Registers were generally referred to by number, 
except for registers assigned to key internal system functions. For example, the stack pointer is usually 
in a register called S. One would address the second item on a two-byte wide stack using the phrase 
2 S). 

Forth assemblers support structured programming in the same way that high-level Forth does. 
Arbitrary branching to labeled locations is discouraged; on the other hand, structures such as BEGIN 
... UNTIL and IF ... ELSE ... THEN are available in the assembler (implemented as macros that 
assemble appropriate conditional and unconditional branches). Such structures are easy to implement 
because the stack is available during assembly to carry addressing information. 

Conventional assemblers leave the code in a file, which must be integrated with code in files from 
high-level language compilers (if any) by a linker, before the resultant program can be loaded into 
memory for testing. The resident Forth assembler assembles the code directly into memory in 
executable form, thus avoiding the linking step. 
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The Forth assembler is used to write short, named routines that function just like high-level Forth 
words: when the name of the routine is invoked, it will be executed. Like other Forth routines, code 
routines expect their arguments on the stack and leave their results there. Within code, a programmer 
may refer to constants (to get a value), variables (to get an address) or other defined data types. Code 
routines may be called from high-level definitions just as other Forth words, but do not themselves 
call high-level or code definitions. 

These features enable Forth programmers to write code in short, easily testable modules that are 
automatically integrated into an application. Programming is fully structured, with consistent rules 
of usage and user interface for both assembler and high-level programming. Words are tested 
incrementally, while the desired behavior is fresh in the programmer's mind. Most new words can be 
tested simply by placing input values on the stack, typing the word to be tested and validating the 
result left on the stack by displaying it. 

The result is complete control of the computer, high performance where needed, and overall 
shortening of development time due to interactive programming at all levels. 

Disk Support :  Classical Forth divides mass storage into "blocks" of 1024 bytes each. The block 
size was chosen as a convenient standard across disks whose sector sizes vary. At least two block 
buffers are maintained in memory, and the block management algorithm makes it appear that all blocks 
are in memory at all times. The command n BLOCK returns the memory address of block n, having 
read it if necessary. A buffer, the contents of which are changed, is marked so that when it needs to 
be reused, its block is automatically written out. This algorithm provides a convenient form of virtual 
memory for data and source storage, with a minimum number of physical disk accesses required. 
FORTH, Inc.'s database applications build data files out of blocks, with a file defined as spanning a 
specified range of blocks; data access is through operations performed against named fields within 
selected files. 

In native Forths, the block system is both fast and reliable, as the disk driver computes the physical 
address of the block from its number no directory is required. In disk-intensive applications, 
performance can be enhanced by adding more buffers, so more blocks will be found in memory; the 
buffers become a disk cache. 

In the 1980s, Forth systems became available running under conventional OSs, as we shall see. 
Many of these support blocks within host OS files, although some have abandoned blocks altogether. 
As blocks provide a compatible means of accessing mass storage across both native and non-native 
systems, ANS Forth (Section 13.5.1) requires that blocks be available if any mass storage support is 
available. 

Multiprogramming: The earliest Forth systems supported multiprogramming, in that the computer 
could execute multiple concurrent program sequences. In 1973, Moore extended this capability to 
support multiple users, each with a terminal and independent subdictionaries and stacks. The entity 
executing one of these program sequences or supporting a user is referred to as a task. Many of today's 
Forths support multiprogramming, and most of these use variants of Moore's approach. 

This approach allocates CPU time using a cooperative, nonpreemptive algorithm: a task relin- 
quishes the CPU while awaiting completion of an I/O operation or, upon use of the word PAUSE, 
which relinquishes the CPU for exactly one lap around the round-robin task queue. 

Moore's systems used interrupts for I/O. Interrupts were directly vectored to the response code 
using an assembler macro, without intervention by the Forth executive. Interrupt code performed only 
the most time-critical operations (e.g., read a number, increment a counter), then reenabled the task 
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TABLE 13.2 
Performance comparisons of several real-time OSs on a M68010 [Cox 1987]. Times are averages, given in ps. Times were 
normalized to a 10 MHz 68010. polyFORTH's use of nonpreemptive task scheduling accounts for its performance advantage. 

Event: VRTX OS9 PDOS polyFORTH 

Interrupt response 91 43.75 93.4 7.0 

Context switch 128 186.25 93.4 36 
Suspend ~ k  180 316.25 184.7 6.8 
Copy memory (80 bytes) 212.5 97 

that had been suspended pending the interrupt. The task would actually resume operation the next 
time it was encountered in the round-robin task loop, at which time it would complete any high-level 
processing occasioned by the event and continue its work. 

In theory this nonpreemptive algorithm is vulnerable to a task monopolizing the CPU with logically 
or computationally intensive activity, but in practice, real-time systems are so dominated by I/O that 
this is rarely a problem. Where CPU-intensive operations do occur, PAUSE is used to "tune" 
performance. 

Consultant Bill Cox pointed out [Cox 1987] that a nonpreemptive algorithm such as this has several 
advantages. First, the task scheduler itself is simpler and faster, taking as little as one machine 
instruction per task. Second, inasmuch as a task is suspended only at known, well-defined times, it 
has less "context" to be saved and restored, so the context-switch itself is faster. Third, task code can 
be written with the knowledge of exactly when the task does or does not control the CPU, and 
management of shared resources is considerably simplified. Cox compared the performance of several 
real-time OSs; the results are given in Table 13.2. 

Tasks were constructed when the system was booted, and each was given a fixed memory allocation 
adequate to the functions it was intended to perform. As rebooting took only a few seconds, it was 
easy to reconfigure a task. 

Computation: Until the late 1970s, few minicomputers offered floating point arithmetic--indeed, 
many lacked hardware multiply and divide. From the beginning, however, Forth was used for 
computationally intensive work. Controlling the radio telescope, for example, required converting 
wanted positions from the celestial coordinates, in which astronomical objects are located, to an 
azimuth/elevation coordinate system once per second and interpolating intermediate positions five 
times per second, with data acquisition and operator activity proceeding concurrently. 

Moore's approach was to build into Forth the ability to manipulate integers effectively. For 
example, the command */multiplies two single-cell integers and divides by a third, with a double- 
length intermediate product. This reflects the way most multiply and divide machine instructions 
work, and enables calculations such as: 

12345 355 113 */ 

This phrase multiplies 12345 by the ratio 355/113, which represents r~ with an error of 8.5 x 10 -8 
[Brodie 1981 ]. The ability to multiply by a ratio is ideal for calibration and scaling, as well as rational 
approximations. Similarly, the word/MOD performs a single division, returning both the quotient 
and remainder. A rich set of single, double, and mixed-precision operations, such as these, make 
integer arithmetic much more usable than it is in most languages. 

FORTH SESSION 639 



E. RATHER, D.R. COLBURN, & C.H. MOORE 

Moore expressed angles internally as 14-bit, 15-bit, or 30-bit fixed-point binary fractions. He 
provided a set of primitives to convert to and from angle formats (e.g., dd:mm:ss), and a math library 
supporting transcendental functions for these formats based largely on algorithms from Hart [ 1968]. 
Operations, such as the Fast Fourier Transform, were provided in some applications, built on 
specialized primitives supporting complex numbers as scaled integer pairs. 

Today, fast floating-point processors are common. Many Forths support floating point, as does 
ANS Forth. But in many cases, such as embedded systems on simple microcontrollers, Forth's integer 
arithmetic still provides simpler, faster solutions. 

Data Types: Perhaps, nowhere was Moore's personal philosophy more in evidence than in his 
approach to data typing. Basically, he wanted to assume full responsibility for manipulating data 
objects in whatever way he wished. If pressed on this point, he would say, "If  I want to add 1 to the 
letter A, it's none of the compiler's business to tell me I can't." 

Standard words in Forth support single and double-precision CONSTANTs, which return their 
values on the stack, and VARIABLEs, which return a pointer. CREATE names the beginning of a 
data region in which space can be reserved. The pointer returned by a CREATEd entity can be 
incremented to index into an array. The nature of the values kept in constants and variables was entirely 
arbitrary; there is normally no explicit type checking. Strings are normally kept in memory with their 
length in the first byte. The address of this structure, or the address and length of the actual string, can 
be passed on the stack. 

CONSTANT, VARIABLE, and CREATE are "defining words," that is, they define new words 
with characteristic behaviors. Forth also provides tools to enable the programmer to build new defining 
words, specifying a custom behavior both at compile time (e.g., setting up and initializing a table) 
and run-time (e.g., accepting an index and automatically applying it to the base address of the 
structure). 

13.3 FORTH WITHOUT CHUCK MOORE 

microFORTH was heavily marketed, and attracted a lot of attention in the late '70s. One side effect 
of this, was the growth of an active and enthusiastic group of hobbyists who fell in love with Forth. 
In their wake came new companies marketing versions of Forth in competition with FORTH, Inc. At 
the same time, Moore himself was becoming increasingly drawn toward hardware implementations 
of Forth, and less involved in software production at FORTH, Inc. (which he left in 1982 to pursue 
his hardware interests full time). In this section, we examine the development of Forth under these 
diverse new influences. 

13.3.1 The Forth Interest Group 

In the late 1970s, Northern California was afire with the early rumblings of the Computer Revolution. 
Groups of interested individuals, such as the "Home Brew Computer Club," were meeting to share 
interests and experiences. Magazines, such as Radio Electronics, published step-by-step instructions 
on how to build your own video display terminal, and even how to build your own microcomputer 
system. 

Due to the high cost of memory and low level of VLSI integration, typical "homebrew" computers 
were very resource-constrained environments. Echoing back to the first generation computers, there 
was insufficient memory to concurrently support an editor, assembler, and linker. Mass storage was 
slow and expensive, so many homebrew systems used paper tape or audio cassette tapes for I/O. 
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Although some BASIC language products were available, they were typically very slow, and incapable 
of supporting significant programs. The stage was thus set for something else to meet the expanding 
needs of these hardy explorers and "early adopters." 

Forth had been born and bred to exploit the minimal facilities of resource-constrained systems. It 
carried neither the excess baggage of a general solution, nor a requirement for an existing file, or 
operating system, or significant mass storage. As Forth was used to tackle more and more difficult 
embedded computer applications, it started to claim the attention of the Northern California homebrew 
computer enthusiasts. 

Bill Ragsdale, a successful Bay Area security system manufacturer, became aware of the benefits 
of microFORTH, and in 1978 asked FORTH, Inc. to produce a version of microFORTH for the 6502. 
FORTH, Inc. declined, seeing much less market demand for microFORTH on the 6502 than the more 
popular 8080, Z80 and 6800 CPUs. 

Ragsdale then looked for someone with the knowledge of microFORTH and intimate familiarity 
with the 6502 to port a version of microFORTH to the 6502. He found Maj. Robert Seizer, who had 
used microFORTH for an AMI 6800 development system on an Army project and was privately 
developing a stand-alone editor/assembler/linker package for the 6502. Selzer wrote a 6502 Forth 
assembler, and used the Army's microFORTH metacompiler to target compile the first 6502 stand- 
alone Forth for the Jolt single board computer. 

Seizer and Ragsdale subsequently made substantial modifications and improvements to the model, 
including exploitation of page zero and stack-implicit addressing architectural features in the 6502. 
Many of the enhancements that characterized the later public-domain versions were made during this 
period, including variable-length name fields and modifications to the dictionary linked-list threading. 
A metacompiler on the Jolt could target a significantly changed kernel to a higher address in memory. 
A replacement bootable image would then be recompiled by the new kernel into the lower boot 
address, which could then be written out to disk. At this point, Ragsdale had a system with which to 
meet his professional needs for embedded security systems. 

During this period, the Forth Interest Group (FIG) was started by Ragsdale, Kim Harris, John 
James, David Boulton, Dave Bengel, Tom Olsen, and Dave Wyland [FIG 1978]. They introduced the 
concept of a "FIG Forth Model," a publicly available Forth system that could be implemented on 
popular computer architectures. 

The FIG Forth Model was derived from Ragsdale's 6502 system. In order to simplify publication 
and rapid implementation across a wide variety of architectures, a translator was written to convert 
Forth metacompiler source code into text that, when input into a standard 6502 assembler, would 
replicate the original kernel image. In this way, neither the metacompiler nor its source code needed 
to be published. This is an important point. Forth metacompilation is a difficult process to understand 
completely. It requires the direct manipulation of three distinct execution phases and object areas, and 
is not something that a casual user wanted or needed. 

