
THE FORTH APPROACH TO OPERATING SYSTEMS 

Elizabeth D. RATHER and Charles H. MOORE 
FORTH, Inc. 

815 Manhattan Avenue, Manhattan Beach, California 90266 

FORTH is a programming technique designed for interactive, on-line multi-task 
minicomputer applications. It features an extensible command set which leads 
naturally to the development of an application oriented vocabulary and 
operating system. FORTH combines extreme compactness with high speed performance. 

i. PHILOSOPHY 

The challenge offered by the development of 
minicomputers has met with disappointing 
response from the software side of the computer 
industry. Much minicomputer programming is 
still helng done in assembler. High-level 
language development has often consisted of 
attempts to "squeeze" languages developed for 
large computers (notably FORTRAN and BASIC) into 
the small memories and short word lengths that 
characterize minis. Similarly, minicomputer 
operating systems have imitated the architec- 
tural principles of systems for large, batch- 
oriented computers (i). All of this has resulted 
not only in sub-optlmal utilization of the mini 
hardware, but also in compilers and operating 
systems that are complicated and difficult to 
use, especially in the on-line environments for 
which most minis are intended. As a result, 
it has been noted that the cost of software has 
been exceeding the cost of the hardware in many 
installations (2). 

It has been the goal of the authors to reverse 
this trend, and to take better advantage of the 
economics 6f size, cost and performance which 
characterize the minicomputer. This requires 
that the programmer's task of efficiently using 
the hardware be made easier. 

In 1973, Koudela (2) listed several desirable 
features of minicomputer software which can 
simplify the programmer's task: 

-Integration of system functions such as 
language processors, operating systems, 
utilities (e.g. for editing and debugging) 
and libraries into a single package 
through which the user can conversationally 
interact with the hardware; 

-Programmer interaction with source 
language only; 

-Transparent (to the user) translation of 
the source to machine language for high 
speed execution; 

-Ability to modify or extend such a system 
easily for specific applications. 

FORTH is such a system, including in a single, 
integrated structure an interactive hlgh-level 
language, macro assembler, multlprogrsmmed OS and 
utilities, plus some other concepts such as 
reverse Polish Notation (3), stack organization 
and virtual memory for data storage. Although 
these techniques are not unique to FORTH, they 
are unusual and somewhat unfamiliar. Their use, 
however, means that some nice benefits, such as 
re-entrant routines are a natural consequence of 
writing in FORTH (4). As a language, FORTH 
supports logical structures entirely consistent 
with the concepts of "structured programming". 

2. HISTORY 

FORTH was originally developed in 1968-70 by 
Moore (5), and has been used by the authors and 
others in over a hundred mlnicomputer-based reel- 
time control, data acquisition and analysis 
systems. In the last two years, a superset of 
the system has been used successfully for medium- 
to-large scale data base management systems. 

FORTH is presently available from the authors and 
other sources* for the following computers: 
DEC PDPII, PDP8 and PDPI0; DG NOVA; Varlan 620; 
Honeywell 316/516; Prime, MODCOMP II, HP 2100 
and GA SPCI6. New versions may be developed 
relatively easily; it is anticipated that versions 
for the TI 980 and Interdata computers will be 
available during 1976. The first microprocessor 
implementation of FORTH for the RCA MI800 (COSMAC) 
processor was recently completed (6). 

*Kitt Peak National Observatory, Tucson, Arizona; 
National Radio Astronomy Observatory, Charlottes- 
ville, Virginia; M. S. Ewing, California Institute 
of Technology, Pasadena, CA 

233 



3. EXECUTIVE 

The FORTH executive coordinates a large number of 
very small modular routines, most of which are 
written in the high level FORTH language. These 
are defined as "words" in a dictionary. The 
dictionary is searched to obtain the "meaning" of 
commands typed at a terminal. Programming in 
FORTH thus consists of defining new words in terms 
of previously-defined words. These definitions 
may be typed at a terminal or edited (using 
FORTH's built-in EDITOR) into blocks of source 
text kept on disk. This process is superficially 
similar to that performedby BASIC; but the 
difference between FORTH and BASIC is very funda- 
mental: BASIC is not compiled internally, but 
executes by parsing text instructions and per- 
forming repeated dictionary searches. This is 
an extremely slow and bulky technique. FORTH 
is compiled into compact strings of addresses of 
short code routines, which are executed in 
sequence under the control of the executive. 
The process of jumping to these routines adds 
very little overhead--typlcally about 20% of the 
actual code execution time. The amount of me~mory 
used is less than for assembler code due to the 
extreme modularity. An example of this effect 
is shown in Figure I, which represents a typical 
non-trival mathematical calculation. Some 
comparative timings between FORTH and BASIC ~re 
given in Appendix A. 