By publishing assembler listings, the Forth Interest Group was able to encapsulate a Forth run-time 
environment in a manner that could be easily replicated and/or translated into the assembly language 
of a different computer architecture. It was the intention of the original team of implementors to thus 
stimulate the development of compatible Forth systems and the appearance of new vendors of Forth 
products. 

After the 6502 FIG Model was published, FIG implementors published compatible versions for 
the 8080 and 6800 microcomputers and the PDP-11 and Computer Automation minicomputers. Over 
the years, volunteers added other platforms and documentation. The 1982 Forth Encyclopedia by 
Mitch Derick and Linda Baker [Derick 1982] provided an exhaustive 333-page manual on FIG Forth, 
with flow charts of most words. In 1983, an ad in Forth Dimensions, the FIG newsletter [FIG 1983], 
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listed: RCA 1802, 8080, PACE, 6502, 8086/88, 6800, 6809, 9900, Nova, Eclipse, VAX, Alpha Micro, 
Apple II, 68000, PDP11/LSII 1 and Z80. 

Today, there are several thousand members of the Forth Interest Group in over fifteen countries. 
Since 1980, FIG has sponsored an annual conference called FORML (Forth Modification Laboratory), 
an educational forum for sharing and discussing new or unproven proposals intended to benefit Forth, 
and for discussion of technical aspects of Forth. Its proceedings are available from the Forth Interest 
Group (P. O. Box 8231, San Jose, CA 95155). 

13.3.2 Commercial and Public Domain Systems for Personal Computers 

Apple Computer grew out of the bubbling computer enthusiasm in the San Francisco Bay area, and 
with it, a whole new generation of resource-constrained computers. Although BASIC was available 
in ROM, Forth was used to write a number of popular text editors and games on the Apple II, allowing 
resident development of significant programs within its scarce memory and disk constraints. It is hard 
now, with ubiquitous megabytes of memory and disk, to imagine what it was like to develop significant 
programs on a 40-column wide screen within 16K of memory and 100K of disk storage. 

Vendors of low cost Forth systems sprang up almost overnight, each supporting their favorite 
personal computer, most of them basing their systems on the FIG model. In 1979, for example, Miller 
Microcomputer Services announced MMSFORTH for the TRS-80 [TRS-80 1979], and by 1980 
Computerworld reported [Taylor 1980], that MMS had over 100 user groups for its product. 

When IBM entered the personal computer business, with their original PC product offering, they 
chose to distribute a version of the popular Apple II text editor EasyWritcr, written in Forth, as an 
IBM product. Laboratory Microsystcms (LMI) introduced a commercial IBM PC Forth system in 
1982. Numerous commercial and public domain Forth products followed, and significant software 
product development began. 

Following its introduction of the first commercial Forth for the IBM-PC, LMI has maintained a 
continuing strategy of producing cutting-edge Forth systems for the PC, including a 32-bit real-mode 
implementation (February, 1983), an OS/2-based Forth (February, 1988) and a Windows version 
(1992). Along the way LMI's founder, Ray Duncan, became an acknowledged authority on Microsoft 
OSs [e.g., Duncan 1988]. 

FORTH, Inc.'s PC offering was polyFORTH, which combined the multi-user support and database 
tools of its minicomputer products with the ROMablc architecture of microFORTH. By 1984 FORTH, 
Inc. was supporting up to 16 users on a PC with no visible degradation, and running polyFORTH 
---~rst as a native OS and later as a coresidcnt OS with MS-DOS. By the late '80s polyFORTH users, 
such as NCR, were supporting as many as 150 users on a single 80386-based PC. 

In 1978, Major Seltzer gave Don Colburn a copy of the 6502 Forth he wrote for Ragsdalc in 
exchange for Colburn's writing two articles on Sclzcr's 6502 work. Colburn subsequently used this 
as a basis for a version based on the preliminary FORTH-7? standard (the only FORTH-?7 imple- 
mentation of which the authors arc aware). In the Fall of 1979, Colburn generated a FIG-compatible 
system for prototypes of the 68000. A multitasking, multiuser version of this product called MultiForth 
was demonstrated to Motorola in January, 1980, well ahead of production shipments of the 68000. 
When Hewlctt Packard's dcsktop-computcr division designed a new generation of dcsktop computers 
around the 68000 in 1982, the first available third-party language product they distributed under an 
HP part number was MultiForth. 

Colburn's company "Creative Solutions" also introduced MacForth, the first resident development 
system for the 128K Apple Macintosh, immediately after the Mac's debut in January of 1984. Because 
MacForth uniquely provided direct access to the entire Macintosh "Toolbox ROM" (routines in a 
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System(s) Company Primary Products & Markets 

CFORTH83, Forthmacs, Bradley Forthware 
SunForth 

cmFORTH Silicon Composers 
and others 

Cyrano Opto-22 

F-PC T. Zimmer et al. 

F83 Laxen and Perry 

HS/Forth Harvard Soflworks 

JForth Delta Research 

MacForth Creative Solutions, Inc. 

Maeh2 Palo Alto Shipping 

mmsFORTH Miller Microcomputer 
Services 

MPEForth MicroProcessor Engineering 
(UK) 

mvpFORTH Mountain View Press 

Open Boot Sun Microsystems 

polyFORTH FORTH, Inc. 

UR/Forth Laboratory Microsystems, Inc. 
(LMI) 

Portable Forth written in C; versions for Atari, 
Macintosh, Sun; consulting and services related to the 
Sun Microsystems Open Boot. 

Public-domain system for Novix Forth processor by C. 
Moore, ported to the Harris and SC-32 Forth processors 
by others. 

Forth for a proprietary embedded controller 

Extensive public-domain system for the IBM-PC family 

Public-domain system for the IBM-PC family, later 
ported by others to other platforms 

IBM-PC family 

Amiga 

Apple Macintosh, NuBus interface boards 

Apple Macintosh 

IBM-PC family; business and commercial applications 

PCs and embedded systems 

Public-domain system on a variety of platforms 

Programmable ROM-based Forth on SPARC 
workstations 

Industrial systems on PCs and other platforms; 
interactive cross-compilers; consulting and custom 
programming services 

IBM-PC family running DOS, OS2 and Windows; also 
cross compilers for a variety of systems 

resident programming environment, along with comprehensive application examples), a majority of  
the first generation of  Macintosh application programmers learned how to create, and use, pull-down 
menus, windows, graphics and mice with MacForth. Significant large-volume spreadsheets, 2D and 
3D rendering and design packages, CAD/CAM design tools, games, medical diagnostics, image 
enhancement programs, accounting packages, desktop planetariums, and process control applications 
were written on early Macintoshes in MacForth. 

Byte Magazine dedicated its August, 1980 issue to Forth. It was their largest-selling issue to date, 
and was reprinted several times. 

By 1985, there were over 70 vendors of  Forth systems, ranging from single individuals to 
muitimillion dollar organizations. 

In 1982, Lawrence Forsley founded the Institute for Applied Forth Research, now called simply 
the Forth Institute. This organization sponsors an annual Conference on Forth Applications at the 
University of  Rochester, Rochester, NY, and publishes the Journal of Forth Application and Research, 
a refereed technical periodical on applications of  Forth, new developments and techniques, and 
surveys of  specific areas of  Forth. 
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In 1989, George Shaw and others formed an ACM Special Interest Group on Forth called SIGForth, 
which also sponsors a newsletter and an annual conference. 

13.3.2.1 Design principles 

FIG Forth was optimized for portability rather than performance. Only a very few primitives were 
coded in assembler, and the rest of the logic was implemented using high-level Forth. As a result, it 
was fairly slow--some operations, such as dictionary searches, were a factor of ten slower than 
representative commercial implementations. 

Other internal decisions were similarly made with the neophyte in mind. For example, the earlier 
FORTH, Inc. systems compiled word names as the length of the name and the first three characters. 
This gave a lower collision rate than simple truncation, and was adequate most of the time. But, the 
FIG model used variable-length names up to 31 characters, thereby trading size for user-friendliness. 
This was somewhat controversial at the time (see Fig. 13.1 ), but by the mid 1980s, most systems had 
converted to this usage. 

The advent of personal computers provided Forth implementors with the incentive to learn to run 
under a host OS. The first non-native systems were developed in 1980 by Martin Tracy of Micromotion 
(for the Apple II) and Ray Duncan of Laboratory Microsystems, Inc. (for CP/M on Z80s). LMI's 
system, also featured a full-screen editor. In 1981, LMI added support for a software and hardware 
floating point, and also pioneered performance enhancements, such as native code translation and 
caching dictionary Iookups in a hash table to accelerate dictionary searches. 

The advent of non-native Forth implementations introduced an issue that remains controversial in 
Forth practice today, the use of host OS files for mass storage. There are two main approaches: 
abandoning traditional blocks altogether in favor of directly manipulating source and data in files, 
and mapping blocks to host OS files. The former approach is favored by implementors who are 
concentrating on systems for a particular OS (e.g., MS-DOS), whereas the latter is preferred by 
organizations such as FORTH, Inc. that support both native and non-native products. 

FIGURE 13.1 

"Letter to the Editor" of Forth Dimensimrv [Moore 1983] concerning the practice of storing names of Forth words as a count 
and first three characters. 

DEA- EDI--- 

I AM AFR--- THA- THE LET--- IN THE LAS- ISS-- ABO-- 

FOR-- INC- USI-- ONL- THR-- LET--- NAM- FIE--- HAS 

HAD THE OPP ..... EFF--- FRO- WHA- THE WRI--- WAN--- 

HIS LET--- ( LIK- THI- ONE ) SHO-- THA- SAV--- ONL- 

THR-- LET .... AND COU-- IS JUS- ABO-- OPT .... IN 

TER-- OF A TRA-- OFF BET .... SAV--- MEM--- AND 

KEE .... LEG ....... 

WE STI-- DON-- SEE THE NEE- FOR 31 CHA ...... NAM-- 

IN THE GEN .... CAS- 

YOU-- TRU-- 

CHU-- MOO-- 

FOR-- INC- 
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Creative Solutions' MacForth used very compact object image strategies, including token threading 
and separated name heads to maximize the amount of memory available for program development on 
the original 128K Macintoshes. Other novel features included run-time relocation of the executable 
image and exclusion of word names in run-time systems without metacompilation. MacForth included 
a seamless programming environment, incorporating screen based text editor, compiler, interpreter, 
and assembler in under 20k bytes of memory. 

13.3.2.2 Influences 

The FIG Model was in the public domain, and was ported to a wide variety of computer systems. 
Because the internal design of FIG Forth was essentially the same across all machines, programs 
written in FIG Forth enjoyed a substantial degree of portability, even for "system-level" programs 
that directly manipulated the internals of dictionary entries and other implementation-dependent 
features. Because FIG Forth was the first introduction to Forth for many people, it is widely associated 
with "the nature of Forth." 

However, FIG Forth was not representative of all commercial implementations of this era. 
Commercial vendors tended to be much more performance-conscious, and elected implementation 
strategies that optimized performance or size rather than porting ease, as we have seen. 

The first major effort to standardize Forth was at a meeting in Utrecht in 1977, attended by several 
astronomical Forth users and FORTH, Inc. (at that time the only commercial vendor). They produced 
a preliminary standard called FORTH-77, and agreed to meet the following year. Meetings in 1978 
and 1979 on Catalina Island in California, now including representatives from the Forth Interest Group 
and other producers, yielded a more comprehensive standard called FORTH-79. Although FORTH-79 
was very influential, many Forth users and vendors found flaws in it; in 1982 two meetings were held 
to update the standard, and in 1983 a new standard was released called FORTH-83. Both FORTH-79 
and FORTH-83 specified a 16-bit, twos-complement, unaligned, linear byte-addressed virtual ma- 
chine, and included a number of assumptions about implementation techniques. 

Unfortunately, some of the changes in FORTH-83 produced grave incompatibilities with existing 
code. For example, the formal representation of a "true" flag had always been 1, and the word NOT 
inverted a Boolean flag. In FORTH-83, "true" became -1 and NOT became a bit-wise complement. 
Other problems involved the specification for floored division in FORTH-83 and a serious ambiguity 
in the specification of parameters for certain loop structures. The effect of these incompatibilities was 
divisive. Although most implementors agreed that FORTH-83 was an improvement and adopted the 
new standard, there remains a vocal group who never converted, and who remain skeptical of the 
whole standards process. Of the systems listed in Table 13.3, for example, most are fairly close to 
FORTH-83 compatibility; notable exceptions are MacForth, mmsFORTH and mvpFORTH, all of 
which stayed with FORTH-79. 

In 198 I, Prentice Hall published Starting FORTH, by Leo Brodie [Brodie 1981 ], then an employee 
of FORTH, Inc. Both lucid and entertaining (Brodie drew memorable cartoon figures representing 
important Forth primitives), Starting FORTH was also a thorough introduction to the language. It sold 
over 110,000 copies (for a time it was the best-seller in Prentice Hall's computer line) and exerted a 
powerful influence on many people learning about Forth for the first time, as well as on vendors 
scrambling to be compatible with it. Although the first edition was primarily based on FORTH, Inc.'s 
polyFORTH, it included many footnotes and examples in FIG Forth and other dialects. The second 
edition (1987) was based on the FORTH-83 standard. 

Another major influence in the personal computer marketplace has been the competition between 
public-domain and commercial versions of Forth. In the mid-1980s, the FIG model was gradually 
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replaced by the public domain F83 (produced by Henry Laxen, Mike Perry, and others, operating 
under the name "No Visible Support Software"), a multitasking system originally released on the 
IBM-PC. Versions have been developed by many independent programmers on a wide variety of other 
platforms. This system is so widespread that many people are led by its name to confuse it with the 
FORTH-83 standard. In fact, although it is largely compatible with FORTH-83, F83 goes well beyond 
the limited FORTH-83 standard in its features. In the late '80s, Tom Zimmer and others produced an 
even more extensive public-domain system for PCs called F-PC, which includes several megabytes 
of source code and utilities. But, except for these, most public-domain Forths are rather limited. 

Public-domain Forths have certainly helped to ensure that Forth is widely known. But their 
influence isn't entirely benign. According to Tyler Sperry, editor of Embedded Systems Programming 
Magazine [Sperry 1991 ]: 

The problem is that it is relatively easy to implement your own minimal Forth system. The kernel, after all, 
is only a few hundred bytes of code.... Unfortunately, bringing up a Forth interpreter is like writing a Small 
C compiler: it's only a toy without a well-developed library. One of the biggest problems with public-domain 
and shareware systems is that their libraries are often only partially completed, with sketchy documentation. 
And that's putting the situation kindly. 

People who have only seen or used limited public-domain Forth implementations often perceive 
that Forth itself is a toy. And suppliers of high-quality commercial systems must deal with prospective 
customers' assumptions that all Forths are the same, an assumption that naturally creates considerable 
price resistance, given that the public-domain versions are extremely inexpensive. The standing joke 
within the Forth community, however, is "when you've seen one Forth... you've seen one Forth." The 
range in quality of code and documentation, nature and extent of libraries, as well as product support, 
is enormous. A prospective user is well advised to evaluate a number of both public domain and 
commercial offerings. 

13.3.3 Embedded Systems 

13.3.3.1 Environment and applications 

Forth's ability to make maximum use of limited hardware resources made it a natural choice for 
embedded uses of microprocessors. Some of these have been small: an RCA 1802-based cardiac 
monitor (1979) that performed a detailed waveform analysis of heart beats was not much larger than 
the 1" x 2" tape cassette it used to record abnormalities. Some were large, such as the 750-ton stretch 
press used by Lockheed to form panels for the C5B airplane wings in the early '80s. Some were 
distributed, such as the roughly 500 networked processors used for an extensive facility management 
system at the King Khaled International Airport at Ryadh, Saudi Arabia [Rather 1985]. Forth has been 
especially successful in developing firmware for hand-held devices made by companies such as [tron 
and MS] Data. In 1990, Federal Express won the prestigious Malcolm Baldridge quality award for 
its package-tracking system, data entry of which is performed by Forth-based hand-held devices 
carried by Federal's 50,000 couriers and agents world-wide. 

Forth's extreme modularity facilitates thorough, systematic testing, which has made it attractive 
for applications requiring high reliability. As a result, it has been used in a number of satellites and 
Space Shuttle experiments. McDonnell Douglas used polyFORTH in their Electrophoresis in Space 
project [Wood 1986] to control the cargo bay factory itself (multiple 68000 VME-bus boards), the 
astronaut's control console (a laptop PC), and their ground-based analysis computer (a Compaq PC). 
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The November, 1990 Columbia shuttle flight carried four astronomy payloads, of which three were 
programmed in Forth [Ballard 1991 ], and the January, 1992, Spacelab flight featured a Microgravity 
Vestibular Investigation (MVI) experiment using a polyFORTH system for on-board control and 
analysis [Paloski 1986] and MACH2 in a ground-based Macintosh for analysis. 

Probably the most prolific single purveyor of embedded Forths is Sun Microsystems, whose 
SPARC workstations all use a programmable Forth-based monitor called Open Boot, developed by 
Mitch Bradley and associates. Bradley believes [Bradley 1991] that Forth was successful for this 
purpose because it offered: 

1. a CPU-independent "virtual machine" to use for the byte-coded portable drivers; 

2. a debugging environment for those drivers; 

3. an interactive command language, with complete programming language capability, that was 
useful for hardware startup and debugging; 

4. a built-in debugging environment for the firmware itself (firmware is otherwise rather painful 
to debug); 

5. a debugging environment for the operating system software; 

6. extensibility, allowing easy support of new hardware requirements and features; and 

7. great flexibility in tuning the implementation for speed/space tradeoffs. 

At least one other major board-level CPU vendor has adopted Open Boot firmware across their 
product line, and there is a working group developing an IEEE standard for it. 

13.3.3.2 Design principles 

From the minis of the '70s to the PCs of the '80s, most Forth systems have supported development 
on the same computer on which the completed application is to run. Even the microprocessor systems 
of the late '70s and early '80s were developed on the same CPU (as opposed to cross-development), 
with development software features for stripping the development tools and producing a ROMable 
target. 

Most embedded systems lack a disk, a terminal, or both, thereby rendering themselves inhospitable 
to even the leanest Forth programming environment. Nonetheless, some vendors do provide on-board 
Forths in microcontrollers. Examples include the Rockwell AIM 65 mentioned before, and microcon- 
troller boards sold by New Micros, Inc. of Texas; Vesta Technologies, Inc., in Colorado; and Opto-22 
in California. 

But as PCs became ubiquitous, they also became popular as hosts for more comfortable and 
powerful Forth cross-development environments. These have generally been based on modified 
versions of the classical Forth mctacompilcrs, adapted to support cross development. 

The traditional Forth dictionary is integrated: a "definition" includes the word's name (which can 
be found in a dictionary search performed by the text interpreter), an executable portion (typically a 
pointer to code that executes words of a particular class, such as colon definitions, variables, constants, 
etc.), and data space (containing one or more values or addresses of words that make up the content 
of the definition), all classically in contiguous memory locations. (However, see Section 13.5.2, 
Implementation Strategies). A mctacompiler divides these structurally into portions that arc used by 
the host system's compiler (equivalent to a symbol table) and portions required at run-time in the 
target. In order for a target program to be ROMable, the compiler must also manage separate ROM 
and RAM data spaces, usually using multiple sets of dictionary pointers. 
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13.4 HARDWARE IMPLEMENTATIONS OF FORTH 

The internal architecture of Forth simulates a computer with two stacks, a set of registers, and other 
well-defined features. As a result, it was almost inevitable that someone would attempt to build a 
hardware representation of the actual Forth computer. 

The first such effort was made in 1973 by John Davies of the Jodrell Bank Radio Astronomy 
Observatory near Manchester, England. Davies' approach was to re-design a Ferranti computer that 
had gone out of production to optimize its instruction set for Forth. 

The first actual Forth computers were bit-sliced board-level products. The first of these was made 
by a California company called Standard Logic, in 1976. By making a minor modification in the 
instruction set of their board-level computer, Standard Logic's chief programmer Dean Sanderson 
was able to implement the precise instruction that Forth uses in its "address interpreter" to move from 
one high-level command to the next. Their system was used widely by the US Postal System. 

In the early 1980s, Rockwell produced a microprocessor with Forth primitives in on-chip ROM, 
the Rockwell AIM 65F11 [Dumse 1984]. This chip has been used quite successfully in embedded 
microprocessor applications. However, no attempt was made to adapt the actual architecture of the 
processor (basically a 6502) for Forth support. 

In 1981, Moore himself undertook design of an actual Forth chip. Working first at FORTH, Inc. 
and subsequently with a start-up company called Novix, formed to develop the chip, Moore completed 
the design in 1984, and the first prototypes were produced in early 1985 [Golden 1985]. This design 
was subsequently purchased and adapted by Harris Semiconductor Corp., and formed the basis of 
their line of RTX processors. 

Starting in the early 1980s, a group at the John Hopkins Applied Physics Laboratory in Maryland 
developed a series of experimental Forth processors for use in space instrumentation [Hayes 1987]. 
The most successful of these, marketed as the SC-32 by Silicon Composers of Palo Alto, CA, was 
used to control the Hopkins Ultraviolet Telescope which flew in the Columbia Space Shuttle in 
November, 1990 [Ballard 1991]. It continues to be the basis for more space instruments under 
development. 

Moore himself, working on his own, has continued to develop Forth-based processors for special 
applications. 

The various Forth processors have had an influence on Forth software systems. In order to take 
full advantage of these architectures, Forth compilers were developed by Moore, FORTH, Inc., and 
Laboratory Microsystems that generated machine code optimized for the chip's internal architecture. 
A native looping structure in the Novix and Harris chips called FOR ... NEXT (which counted down 
from a single-argument upper limit to zero) led to adoption of this structure in other Forths as well. 

13.5 PRESENT AND FUTURE DIRECTIONS 

The computer industry has always been characterized by rapid and profound changes. Because Forth 
was last standardized in the early 1980s, the speed, memory size, and disk capacity of affordable 
personal computers have increased by factors of more than one hundred. 8-bit processors are now 
rare in PCs (although they are still widely used in embedded systems), and 32-bit processors are 
common. Operating systems, programming environments, and user interfaces are far more sophisti- 
cated. Many recent Forth implementations, both commercial and public-domain, have attempted to 
address these issues. 
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13.5.1 Standardization Efforts 

At the time of writing (November, 1992), a Technical Committee X3J14 (of which authors Rather 
and Colburn are members) is nearing completion of an ANS Forth. Among the 20 voting members in 
the TC are vendors (FORTH, Inc., Creative Solutions, Sun Microsystems, and a division of NCR), 
some large user organizations (Ford Motor Co., NASA), and a number of smaller user organizations, 
consultants and experts. Starting in 1987, this group has addressed a number of problems with 
FORTH-79 and FORTH-83, as well as some contemporary issues. A few of the issues addressed in 
the draft standard follow, as they represent current areas of lively debate and technical activity among 
Forth users and implementors. 

ANS Forth attempts to reconcile some of the divisions caused by the incompatibilities between 
FORTH-79 and FORTH-83. For example, it retains 0= to perform the FORTH-79 NOT function, 
introduces INVERT to perform the FORTH-83 NOT, and removes the word NOT. This enables 
application writers who depend on either version to leave their programs unchanged, and achieve 
compatibility by adding a simple shell in which NOT is defined as a synonym for the preferred 
behavior. 

The proposed standard also removes virtually all restrictions on implementation options, provides 
for independence from CPU word size, and offers a number of optional extension word-sets for 
functions such as host OS file compatibility, dynamic memory allocation, and floating point arit- 
hmetic. Some significant issues addressed by ANS Forth follow. 

13.5.1.1 Cell size 

FORTH-79 and FORTH-83 mandated a 16-bit architecture, including stack width, addresses, flags, 
and numbers. ANS Forth specifies sizes in terms of a "cell," the width of which is implementation- 
defined but must be at least 16 bits. Words have been added to increment addresses transportably by 
a cell, a character, or an integral number of cells or characters. 

13.5.1.2 Arithmetic 

Amid great controversy, FORTH-83 mandated floored division. Not only was this incompatible with 
prior usage (which didn't specify the algorithm for handling signed division), it was also at variance 
with hardware multiply/divide instructions on most processors. But many people felt strongly that 
floored division is mathematically more appropriate, and that it was important to specify. Recognizing 
that there were many implementations on both sides of this issue, the TC opted to allow either floored 
or truncated division. The implementation must specify which default it uses, and must provide 
primitives supporting both methods. 