=o.s  

l ~  s .2  

SpaCB* 
D, f t n t t l o n  ~ o r d ,  ~ u ~ z r k s  

DU~ 1 ~ep~o~==~  x .  on  . ~ack  a t  e~: ry  

H"  ~ x ~ ( 3 0 - b i t  f ~ a c t i o ~ )  

D~Z,US 1 -X  2 

+1.  1 c0nmtent p=ovidLng 1 . 0 3 0 0 . . . ( 3 1  b i t s )  

a+ 1 i + o  - ~z  

som¢ 1 / T - - ~  z , I s  b i t . )  

+11 

Fig. I - Timing, overhead time and space 
cost for a calculation performed in FO~FH. 
The actual definition is shown above the 
table. ':' begins the definition and 'RI-2' 
is the name of the function being defined. 
The remaining words are functions to be 
performed when RI-2 is invoked. ';' ends 
the definition. Memory required is ii 
16-bit words; the execution time is 
427.7 microseconds, of which 51.7 micro- 
seconds, or 12.1% is interpreter overhead. 

FORTH routines are naturally re-entrant due to 
the use of the push-down stack for parameter 
passing. They thus may be shared amongst 
several users in a multiprogrammed environ- 
ment each of whom has private stacks. Recursive 
routines are uncommon, but may be defined easily. 

FORTH's version of a real time operating system 
is extremely small (a few hundred words) and 
efficient. Along with a similarly small and 
efficient multiprogrsmmer, it is capable of 
supporting a number of asychronous equipment 
control and data acquisition tasks, plus multiple 
interactive terminals, in a modest (8-16K word) 
CPU. The characteristics of this operating 

system may easily be modified for specific appli- 
cations. 

Virtually all FORTH systems are multiprogrammed. 
There is no particular limit to the number of 
tasks that may be supported concurrently. The 
maximum number to date for a single CPU (in this 
case a 32K NOVA 2) is about 35. Response time on 
this system rarely exceeds one second under peak 
loading. Tasks tend to fall into two categories: 
interactive terminals and terminal-less equipment 
handling tasks. A task is defined functionally 
(e.g., printer spooling or data acquisition). 
Some tasks coordinate the efforts of several 
asychronous devices related to a particular 
function. 

All tasks in the system described above are memory- 
resident. This is possible because FORTH is extra- 
ordinarily compact. Further, although terminal 
tasks may have individual vocabularies, all tasks 
share a substantial general and application- 
oriented vocabulary on a re-entrant basis. 

4. WHAT FORTH DOESN'T DO 

Although FORTH does a lot of things that operating 
systems do, it really is not (or does not have) a 
"real" operating system in the traditional sense. 
One could compile a long list of things FORTH 
doesn't do: 

FORTH doesn't support any other languages. (Since 
FORTH supports application oriented vocabularies, 
its users don't need different languages for 
different things. FORTH users can--and have-- 
developed vocabularies for string processing, 
numerical integration, data base management, 
process control and many other areas for which 
specialized languages exist, and say that they 
find FORTH more flexible and more efficient in 
every case.) 

FORTH doesn't treat I/O devices as "files". (This 
is a carryover from large mainframes and is almost 
always irrelevant in minis, leading to follies 
such as a 240-word printer driver in a main mini- 
computer manufacturer's operating system which used 
40 words sending data and controls to the printer 
and 200 words doing things like issuing an error 
message for a "redundant OPEN"). 

FORTH doesn't check for disk errors (what it does 
do is preserve disk status for applications that 
can take appropriate actlon--which will be very 
different in a disk diagnostic and in a file 
management system). 

FORTH doesn't maintain libraries of object code 
(since recompiling from disk takes only a few 
seconds*, and is done infrequently, this house- 
keeping chore is unnecessary). 

FORTH doesn't handle conventional overlays. (Since 
FORTH applications tend to be half the size of 
comparable assembler programs and as much as 20 
times smaller than FORTRAN object code, this is not 
necessary. FORTH does permit a terminal user to 

*Compiling and loading the entire 16K application 
described in Appen. B takes under 30 seconds, on 
a PDPII/40, and is done once a day. 

234 



compile into his partition a selected subvocabulary 
which "overlays" a previous sub-vocabulary. This 
is functionally the same.*) 

FORTH doesn't have a link loader (since there's 
no object code to link). 

FORTH doesn't do priority queuing of multiprogram- 
med tasks (a simple round-robin algorithm paced by 

interrupt-driven I/O operations sufficies for the 
vast majority of applications--and the multipro- 
grammer is available in source for handling the 
occasional situation that doesn't fit). 

FORTH doesn't do parameter validation (this 
vital function can and should be performed much 
more intelligently in the application). 