13.5.1.3 Control structures 

One of the unique characteristics of Forth is the degree to which its own internal tools are accessible 
to the application programmer. For example, there is one lexical analyzer used by the compiler, 
assembler, and text interpreter; it is also available for command and text parsing in applications. 
Similarly, the tools that implement control structures, such as loops and conditionals, are available 
for making custom structure words. In 1986, Wil Baden demonstrated [Baden 1986] that the standard 
Forth structure words, plus a few extensions made from these underlying tools, are adequate to make 
any structure, including solutions to problems posed in D. E. Knuth's paper"Structured Programming 
with go to statements" [Knuth 1974]. 
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TABLE 13.4 

Standard control structures in Forth. ANS Forth allows programmers to form new structures by mixing the component words 
or using them to define new structure words. 

Structure Description 

DO . . .  LOOP 

DO . . .  <n> +LOOP 

BEGIN . . .  <f> UNTIL 

BEGIN . . .  < f>  WHILE . . .  REPEAT 

BEGIN ... AGAIN 

<f> IF ... ELSE ... THEN 

< f >  I F  . . .  T H E N  

Finite loop incrementing by 1 

Finite loop incrementing by <n>. 

Indefinite loop terminating when <f> iB 'true' 

Indefinite loop terminating when < f > :Ls 'false' 

Infinite loop 

Two-branch conditional; performs words following IF if <f> J.s 'true' 
and words following ELSE if it is 'false'. THEN marks the point at 
which the paths merge. 

Like the two-branch conditional, but with only a 'true' clause. 

FORTH-79 and FORTH-83 provided syntactic specifications for the common structures listed in 
Table 13.4, as well as an "experimental" collection of structure primitives. The latter were not widely 
adopted, however, and few implementations perform the kind of syntax checking the standards 
anticipated. F83 offers a limited form of syntax checking, in that it requires the stack, which is used 
at compile-time for compiling structures, to have the same size before and after compiling a definition, 
the theory being that a stack imbalance would indicate an incomplete structure. Unfortunately, this 
technique prevents the very common practice of leaving a value on the compile-time stack which is 
to be compiled as a literal inside a definition. 

Common practice often took advantage of knowledge about how the structure words worked at 
compile-time to manipulate them in creative ways. The ANS Forth Technical Committee sanctioned 
this by providing specifications of both the compile-time and run-time behaviors of the structure 
words, so that they may be combined in arbitrary order. A set of structure primitives is provided in a 
"programming tools" wordset, and the word POSTPONE is provided to enable programmers to write 
new structure words that reference existing compiler directives, in order to provide a portion of the 
desired new behavior. 

13.5.2 Implementation Strategies 

The original Forth systems, developed by Moore in the 1970s, compiled source from disk into an 
executable form in memory. This avoided the separate compile-link-load sequences characteristic of 
most compiled languages, and led to a very interactive programming style in which the programmer 
could use the resident Forth editor to modify source and recompile it, having it available for testing 
in seconds. "['he internal structure of a definition was as shown in Fig. 13.2, with all fields contiguous 
in memory. The FIG model and its derivatives modified the details of this structure somewhat, but 
preserved its essential character. 

Forth systems implemented according to this model built a high-level definition by compiling 
pointers to previously defined words into its parameter field; the address interpreter, that executed 
such definitions, proceeded through these routines, executing the referenced definitions in turn by 
performing indirect jumps through the register used to keep its place. This is generally referred to as 
indirect-threaded code. 
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FIGURE 13.2 
Diagram showing the logical components of a Forth definition. In classical implementations, these fields are contiguous in 
memory. The data field will hold values for data objects, addresses, or tokens for procedures, and the actual code for CODE 
definitions. 

Address of next definition in 
search order 

NAME I LINK I CODE 

Address of code to J 
execute this class of word 

DATA 

The need to optimize, for different conditions, has led to a number of variants in this basic 
implementation strategy, however. Some of the most interesting are: 

1. Direct threaded code. In this model, the code field contains machine code instead of a 
pointer-to-machine code. This is somewhat faster, but typically costs extra bytes for some 
classes of words. It is most prevalent on 32-bit systems. 

2. Subroutine-threaded code. In this model, the compiler places a jump-to-subroutine instruc- 
tion with the destination address in-line. This technique costs extra bytes for each compiled 
reference on a 16-bit system. It is often slower than direct-threaded code, but it is an enabling 
technique to allow the progression to native code generation. 

3. Native code generation. Going one step beyond subroutine-threaded code, this technique 
generates in-line machine instructions for simple primitives such as + and jumps to other 
high-level routines. The result can run much faster, at some cost in size and compiler 
complexity. Native code can be more difficult to debug than threaded code. This technique is 
characteristic of optimized systems for the Forth chips such as the RTX, and on 32-bit systems 
where code compactness is often less critical than speed. 

4. Optimizing compilers. A variant of native code generation, these were invented for the Forth 
processors that can execute several Forth primitives in a single cycle. They looked for the 
patterns that could be handled in this way and automatically generated the appropriate 
instruction. The range of optimization was governed by the capabilities of the processor; for 
example, the polyFORTH compiler for the Novix and RTX processors had a four-element 
peephole window. 

5. Token threading. This technique compiles references to other words using a token, such as 
an index into a table, which is more compact than an absolute address. Token threading was 
used in a version of Forth for a Panasonic hand-held computer developed in the early 1980s, 
for example, and is a key element in MacForth. 

6. Segmented architectures. The 80x86 family supports segmented address spaces. Some Forths 
take advantage of this to enable a 16-bit system to support programs larger than 64K. Similarly, 
implementations for Harvard-architecture processors such as the 8051 and TI TMS320 series 
manage separate code and data spaces. 

Although the early standards assumed the classical structure, ANS Forth makes a special effort to 
avoid assumptions about implementation techniques, resulting in prohibitions against assuming a 
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relationship between the head and data space of a definition or accessing the body of a data structure 
other than by predefined operators. This has generated some controversy among programmers who 
prefer the freedom to make such assumptions over the optimizations that are possible with alternative 
implementation strategies. 

13.5.3 Object-Oriented Extensions 

Forth's support for custom data types with user-defined structure, as well as compile-time and 
run-time behaviors, has, over the years, led programmers to develop object-based systems such as 
Moore's approach to image processing described in Section 13.2.2.2, item 2. Pountain [1987] 
described one approach to object-oriented programming in Forth, which has been tried by a number 
of implementors. Several Forth vendors have taken other approaches to implementing object-based 
systems, and this is currently one of the most fertile areas of exploration in Forth. 

In 1984, Charles Duff introduced an object-oriented system written in Forth called Neon [Duff 
1984 a & b]. When Duff discontinued supporting it in the late '80s, it was taken over by Bob 
Lowenstein, of the University of Chicago's Yerkes Observatory, where it is available as a public-do- 
main system under the name Yerk. More recently, Michael Hore re-implemented Neon using a 
subroutine-threaded code; the result is available (also in the public domain) under the name MOPS. 
Both Yerk and MOPS are available as down-loadable files on a number of Forth-oriented electronic 
bulletin boards listed at the end of this paper. 

13.6 A POSTERIORI EVALUATION 

The early development of FORTH was, in many ways, quite different from that of most other 
programming languages. Whereas they generally emerged full featured, with unambiguous formal 
specifications for language syntax and semantics, Forth enjoyed a lengthy, dynamic adolescence, in 
which each fundamental presupposition of the language was tested on the anvil of actual applications 
experience. During this period, Moore, unencumbered by a large following of users, often made 
revolutionary changes to the language on a daily basis, to suit his current view of what the language 
should be. He had complete control and responsibility for the machine at hand, from the first bootstrap 
loader to the completed application. The language converged toward the actual needs of one man 
solving a broad class of technically challenging problems in resource-constrained environments. 

The resulting method of problem solving, expressed by the resulting de facto language specifica- 
tion, has proven useful to others. Given the complete flexibility to add syntax checking, data typing, 
and other more formal structures often considered essential to programming languages, most of the 
several hundred people who have independently implemented versions of Forth for their own use have 
not done so. The results of their efforts, as surveyed by the ANS Forth Technical Committee, represent 
a startlingly democratic ratification of Moore's personal vision. 

13.6.1 Meeting Objectives 

Without a formal language design specification citing clearly defined objectives, we can only evaluate 
the stated objectives of the inventor of the language and those who have used it. Personal productivity 
and intellectual portability were Moore's primary stated objectives. Forth has been ported across the 
vast majority of programmable computers and has been embodied in several different dedicated Forth 
computer architectures. 
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In 1979, Chuck Moore looked back on ten years' experience with Forth and observed [Moore 

1979]: 

My original goal was to write more than 40 programs in my life. 1 think 1 have increased my throughput by 
a factor of 10. I don't think that throughput is program-language limited any longer, so I have accomplished 
what I set out to do. I have a tool that is very effective in my hands--it seems that it is very effective in others' 
hands as well. I am happy and proud that this is true. 

Today he sees no reason to change this assessment. 
The developers of  FIG Forth saw their systems spread all over the world, along with chapters of  

their organization, and influence Forth programmers everywhere. Their goal of  instantiating addi- 
tional commercial vendors of  Forth products was also achieved. 

Of the many entrepreneurs who committed their careers and fortunes to Forth-based enterprises, 
few have become rich and famous for their efforts. But most have had the satisfaction of  seeing their 
own productivity increased just as Moore did, and of  having seen seemingly impossible project 
objectives met because of  the power and flexibility of  the language. They have also enjoyed prosperity 
in making this capability available to their clients and customers. 

Given Moore's  criteria of  productivity and portability, perhaps the best measure of  achieving these 
objectives is the very large quantity and range of  application programs that have been written in Forth 
by a small number of  programmers across a very broad variety of  computers. 

13.6.2 Major Contributions of Forth 

In 1984, Leo Brodie wrote a book on designing Forth applications called Thinking Forth [Brodie 
1984]. In it, he quoted a number of  Forth programmers on their design and coding practices. In an 
Epilogue, several of  them commented that Forth had significantly influenced their programming style 
in other languages, and indeed their approaches to problem solving in general. Here are two examples, 
which are typical of  observations of  Forth users in general: 

[The] essence of good Forth programming is the art of factoring procedures into useful free-standing words. 
The idea of the Forth word had unexpected implications for laboratory hardware design. 

Instead of building a big, monolithic, all-purpose Interface, 1 found myself building piles of simple little boxes 
which worked a lot like Forth words: they had a fixed set of standard inputs and outputs, they performed just 
one function, they were designed to connect up to each other without much effort, and they were simple 
enough that you could tell what a box did just by looking at its label . . . .  

Because Forth is small, and because Forth gives its users control over their machines, Forth lets humans 
control their applications. It's just silly to expect scientists to sit in front of a lab computer playing "twenty 
questions" with packaged software. Forth. . .  lets a scientist instruct the computer instead of letting the 
computer instruct the scientist. 

- -  Mark Bernstein, president of Eastgate Systems, Inc., Cambridge, MA 

Forth has changed my thinking in many ways. Since learning Forth I've coded in other languages, including 
assembler, BASIC and FORTRAN. I've found that I used the same kind of decomposition we do in Forth, in 
the sense of creating words and grouping them together. 

More fundamentally, Forth has reaffirmed my faith in simplicity. Most people go out and attack problems 
with complicated tools. But simpler tools are available and more useful. 

m Jerry Boutelle, owner of Nautilus Systems, Santa Cruz, CA 
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Mitch Bradley reports [Bradley 1991] that the design of the Forth-based Open Boot has signifi- 
cantly influenced the thinking of the people at Sun Microsystems who are responsible for the low-level 
interfaces in the Unix kernel. Open Boot design philosophy is influencing driver interfaces, the device 
naming system, and the early startup and configuration mechanisms. There is even talk of unifying 
the syntax of several disparate kernel configuration files by using Forth syntax and including a subset 
Forth interpreter in the Unix kernel. People at Sun, who have worked with Open Boot, are impressed 
by the fact that the simple postfix syntax never "runs out of steam" or "paints you into a corner." 

13.6.3 Mistakes or Desired Changes 

Forth has a chameleon-like capacity to adapt to any particular application need. Indeed, the process 
of programming in Forth is to add to it application-oriented words at increasingly high levels until all 
the desired functionality is implemented. So, for any project, or even any particular programming 
group, any perceived needs will be promptly addressed. When looking for "mistakes" then, the most 
useful questions to ask are, "What were the things that a significant number of implementors have 
chosen to change or add?" and, "What are the characteristics of the language that may have prevented 
its wider acceptance?" 

One of the first actions taken by the ANS Forth Technical Committee, when it formed in 1987, 
was to poll several hundred Forth implementors and users to determine their views on problems in 
the language that needed to be addressed. The issues cited fell into three categories: "mistakes" in one 
or both of the existing standards (e.g., incompatibilities introduced by FORTH-83 and anomalies such 
as an awkward specification for arguments to DO); obsolete restrictions in FORTH-83 (mainly the 
reliance on a 16-bit architecture); and a need for standards for such things as host file access, floating 
point arithmetic, and so forth. Features in the latter group were, by then, offered by most commercial 
and many public-domain systems, but as they had been developed independently, there was variance 
in usage and practice. ANS Forth has attempted to address all these concerns. 

In retrospect, however, the lack of standard facilities for such things as floating-point arithmetic, 
which are covered by other languages, has probably impeded widespread acceptance of Forth. It's 
insufficient to point out that most commercial systems offer them, if the public perception of the 
language is formed by a standard that omits any mention of such features! From this perspective, the 
ANS Forth effort has come almost too late. 

Another difficulty is that Forth's very identity is unclear: it is not only unconventional in appearance 
with its reliance on an overt stack architecture and postfix notation, but it broadly straddles territory 
conventionally occupied by not only languages, but also operating systems, editors, utilities, and the 
like, that most people are accustomed to viewing as independent entities. As a result, it's difficult to 
give a simple answer to the question of what it is. 

The integrated character of Forth is viewed by its practitioners as its greatest asset. As Bradley 
[ 1991 ] expresses it, 

Forth has taught me that the 'firewalls' between different components of a programming environment (i.e., 
the different syntax used by compilers, linkers, command interpreters, etc.) are very annoying, and it is much 
more pleasant to have a uniform environment where you can do any thing at any level at any time, using the 
same syntax. 

Duncan [1991], however, believes that this seamless integration of Forth the language, Forth the 
virtual machine, and Forth the programming environment is a significant barrier to mainstream 
acceptance. He notes that the same has been observed regarding Smalltalk versus C++: 
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I have been using C++ for some months now, and the very things about C++ that frustrate me--the language 
is not written in itself (thus there is no way to use the building blocks for the programming environment as 
part of the application), the language is not truly extensible (e.g., the operators for the native data types cannot 
be overridden), and there is no programming environment that is smart about the language and class 
hierarchies--are the things that traditional language experts see as assets for C++ compared to Smalltalk! 

As long as Forth users are convinced that its integrated, intrinsically interactive character is the 
key to their productivity as programmers, however, it is unlikely to change. 

13.6.4 Problems 

Some languages tend to be "levelers:" that is, a program written by an expert is unlikely to be 
significantly better (smaller, faster, and so forth) than one written by a novice. Chuck Moore once 
observed [Moore 19?9], "...FORT[-] is an amplifier. A good programmer can do a fantastic job with 
FORTH; a bad programmer can do a disastrous one." Although never quantified, this observation has 
been repeated on many Forth projects across a broad programmer population, and has achieved the 
status of "folk wisdom" within the Forth community. 

This tendency has given Forth the reputation of being "unmanageable," and there have been some 
highly publicized "Forth disasters" (notably Epson's YALDOCS project in the early 1980s). On close 
examination, however, the root causes of this, and other failed Forth projects, are the same problems 
that doom projects using other languages: inadequate definition, poor management, and unrealistic 
expectations. 

There have also been a number of  Forth successes, such as the facility management system for the 
Saudi Arabian airport mentioned before, in which a project that was estimated to contain 300,000 
lines of  executable FORTRAN, PLM, and assembly language software was totally redesigned, 
recoded in Forth, and tested to the satisfaction of the customer in only eighteen months [Rather 1985]. 
The result ran more than a factor of  ten faster. 

Jack Woehr, a senior project manager for Vesta Technologies, observes [Woehr 1991] that 
successful management of  Forth projects demands nothing more than generally good management 
practices, plus, an appreciation of  the special pride that Forth programmers take in their unusual 
productivity. Forth rewards a management style that believes a small team of highly skilled profes- 
sionals can do a better job, in a shorter time, at less overall cost, than a large group of  more junior 
programmers. 

13.6.5 Implications for Current and Future Languages 

What can be learned from 20 years experience with Forth? Forth stands as a living challenge to many 
of the assumptions guiding language developers. Its lack of rigid syntax and strong data typing, for 
example, are characteristically listed as major advantages by Forth programmers. The informal, 
interactive relationship between a Forth system and its programmer has been shown through many 
projects to shorten development times, in comparison with more conventional tools such as C. Despite 
the tremendous increases in the size and power of modern computers, Forth's combination of easy 
programming, compact size, and fast performance (characteristics often thought to be mutually 
exclusive) continues to earn a loyal following among software developers, especially for embedded 
systems. 
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AUTHORS' NOTE (7/95) 

The purpose of this addendum is to present a few significant events that have occurred since its original 
presentation: 

1. Concerning Table 13.3 (Section 13.3.2), the systems listed for Bradley Forthware are now 
available from FirmWorks, of Mountain View, CA, and Palo Alto Shipping is no longer in 
business. 

2. The Forth-based underlying technology in Sun Microsystems' "Open Boot" (Section 13.3.3.1 ) 
was standardized as IEEE Std 1275-1994, IEEE Standard for Boot (Initialization Configura- 
tion) Firmware: Core Requirements and Practices, and is available from IEEE, 345 E. 47th 
St., New York, NY 10017, USA. 

3. ANS Forth (Section 13.5.1) received final approval March 24, 1994, and is now available as 
American National Standard for Information Systems--Programming Languages--Forth, 
Document X3.215-1994, from American National Standards Institute, 11 W. 42nd St., 13th 
Floor, New York, NY 10036. 

4. The BIX and GEnie bulletin boards are now replaced by the Internet newsgroup 
comp.lang.forth. 

TRANSCRIPT OF PRESENTATION 

SESSION CHAIR HELEN GIGLEY: Elizabeth Rather holds A.B. and M.A. degrees from the Univer- 
sity of California, Berkeley, and an M.B.A. from Pepperdine University. Her programming experi- 
ences span FORTRAN, COBOL, BASIC, APL, NELIAC, over a dozen different assemblers, and of 
course, Forth. She met her first computer in 1962, the ORACLE, at Oak Ridge National Laboratory. 
It had vacuum tubes and reels of tape for memory. She managed data analysis for a physics group 
there, and went on to computing jobs in the Astronomy Department at UC, Berkeley. Later jobs 
included processing student records for the College of Letters and Science at Berkeley and the 
University of Arizona. Her first minicomputer experience was in 1971, at the National Radio 
Astronomy Observatory's, Tucson, Arizona, Division. Here she met Chuck Moore, the inventor of 
Forth, who was sitting on a high stool in front of the machine. This encounter, and the language called 
Forth, changed her career. Ms. Rather has been president of Forth Inc. since 1988, where she has 
managed the development of products and services for scientific and industrial computer applications. 
Currently, Forth Inc. is introducing a software development system for process control and automated 
manufacturing. 

ELIZABETH RATHER: (SLIDE 1) I want to start out by introducing ourselves briefly. I 'm sorry my 
two coauthors couldn't make it. They consist of Chuck Moore, who was the inventor of Forth--and 
with the discussion of"designed," with respect to languages and whatever, I will stick to "invention" 
as being the correct word in this case. He certainly never "designed" it in the sense of thinking it 
through. I'm not sure that if he had, he would have ever gotten started. He conceived of it, from the 
outset, as a personal productivity tool that, in the long run, got out of control, as some of them tend 
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SLIDE 1 

History of the Forth Language 

• 1969 - -  F a ¢ ~  saline Iliven to Ckucl t  M ~ ' s  p ¢ ~ r a m m l l g g  ionlluUge mt 
MahaJco  l a d m t o i ~  

• 1971 - -  ~ ~taad.mlolte Fm' th  at Nmamud Radio A N y  
( ~ m - w t m - y  

1972 - -  ~ n t ~ r  Forth 
1973 - -  F ] ) R T H ,  Inc.  frmnded 
1977 - -  ~ b ~ t  aIT4Jte-~bel f praduct frmn F()RTH, Inc. 
197a - -  Fm-Ut I ~  ( : t~mp founded 
197'9 - -  f ' l rs t  l x tM idNd  mlandard {FOl l f l 'H79)  
19~9 - -  B Y T E  qpecld lame on For th  

1St1 - -  Starthqf F O R T H  punished; has t~dd 125,000 teplts 
IM3  - -  I . ans t  puMisbed st,mdard (FORTHa3)  

k m ~  o f  J t ~ r r ~ l  of Fortk Applications and R ~ c a r c k  
• I M 7  - -  ANS Fectb TC mpprevcd and ~ work 
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~ d v ~  

SLIDE 2 

to do. For the last ten years, he has been involved in doing hardware implementations of  various Forth 
based processors for general and specific applications, none of which have been commercially 
successful. Don Colburn, my other coauthor, was one of the founders of  The Forth Interest Group, 
and one of the earliest independent developers of  commercial Forth systems. He currently is the 
proprietor of a company that sells the most successful version of Forth for Macintoshes and also Nubus 
boards. He also works as a teacher's aide in an elementary school in Maryland one day a week. 

(SLIDE 2) The history of  Forth goes back, actually, a long way, as you can see in the paper--which 
I am not going to entirely summarize. Forth had precedents way back in the early '60s, in work that 
Chuck did at the Smithsonian Astrophysical Observatory and other places. It first acquired the name 
"Forth" in 1969. It was supposed to suggest a "fourth generation" computer. At the time, the "third 
generation" was big, and he saw the fourth generation as being distributed small computers--which 
in many respects was accurate. Just as "Schemer" became "Scheme," his compiler would only handle 
five. So the "u" went away. There has been a lot of  history, much of  which is covered in the paper. 
My talk, like others, is going to be in the form of footnotes. On the other hand, you can say that by 
seeing this slide, you can go home now or get ready for dinner. But, I do have a few more remarks. 

(SLIDE 3) Chuck is an unusual person, and it's been a great treat knowing him. But I could not 
talk about Forth without talking a little bit about his philosophy and what some of his attitudes were. 
I have summarized it there, but just to give you a little flavor, I will read a couple of  excerpts from a 

Chuck's Philosophy & Goals 

G O A L :  Replace  "vast h ierarchy" o f  
languages,  compi lers , /assemblers ,  OSs,  editors  
. . .  w i t h  a single layer having 2 elements:  

• progcammer- to -Forth  interface 

• Forth- to-machine  interface 

PRINCIPLES:  

• Keep it s imple!  

• Do  not  speculate!  

• Do  it yourselP. 

SLIDE 3 

Everything vs. Anything 

C O N V E N T I O N A L  A P P R O A C H :  

Yon can't  change  your  tools ,  so they  most  be  able  
to  handle  everything you might do.  

(big, slow, complex ,  hard to learn & maintain)  

F O R T H ' S  A P P R O A C H :  

Make  the tool  easily adaptable  to do  anything you 
need.  

(small ,  fast, s imple,  flexible; appl icat ion-oriented 
tool  sets) 

SLIDE 4 
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book he wrote in about 1970, which was never published. He said, "In connection with these 
principles, do not put code in your program that might be used." He was very much opposed to the 
notion of  "hooks"--people  putting hooks in and making provisions for something that might come 
up in the future he thinks that simply leads to unsanitary code. He says: 

Do not leave hooks on which you can hang extensions. The things you might want to do are infinite; that 
means that each has 0 probability of realization. If you need an extension later, you can code it later--and 
probably do a better job than if you did it now. And if someone else adds the extension, will he notice the 
hooks you left? Will you document this aspect of your program? 

Well, certainly not. And even more "Chuckish" was his notion of  writing everything himself. In 
the entire time I 've known him, which is well over 20 years, he has yet to use any code that actually 
came from a manufacturer with their computer, including their assembler or their math (multiply and 
divide) routines. (In the '70s, you had to have software multiply, divide, and so on.) He said: 

The conventional approach, enforced to a greater or lesser extent, is that you should use a standard subroutine. 
I say you should write your own subroutines. 

Before you can write your own subroutines, you have to know how. This means, to be practical, that you've 
written it before; which makes it difficult to get started. But give it a try. After writing the same subroutine a 
dozen times on as many computers and languages you'll be pretty good at it. 

(SLIDE 4) More particularly, his view was that the application programmer, who was the target of  
his effort, is an intelligent, responsible, creative person, who deserves and needs empowering tools. 
It was his perception, based on a number of  years of  experience, that the software tools that were 
provided, were generally designed with the view of  the programmer as being simple minded, at best, 
and irresponsible in most cases (and possibly even with criminal intent), who needed externally 
imposed discipline, in order to stay out of  trouble. He had quite the opposite approach. 

(SLIDE 5) The language that he built over the years had some unique features. This is a summary 
of  some of  them. They were unique for Chuck in that, although he spent a good part of  his career 
around academic science, it was not computer science, and he really has never been involved in the 
reading and writing of  papers, where these kinds of  ideas are disseminated. Nonetheless, he came up 
with a lot of  them entirely on his own. I remember distinctly when I was giving papers on Forth in 
the early '70s, somebody said, "What you are talking about sounds an awful lot like structured 
programming;" and I said, "What 's  that?" And they directed me to the appropriate papers, which I 
read with great interest and passed along to Chuck. He said, "Well I don' t  see what all the fuss is 
about; it just looks like good programming to me." And I think that is fairly representative of  his ideas. 
He was working empirically, trying to make the kinds of  tools that he saw being necessary. 

(SLIDE 6) The first running, full stand-alone Forth system at NRAO (National Radio Astronomy 
Observatory) that I worked on, which was really the first stand-alone Forth system, was controlling 
a radio telescope. I found out, much to my astonishment, last Fall, that system is still in use. 
Unfortunately, they are about to tear down the telescope. So for all I know, the program is going to 
outlive the telescope--which is kind of  unusual. 

(SLIDE 7) Relevant to Chuck's remark about writing the same program a number of  times, he 
actually implemented Forth personally on over 17 computers. I tried to research this list as best I 
could; there may be some that aren't on it. But he wrote the entire system for this many computers, 
and other people have written many more since. In doing one of  these implementations, you had to 
start off by designing the assembler and writing an assembler--and then coding about a hundred 
assembly language primitives using that assembler, then getting it all to work. Forth was written in 
Forth. You used a friendly Forth computer to generate Forth for the new computer that you were 
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TRANSCRIPT OF FORTH PRESENTATION 

Early Uses, Independent Discoveries 
and Heresies 

• " S t r u c t u r e d  P r o g r a m m i n g "  - -  1 9 6 % 7 2  

• " T y p e - f r e e "  d a t a  s t r u c t u r e s  - -  1 9 6 % 7 0  

• Postfix notation & dual stack operation - -  1 9 6 8  

• Indirect threaded c o d e  ~ 1 9 7 0  

• Improved integer math operators ( * / , / M O D ,  e tc . )  
- -  197/I) 

• Completely self-contained environment ~ 1971 

• Non-preemptive real-time multitasklng/multluser 
executive-- 1972  

• O b j e c t - o r i e n t e d  t e c l m l q u e s  ~ 1976-8  

First Forths at NRAO 

• Two computers, connected b y  a l - b i t  
l i n k  ( 1 9 7 1 - 2 ) .  

• C o n c u r l a m t  c o m m a n d  & c o n t r o l  o f  36 '  
radio t d c s c o p e ,  p l u s  d a t a  a c q u i s i t i o n  & 
g r a p h i c a l  analysis. 

• U p g r a d e d  t o  s i n g l e  P D P - U  w / 4  

terminals in 1973 .  (T.'T"-'~ ~ 

~lm eeq ~n~wm 
Stnal S e~w mmml 

SLIDE 5 SLIDE 6 

working on. But nonetheless, that's a lot of  work to do. What's really astonishing is that he did this 
in approximately two weeks for each one--including writing the software multiply and divide 
routines--which were invariably faster that the ones than came from the manufacturer, which is a 
great source of pride to him. I would also like to point out that on several of these computers: the 
Honeywell 316, the (Honeywell) DDP 116, the Varian 620, the Honeywell Level 6, the Intel 8086, 
and the Raytheon PTS-10(Owhich is a pretty obscure computer--on all of  these, Forth was the first 
high-level language running on that processor. We were working on the 8086, while it was still in 
prototype, and in fact, helped Intel find a couple of  bugs in the part. 

(SLIDE 8) This is a list of  some of the early projects so that you will see what kinds of applications 
influenced the early growth of Forth. Unlike Icon, we very definitely had applications in mind. Forth 
has, from day one, been designed for use in applications, and the applications in which it was used in 
the early days had a lot of  influence. So it's been very well integrated with the real world. We traveled 
a lot to do these systems. Chuck built a personal portable computer in the mid-70s out of  one of the 
first LSI-1 Is, which he packaged in a suitcase, and put a floppy disk in another suitcase. We carried 
that with us to go and install the systems on these various computers. 

(SLIDE 9) As a result of  those applications, and the influences of  those kinds of applications, the 
critical factors in Forth became: operating in a resource-constrained environment; placing a high 
degree of emphasis on size and compactness of  code; operating with very high performance 

Chuck's Forths 

Yemr Model Forth Appltmtlom 
1970-71 Htlneyw¢ll H316 I)ala m.:quishkya, on-line analysis w/graphics Icrnlinal 
1971 I loncywcll DDPII6 Radio t¢lc~opc cootrol 
1971-2 IBM 370¢30 I)ata analysis 
1972 Varlan 620 Optical tck~ope cootrol alld Instrulx~enlalk~ 
1972 liP2100 In.ttnlmclltalion 
1972-3 Modcomp I ~dta anidysis 
1973 PDP- I 1 Radio tclel~-'ope ctrl., data aequi~ltl~l, analysis, graphics 
1973 DG Nova Data acquisition mid anidy~ls 
1974 S]~L'- 16 Gruond etmtrol of balloon- I~tw~ t elest.~pe 
1975 SDS-920 AolCntla ¢otdl~ 
1975 I~lr¢ Enviroqlmental tyontrols 
1976 P.tlr-I qlaSe I)ala entry and tiara base rlr, magemenl 
1977 Intcrdata Series 32 Data hast m~agement 
1977 CA I.~1-4 Business systen~t 
1978 I k:¢lcyw¢ll Level 6 Data entry arid data b~z~c managemenl 
1978 lntcl StY6 Ca'al~lcs and Image Pr t~csalu s 
1980 Raylhetm IVl'S- I (!O Airlioe display and woekstalams 

SLIDE 7 

Early, Influential Projects 

• B u s i n e s s  D a t a  Base: Cybek C o r p . ,  1974  

D G / N o v a .  32  t e r m i n a l s  ( u p g r a d e d  t(~ 64) ,  3IX) M b  disk 

>I(X).000 t r a n s a c t i o n ~ d a y .  <1 see.  response times. 
• I m a g e  Processing: Navy, N A S A ,  R G O ,  1 9 7 6 - 8 0  

P D P - 1 1  s. va r ious  i m a g e  processing equipment 
Independently derived O O P S  

H i g h - s p e e d  p r o c e s s i n g ,  c o m p l e x  a l g ( w i t h m s  

• I n s t r u m e n t a t i o n  & C o n t r o l :  N R A O ,  U n i v . ' s ,  E G & G ,  e t c . ,  
1 9 7 0 ' s  

High data rates 
Fast multitasking, allowing analysis concurrent w / d a t a  t a k i n g  

SLIDE 8 
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Critical Factors 

• Resource-constrained environments  

Compact source, object coda 
• High performance requirements 

Efficient inlermpt handling 

Fast multitasking 
• Custom I/O 

Integrated, interactive assembler 

Simple interface to executive 
• R & D  environments 

Frequent changes 

Fast edit/test cycle 

SLIDE 9 

Design Principles 

• Minimal syntax 
"W(n'ds" separated by spaces 
Few special characters 
Push-down stack fi~r parameters 

Postfix notation 
• Structured progrumming (high-level & assembler) 

Linear sequence of self-contained modules (words) 
l,ooping and conditional structures included 

Module (word) has 1 entry ~)int, I exit point 
• Extreme modularity 

T~ypical word site: 2-3 lines of source 
• No explicit data typing 

Flexible facility, for user-defined data obiccts 

SLIDE 10 

requirements, as the kinds of applications we were working on were very, very time critical; a lot of 
specialized custom I/O: it's very easy to write and add I/O drivers to a Forth system; and being an 
R&D environment, it was really important to be able to change things quickly. 

(SLIDE 10) The internal design principles that arose out of that involved a very simple language 
with minimal syntax. In fact, very early on when I was working on Forth, Jean Sammet wrote a book 
on programming languages. I wrote to her and said, "You ought to know about Forth," and she wrote 
back and said, "Well it's not a language; it doesn't have syntax". It, in fact, doesn't have very much 
syntax. It is, nonetheless, quite useful. Certainly, now that we found out that it does structured 
programming, we can say that is what it does. It is extraordinarily modular, and out of that modularity 
there is an effect in that programming size is far from linear. You have words calling other words. You 
have, in a large application, perhaps thousands of them. A word is sort of like a routine; it's sort of 
like a command in a language; in fact, we blur the distinctions between the two--but  you develop a 
very, very rich vocabulary of application-oriented words in Forth. They are organized in a sort of 
pyramiding structure, where at the very high level you have a huge amount of leverage--by writing 
a line or two of code, or using just a few words, you accomplish, in fact, quite a great deal. You can 
do very high level operations. And--perhaps the most controversial--there is no explicit data typing 
in Forth at all. That flies very much against a lot of conventional wisdom, I realize. And it is very 
astounding to people that meet Forth for the first time. But people that have used Forth extensively 
find that it is one of the most valued features of the languages. While working on the ANSI Standard 
Report for Forth, our Technical Committee had a lot of input from a lot of sources--people wanting 
all their favorite word-sets or whatever. We had very, very little pressure--almost none at all--to do 
anything about type-checking. 

(SLIDE I 1) I 'm not going to try to teach you the language. I will mention briefly some of the 
principal elements of it. One of the more unusual features is that it does include an integrated assembler 
in it, so that you can drop down to the assembler level at any time. It doesn't look like the 
manufacturer's assembler, usually, but it does produce real code. 

The next three slides are from the book, Starting Forth, probably one of the most influential books 
in Forth, written by Leo Brodie, published in the early '80s, and it sold about 120,000 copies. It was 
very popular, but in addition to being a light-hearted book, it also includes quite a great deal of 
information--such as an explanation of the relationship between the compiler, the interpreter, and 
execution in Forth. 
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Elements of  Forth 

• Dictionary 

Linked list of compiled word definitions 
• Push-down stacks 

Data stack for parameter passing 

Return stack for return addresses & other uses 
• Interpreters 

Text interpreter for commands, compiler, data 

Address interpreter for run-time 
• Assembler 

Integrated. resident, intcractivc 
• Disk support 

1024-byte blocks for source, data (OS independence) 

SLIDE U 

TRANSCRIPT OF FORTH PRESENTATION 

C o m p i l i n g  : STAR 4 2  EMZT ; 

L 

Mhe~ the COlptlloJr f i l l  Iml ill~[.Jon ¢ t~mt  ~ t ~  
to  tit* m|©o loh *  h~ Cext ~.nt, l t l~wt . l l ,  tcno ~ l v ~  
=top.~ tim I l l  

Interpreting, executing and compiling in Forth, according 
to Starting Forth (L. Brodle, Prentice Hall, 1981, 1986) 

SLIDE 12 

(SLIDE 12) This is our first occasion to see a Forth definition. A definition begins with colon and 
ends with semicolon. The word following the colon is the name of  the new word being defined, and 
this is what it is going to do. 42 goes on a push-down stack and becomes the argument to EMIT which 
is going to send it to the terminal. This is how these things are put together. 

(SLIDE 13) The compiler actually executes the word : (colon), which creates the definition. It goes 
on until it's terminated by a ; (semicolon). 

(SLIDE 14) Finally, that's done, and execution returns to the interpreter which then tells you "OK," 
at the terminal. In fact, that word is now compiled and is available for execution immediately. This is 
an interactive system that supports incremental compilation and it makes it very easy to test programs. 

(SLIDE 15) This is a look at one of  the more unusual language features, which is the ability in 
Forth to make custom data-types of a sort. Such definitions have two parts: There is a compile-time 
behavior and a run-time behavior--which will be shared by all instances of  a class of  words that this 
is defining. Here is an example: we are making an array of pairs of cells and the size of  the array 
comes in on the stack. We make the definition, make a copy of  the size, and compile it so that you 
can use it if you want to for range checking at run-time (although I don't think I did in this example). 
Then, you multiply that size by two, because there are going to be two cells for each thing, and you 
allot that much space. That's all you do at compile-time. Now at run-time, when a member of  this 
class executes, it begins executing with an index on the stack that's supplied externally, and the address 

Compil ing : STJ~J~ 42 E M I T  ; 

IL 
t ~'Ttll 42 EMIT t 

~ r - "  . . . . . . .  

IIX~ I I tY l ,  *Pttlta4~ 'rl,v ut~,ltf~i~t*= t .c t l~I le~s ~m 
=t~et b ~ l t l ~ a . "  4,~tnttt¢~ t,to ~ y  

eoT i  ind V l l t i I  I t  tn  thq  
d t ~ t t ~ r y .  

Interpreting, executing and compiling In Forth, according 
to Starting/'brtA (L. Brndle, Prentice Hall, 1981,1986) 

SLIDE 13 

C o m p i l i n g  : STAR 42  EMIT ; 

III.  

& 
we ¢ot~n t~ ~w t ~  
~ a a ~  

Interpreting, executing and compiling in Forth, according 
to Starling Forth (L. Bcodle, Prentice Hall, 1981, ]986) 

SLIDE 14 
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User-defined Data Structures 

Syntax: 

: name ,compile-time behavior> DOES> ,run. 
time behavior> ; 

Example: 
: 2ARRAY (n) CREATE DUP , 2* CELLS ALLOT 

DOES> ( i a - a') SWAP 2* CELLS + ; 

Use: 

1000 CONSTANT N N 2ARRAY DATA 

: SHOW N 0 DO I 5 MOD 0= IF CR THEN I 
DATA 2@ i0 D.R LOOP ; 

User-defined Compiler  Directives 

• Used to perform actions at compile-time. 

• Designated by the word IMMEDIATE. 

• The bold words in the following definition are 
IMMZDIATE: 

: SHOW N 0 DO I 5 MOD 0= IF CR THENI 
DATA 2@ i0 D.R LOOP ; 

Example of new compiler directive: 

: -IF POSTPONE NOT POSTPONE IF ; 
IMMEDIATE 

SLIDE 15 SLIDE 16 

at the beginning of the array that is supplied internally, and returns the address of the item. And it does 
it by multiplying the index by two, converting that to cells, and adding it the address. So these things 
are very simple and it shows how that's used in the definition. But some of these can be very complex. 
You can make datatypes that live as bits on an I/O interface or very elaborate things that are application 
dependent. It 's very easy to define such structures. 

(SLIDE 16) Another interesting feature is that it's easy to add compiler directives; compiler 
directives are structure words. And here, for example, we have DO and LOOP, and I F  and THEN. If  
you wanted to make a negative IF ,  you could do that very simply by defining POSTPONE NOT 
POSTPONE IF .  In these two cases, POSTPONE makes a definition which is going to compile a 
reference to NOT and a reference to IF.  When the word containing NOT I F  is executed, which is 
executed at compile-time to create the structure. So it is very easy for a programmer to add extensions, 
even to the compiler. 

(SLIDE 17) Here is a somewhat more complex example. This shows a number of the different 
logical structures in it. It also has a number of application-dependent words in it. Without telling you 
all those words are, I think you can probably get the sense of the definition. But we have here, an 
indefinite BEGIN UNTIL loop; this will work until FULL returns t r u e .  The next loop is going to 
run from 0 to 24; it's a DO LOOP that begins here, and ends there. This is a !("Store") operator; it's 
going to store the value BLACKBIRD in the location PIE,  and then do BAKE. Here is a c o n d i -  
t i o n a l - w h e n  it is opened, then BIRDS WILL SING. After P IE  is a @ ("fetch") operation. You 
fetch a value, compare it against the value DAINTY; if the result of the comparison is t r u e ,  then you 
execute KING and SERVE, and so on. 

(SLIDE 18) Many Forths have operating system capabilities. All of the Forths that I have personally 
ever worked on have been multi-tasking, multi-user systems, although not all Forths are that way. 
Many Forths are completely native, that is, they run with no host operating system. Many others run 
concurrently with another operating system, and there are versions available right now for most 
processors and most of the popular operating systems. 

(SLIDE 19) These are some of the recent contemporary uses of Forth. The big areas where it is 
useful are, not surprisingly, those for which it was developed, that is, embedded systems and high 
performance control systems. Every Federal Express Courier carries one in his hand, when he picks 
up his package. Every Sun workstation has a Forth system on its mother-board. The "Open Boot" is 
currently the subject of an IEEE standard (1275) that's in development, and a number of VME system 
people are picking that up. There have been a lot of space applications; the control systems, just as 
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TRANSCRIPT OF FORTH PRESENTATION 

Is Forth Readable? 

SONG 6 PENCE SING BEGIN 

RYX POCKZT I FULL UNTIL 

24 0 DO BLACKBIRD PIE I LOOP 

OPEN IF BIRDS SING THEN 

PIE • DAINTY ffi IF 

KING SERVE THEN I 

OS Issues 

• Native vs. co-resident operation 
Native systems extremely fast 
Market pressures often demand OS compatibility 
Use of blocks provides transportability 

• Multitasking 
Non-preemptive task scheduling 

Multitasking can run within a co-resident Forth 

SLIDE 17 SLIDE 18 

an example, the King Khaled International Airport in Riyadh, Saudi Arabia, is a system that involves 
approximately 500 computers. That project was done actually here in the Boston area, in the mid 
1980s. There was a program that was about 300,000 lines of  FORTRAN and Assembly language, that 
did not work fast enough or well enough. That program was replaced with an all Forth system. The 
300,000 line program was, in fact, replaced by a Forth system which was written from scratch, tested, 
and installed in about an 18-month period, and consisted of about 30,000 lines of  code. The leverage 
I was speaking of  earlier results in considerable compactness of  code, even to do a very complex 
application. It supports rapid prototyping very easily and works out very well in those kinds of 
applications. 

(SLIDE 20) Quantitatively, it is very hard to measure how many people are using Forth. Our best 
estimates are perhaps a few tens of thousands of people. But, it is very difficult to track them all. There 
have been two surveys. These two magazines do surveys every even numbered year. So, I assume they 
did it in 1992, but I haven't seen the results yet. I just wanted to give you some measure of where it 
is, and the answer is, it is a minority, but it is hanging in there. 

(SLIDE 21) The purpose of listing some suppliers of  Forth systems is really, as much as anything, 
to give you a feeling for some of the diversity of  some of the implementations available. There is a 
very definite family tree here. I was admiring the work in the Lisp paper--which I heard 
about--sketching out a family tree. I would love to do this for Forth. There are several major sources 

Contemporary Uses of Forth 

• Embedded Systems 
Federal Express' "SupcrTracker" 
Sun Microsystems' "Open B(mt" 

Issues: efficiency in resource-constrained environments, 
easy debugging of custom hardware 

• Space 
>30 known successful shuttle & satellite applications by 

NASA,  Johns Hopkins APL, others 

Issues: flexibility, modularity (thorough testing) 
• Control systems 

King Khaled International Airlx)rt 
GM/Saturn's HVAC system 

Issues: security, flexibility, quick development time 

SLIDE 19 

Extent of Use 

Source: Dr. Dobbs Journal Survey, 1990 

• 12% of readers use Forth 

• Forth places 15th of 20 languages, ahead of Mt~iula 2, 
Smalltalk, APL, Actor, Eiffel 

Source: EDN (Cahners Research) Report, 1990 

• 1 I% of readers use For th  

• Forth places IOth of  15 languages, ahead of Prolog, 
Modula 2, PI_I1, APL, Smalltalk 

SLIDE 20 
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Selected Forth Vendors 

Company 
Brldlt 7 Forlhwam 

C~f lve  ~dul~,w., I ~ .  
D d ~  R~,*rtqll 
F( )RTH. Inc. 

Harvard Softwo¢~ 
I,almrmm'y Micro- 

I~ (LMI) 
l,axm mid Pesrt-y 
Miller Mkt'~:e~la~ tint 
Scrvk~ 

M kl'~" Eng. 
M ~an4ala Vlew I~ 
opto-~ 
SMkea CempmeJ.s 
Sun M k-re,Rylnm 
T. Z i l ~ *  ~ sL 

Prhlmry IJroduct~ & M*ttt¢~ 
Forth written in C; Forth for AI~'L Macinlosh. Sun; aetvices fro 

Sun Mtcrosysten~ Open Boot. 
Ftnth for Macintosh. Nultus boards 
Forth for the Amiga 
Industrial systems on IICS and others; interaz,'tive cross-compilers; 

programming scrvtec~ 
Forth for the IBM-PC family 
Forth f~  PCs w/DOS. OS2 and Windows; cross compilers for 

vat'. ClqJs 
|hlblic,~omtlth system for PC, porl~l by olh~s Io other plal ftwms 

IBM-PC family; bu shl¢"~ ~d commercial apl~icaflons 

PC~ and embctkled systems 
I *ublic.-(Jomaln syslem on a variety of platforms 
Forth ftw II IWOl~etary embetkled conlmller 
Software and hardware relined to For th-ba.uxl prt.,cemlt, s 
**Open Be, ol" oil SPARC wofkltthl Jon~ 
Extensive pe bllc.-domaln system for I1",¢ IBM-PC family 

Success Factors 

• Right place, right time: advent of laps in 
late '71Is 

• Enthusiastic disciples to spread the word 

• There's a market for simple, emclent 
systems 

• Good programmers thrive with respect & 
control 

S L I D E  21 S L I D E  22 

of things, ranging from some of the early commercial implementations to some of the public domain 
systems. There has been actually a considerable "war" in the Forth community between the vendors 
and suppliers of public domain systems. Remember, the early work on Forth was at a government 
laboratory so, therefore, the concept is public domain, but there have been a number of commercial 
applications. The fans of the public domain systems believe that it is in fact immoral to make money 
off it. Those of us who do make money off it, think that tends to contribute to language improvement 
and growth over time. So, it's sort of a "communist" versus "capitalist" issue that can be debated at 
length. 

(SLIDE 22) Looking at a few success factors. Why has Forth survived now for over 20 years? It 
came along, in terms of its real promulgation, at the right time. In the late '70s, it was beginning to 
mature--and that was a time when microprocessors were there and available. They were more or less 
mother-naked as far as software was considered, and a lot of people became interested. A lot of very 
enthusiastic Forth users have spread the word, in spite of the fact that there has never been any major 
deep-pocket corporate or academic sponsorship at all--worse luck. And, I think, as much as anything 
else, the fact that it survived, means that there is a market for this kind of thing. And to look at what 
kind of market that is, I think it's fair to ask what kind of problem it's trying to solve. In the Ada talk, 
there was the issue of 2,500 line programs versus, say, 25 million line programs. And as I think I 've 
said, these things in the world of Forth are not linear. Something that might be a 300,000 line 
FORTRAN and assembler program translates into 30,000 lines of Forth. It's very nonlinear there, and 
Forth does tend to shrink the problem. Nonetheless, it is probably true that for very, very large 
programs, Forth is not the best approach. I think there is the question of whether your programming 
philosophy, or the philosophy of your shop, really, is the theory that "a million monkeys with word 
processors can produce Shakespeare"--and that's going to lead to one kind of view of what software 
tools you need--versus the "Marine Corps" philosophy--"we need a few good programmers"--kind 
of thing. And that's really the philosophy that Forth is attempting to enable and support. 

(SLIDE 23) So, why hasn't it taken over the world? Well, it's very different. You can write the 
language that looks a lot like all the other languages, and people say, "Oh yeah, I understand that." 
And Forth is really quite different. There are a lot of heresies, such as the lack of data typing--regard- 
less of how well they work in practice. People are sometimes uncomfortable looking at it from the 
outside; it's hard to visualize how well it can work. As I said, there have never been any major corporate 
or academic sponsors of it, although it's used, you know we conduct guerilla warfare whenever we 
can; it's used in virtually all the major corporations and educational institutions. It's hanging in there! 
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Constraining Factors 

• Too different, too many heresies 

• No major corporate or academic sponsors 

• Successful  use r s  r eg a rd ed  i t  as  a "secre t  weapon" 

• Unsuccessful users found it an easy scapegeat 

• Diverse dialects prevented development of widely 
used l ib ra r i e s  

Mixed  blessing: 

• Publ ic  domain versions were widely c i rcula ted  In the  
'80s,  but created a " h o b b y i s t "  i m a g e  of  F o r t h  

Prognosis 

• Adop t ion  Of ANS Fo r th  will help several ways: 
- Standard interface will  promote development  of  

libraries 

- Management  fears of"non-s tandard  languages" 
defused 

- Opportunity fi)r new tex t~mks  and other support 
aids 

- More common culture for Forth programmers  

• F o r t h  will pers i s t  as  a m ino r i t y  language, able to 
create "miracles" for those who need them. 

S L I D E  2 3  S L I D E  2 4  

But a lot of our users have, in fact, been reluctant to give away to the competition the secret to their 
success--why they can do so much more with so much less. There have also been a few projects that 
have not worked out, and it's been awfully easy in that case, when you have a failed project that was 
done in a minority language, to say, "Well of course it failed, you used that funny language." There 
has been some amount of publicity about a small number of"Forth disasters." I doubt that there have 
been any languages that haven't had their share of project disasters. If you are using the language that 
99 percent of people use, however, and you have a disaster, it's a lot harder to blame it on the language, 
isn't it? In fact, I have looked at some of the publicized, so-called Forth disasters. I know a number 
of people that were involved in at least one of them, and the problems there were the same problems 
in just about all disaster projects, having to do with management problems, design problems, things 
like that. Then, finally, there has been the problem of diverse dialects. There have been several industry 
standards. There was one in 1979 called FORTH-79, that was picked up by several implementers, a 
much better one in 1983 called FORTH-83. For the last six years, there has been an ANS Forth 
committee (at) work. 

I do want to extend my condolences to the new Smalltalk [ANS] committee. People shook their 
heads and clucked pityingly at me when we got started [on ANS Forth], and I 'm going to do the same 
thing for you--and you'll find out why. We do have a draft standard out for public review--for the 
third time, right now--and most of us on the committee feel like "this is it!" I think that's going to 
help. 

In the early '80s, there were a lot of public domain versions that were circulated, and that was, as 
I say, a mixed blessing. That got a lot of people familiar with Forth who might not have otherwise 
been. However, the Forth they became familiar with was of very limited functionality, sometimes 
poorly implemented, and certainly not a well-supported system. And if people have the notion that, 
"When you've seen one Forth, you've seen them all," they can hardly be blamed for getting a poor 
impression. However, there have been quite a number of very good implementations, both commercial 
systems and some of the public domain systems. I think that some people should have perhaps looked 
a little harder. It has been a factor in the history of the language. 

(SLIDE 24) Finally, the prognosis. Adoption of ANS Forth is going to help a lot, I think, making 
up for some of the deficiencies. I think it's a very good standard--of course, being the chair of the 
committee--we've had a very, very diverse membership on the committee, from all of the dialects 
and so on. We have made some compromises in a number of places, but I think overall the standard 
is very clean and very strong. It's unfortunately about 250 pages long. FORTH-79 was about 30 pages. 
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FORTH-83 was about 50 pages. At 250 (pages), this is becoming hefty. But we have done one thing 
that I think was very successful, and that I would recommend to some of you involved in this effort: 
that is, we've made it a layered standard; we have a number of optional word-sets. Since Forth was 
originally designed for resource-constrained environments; there's still strong feeling among Forth 
users that it should be possible to run Forth in a very small system. And in fact, there are Forths 
available that run on 8-bit single-chip micro-controllers. That is, the Forth runs on it. The whole thing, 
the compiler, the assembler, the whole nine yards, can run on an 8-bit single-chip micro-controller, 
in maybe 8 or 10K. Now, this is not one of the more full functioned Forths, but all the essentials are 
there. The core required word set in the ANSI standard can run in that kind of environment. Yet, you 
can put on optional word sets, for floating point, for host OS file access, for memory allocation, 
whatever you want. There are a number of these things available. I think that has been a very successful 
concept. 

If  you talked to a Forth programmer and asked him why he's s o . . .  people have accused Forth 
programmers of being sort of wild-eyed fanatics and there is some measure of accuracy in that. If  you 
ask them why, the major reason is that they feel empowered. Your typical Forth programmer (and I 'm 
not one- - I  have been, but I 'm a mere manager now) feels that they are suddenly "superman": they've 
been in the phone booth and they've put on the cape. And all of a sudden, they have the power of ten. 
I was talking, just last night, to the local Boston Forth Interest Group, and I raised this question--and 
they all said that they keep getting this from customers and prospective customers, clients, whatever. 
A lot of them are consultants in corporations trying to persuade their bosses that they ought to be able 
to use Forth: that they could do in a few weeks what in C is going to take them months. There is a 
huge wealth of anecdotal evidence, to the effect that this is true. Certainly, as a business, we (Forth, 
Inc.) have succeeded by doing projects in weeks or months that were projected to take months or 
years. That has kept us economically viable over the years. We feel very strongly it is because of the 
tool, that the tool itself creates a productive environment. It's easy to point to a lot of the reasons why. 
But, with this amount of anecdotal evidence, we nonetheless have a credibility issue. We tell these 
stories and people say, "We don't believe you; all programming languages are pretty much the same, 
aren't they?" 

I would like to close by urging somebody here, who has a sufficiently objective, respectable 
academic background and knows how to measure these things, and how to apply the metrics, to really 
take a look at this question. I know that proponents of functional programming make some of the 
same cla ims--of  orders of magnitude improvement in productivity. Improvements this big deserve 
to be looked at. They deserve to be looked at honestly by somebody to see if there is something real 
there. And if so, what is it? What is the factor that makes it work? I'll be happy to supply the data if 
somebody wants to undertake that. 

TRANSCRIPT OF QUESTION AND ANSWER SESSION 

HERBERT KLAEREN (University of Tubingen): The first is, are there any significant differences 
between Forth and PostScript, apart from PostScript printer-specific dictionaries? 

ELIZABETH RATHER: It is a very similar concept, and I 'm not sure whether the developers of 
PostScript had seen Forth before or not. One could certainly believe that they might have. It is very 
similar concept; a lot of differences in detail, but I know of people who are strong in Forth or PostScript 
can go back and forth, so to speak, quite easily. 

HERBERT KLAEREN (University of Tubingen): Can you remember how you came to base your 
language on the stack paradigm? Were you aware of stack-based code generation methods? 
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RATHER: I'm not sure. Certainly, Chuck had encountered stack somewhere along the line. I think 
what is really interesting about Forth, is not that it uses stacks, but in the way in which it uses stacks. 
The dual stack architecture has proved to be successful, probably not for any formal logical reason, 
but sort of the same reason the two party system in the United States works better than the 400 party 
system in some countries. It's a very useful number. People have experimented with different numbers 
of stacks and the dual stack architecture has persisted, using one stack for parameter passing and 
another stack for everything else--principally return information, but also a great deal else. I think, 
really, it's the way that it's used, as much as anything else that's been powerful. 

BIOGRAPHY OF ELIZABETH RATHER 

Ms. Rather was a cofounder of FORTH, Inc. and has been President since 1980. She was previously 
Chief Programmer for the Tucson Division of the National Radio Astronomy Observatory (NRAO), 
and has programmed and managed computer systems since 1962 at the University of Arizona, the 
University of California, and the Oak Ridge (Tennessee) National Laboratory. 

She first worked with Chuck Moore, the inventor of the Forth programming language, at NRAO 
in 1971. Recognizing the potential capabilities of Forth, she began a campaign of talks and papers on 
the language that ultimately resulted in its being adopted as a standard in 1978, by the International 
Astronomical Union (IAU). She has authored, or coauthored, more than a dozen books and papers on 
Forth. 

At FORTH, Inc., Ms. Rather has managed projects in a wide variety of fields, including scientific 
data acquisition and analysis, image processing, database management, networking, embedded 
systems, and industrial controls, in addition to Forth-based software development systems for over 
20 platforms. 

In 1987 Ms. Rather was instrumental in organizing a Technical Committee commissioned to 
develop an ANSI Standard for Forth. She was elected Chair of the TC, which in 1993 submitted a 
completed Standard (X3.215/1994) for final processing by ANSI. 

Ms. Rather holds BA and MA degrees from the University of California, Berkeley, and an MBA 
from Pepperdine University. 

BIOGRAPHY OF DONALD R. COLBURN 

Don Colburn has been writing Forth Operating Systems since the late 1970s. He is the author of 
Multi-Forth TM and MacForth TM, two popular Forth implementations for 68000 based computers. He 
has been active in the drafting of all Forth Standards-1979, 1983 and recent ANSI effort. 

Don is a well-known developer for the Apple Macintosh family of computers. He has used the 
MacForth tools to write drivers for his company, Creative Solutions' popular hardware products, 
Hurdler TM and Hustler TM. These peripherals add serial, parallel, and prototyping interfaces to the 
Macintosh. 

Don is the father of two sons and enjoys volunteering at their schools--making them "well ahead 
of their time" in computerization. When he is not volunteering at the school, another very important 
organization he supports is the National Multiple Sclerosis Society. Don has MS and is an active 
source of encouragement for other MS patients. 
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BIOGRAPHY OF CHARLES H. MOORE 

Chuck Moore was born Charles Havice Moore, II on September 9, 1938 in McKeesport, Pennsylvania. 
He grew up in Flint, Michigan and was Valedictorian of Central High School in 1956. He received a 
BS in Physics from MIT in 1960 and is a member of Kappa Sigma. While at MIT he learned 
FORTRAN and Lisp and programmed data reduction for Moonwatch satellite tracking and the 
Explorer-I 1 Gamma-ray Satellite. He studied mathematics at Stanford for several years, learned 
ALGOL and programmed electron-beam transport at SLAC. 

After freelance programming on minicomputers, he learned COBOL and business programming 
and became an operating-system guru. In 1968, he invented Forth and used it at NRAO to program 
radio-telescopes. He, Elizabeth Rather, and Ned Conklin formed Forth, Inc. in 1973, to exploit the 
opportunities it provides. For 10 years he programmed applications in real-time control and database 
management. Today Forth, Inc. is a $3M firm selling software products and custom applications. Forth 
is particularly popular in China and Eastern Europe, where computer resources are still limited. 

John Peers formed Novix in 1983, with funding from Sysorex. Its plan was to develop hardware 
implementations of Forth. With Bob Murphy of ICE, Moore designed a microprocessor with Forth 
primitives as its instruction set. Mostek produced a 4,000 gate array in 31.t CMOS that was an 8 Mips, 
16-bit Forth engine. This NC4016 led to a modified NC6016 which was licensed to Harris Semicon- 
ductor in 1987. They marketed it as the RTX2000. Harris was granted two patents, with Moore and 
Murphy as inventors. 

Computer Cowboys sold several hundred $400 Forth-Kits that incorporated the NC4016. In 1988, 
Russell Fish proposed a new microprocessor called ShBoom. Moore designed it and Oki Semicon- 
ductor produced prototypes on an 8,000 gate array in 1.2l.t CMOS. This constituted a 50 Mips, 32-bit 
Forth engine. 

With two technically successful gate-arrays, Moore wanted to produce a custom design. He was 
by now convinced that existing tools were inadequate. So in 1990 he started developing unique layout 
and simulation software. Layout is based Upon five layers of square tiles that produce correct-by-de- 
sign chips. A simple transistor model simulates the entire part and its connections. This was first 
implemented on ShBoom, and later ported to a 386. 

He then designed MuP21 with a 20-bit bus and four 5-bit instructions/word as a way to minimize 
memory cost (only five 4-bit DRAMs). The internal buses are 21 bits to provide a 1 M-word addresses 
for both DRAM and SRAM. MuP stands for Multi-uProcessor. The intent is to achieve parallelism 
with several independent microprocessors sharing memory. ShBoom had a DMA controller. MuP21 
has a video generator--NTSC output with 16 colors--and a memory manager with DRAM, SRAM, 
and cache timing. Specialized processors can be very simple and effective. 

Prototypes have been made by Orbit Technologies on their mosaic wafers, and by HP, through the 
MOSIS prototyping service where 12 to 25 chips cost $3,000 to $6,000 with two-month turn-around. 
This low cost makes possible iterative development, though project time can be long. After several 
tries, the design tools and architecture converged to a 100 Mips, 21-bit Forth engine. It is now being 
upgraded to 300 Mips. 
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