FORTH doesn't prevent the user from doing any of 
these things when they are relevant to the appli- 
cation. 

5. ELEMENTS OF THE FORTH SYSTEM 

FORTH is characterized by five major elements: 
dictionary, stack, interpreter, assembler and 
virtual memory. Although none of these is unique 
to FORTH, there is a synergistic effect in their 
interaction that produces a programming system of 
unexpected power and flexibility. We shall 
describe these elements briefly, then discuss 
their implementation. But first, since FORTH is 
basically a vocabulary, it is important to under- 
stand what constitutes a "word" in this vocabu- 
lary. 

A word is any string of characters bounded by 
spaces. There are no special characters that 
cannot be included in a word, or that cannot 
start a word. Thus characters that represent 
arithmetic operators, or characters that resemble 
punctuation, can be words if bounded by spaces. 
For example, the following are words: 

FORTH begin + ? 2 ,CODE 3.14 ' 

In general, the 128-element ASCII character set 
is supported. 

5.1 Dictionary 

The FORTH language is organized into a diction- 
ary that occupies almost all the memory used by 
the program. The dictionary is a threaded list 
of variable length items, each of which defines a 
word of the vocabulary. The actual content of 
each definition depends on the type of word: noun, 
verb, etc. The dictionary is extensible, growing 
towards high memory. Terminal tasks may have 
private dictionaries, which are connected in a 
hlerarchial tree structure. 

Words are added to the dictionary by defining 
words, of which the most common is ':'. The exe- 
cution of ':' causes a dictionary entry to be 
constructed for the word following. The defini- 
tion of this new word in the form of addresses of 

*On the same system described in Appen. B 
loading an analysis option takes about 2 seconds. 
This may be done roughly every few hours.. 

previously defined words, will also be placed in 
the dictionary. The definition is terminated by 
,., , . For example, 

Ex. I : PHOTOGRAPH SHUTTER OPEN TIME EXPOSE 
SHUTTER CLOSE ; 

might be a definition for PHOTOGRAPH. Such words 
act as verbs, performing various operations. 
Some other common types of definitions will be 
discussed below. 

5.2 Stack 

Two push-down stacks (LIFO lists) are maintained 
for each task in the system. These provide the 
primary communication between routines as well 
as an efficient mechanism for controlling logical 
flow. A stack normally contains items one 
computer word long, which may be addresses, 
numbers or other objects. Stacks are of indefi- 
nite size, and grow towards low memory. 

The first, and most visible to the user, is the 
parameter stack. This contains all information 
being passed to FORTH operators, replacing 
conventional calling sequences. A good popular 
discussion of the uses and advantages of this 
stack is given by Burns and Savitt (3). A more 
definitive discussion is given by Knuth (7). The 
stack functions in a manner analogous to the 
stack in the Hewlett-Packard pocket calculators. 

The second stack is called the return stack, as 
its primary function is to hold return addresses 
for nested definitions, although there are some 
supplementary uses of this stack. The use of 
stacks for return addresses is fairly common in 
modern compilers and is discussed in various 
texts such as Korn (8). 

5.3 Interpreters 

FORTH is fundamentally an interpretive system, 
i.e., program execution is basically controlled 
by data items rather than by machine code (9). 
It is a co~raon assumption that interpreters are 
severely wasteful of CPU time, but this is avoided 
by FORTH in maintaining two levels of interpre- 
tation. 

The first of these is the outer~ or text inter- 
preter. It works in a conventional manner, parsing 
text strings coming from terminals or mass storage 
and looking up each word in the dictionary. When 
a word is found in the dictionary, it is executed 
(unless the task is in compile mode, which is 
discussed below), by invoking the inner inter- 
preter. 

The inner interpreter interprets strings of 
addresses by executing the definition pointed to 
by each. The content of most dictionary defi- 
nitions is addresses of previously defined words, 
which are to be executed by the inner interpreter, 
as in Example i above. When the inner interpreter 
executes PHOTOGRAPH it will execute the words 
SHUTTER, OPEN, TIME, EXPOSE, SHUTTER, CLOSE and 
''', in sequence. This task requires no dictionary 
searches, for these words have been compiled. 
That is, when PHOTOGRAPH was defined (i.e., when 
the outer interpreter processed the text in 

235 



Example i following the execution of ':' which put 
it in compile mode) the dictionary was searched 
for each word in the definition and the resulting 
address placed into the entry for PHOTOGRAPH. 
The text that defines PHOTOGRAPH is not stored 
in memory, as is common with interpretive langua- 
ges. Figure 2 shows the dictionary entry for 
Example i. Another example appears in Figure i. 

~ iun.r In~©T~l. 

Fig. 2- Dictionary entry for PHOTOGRAPH, 
as compiled from Example i in text. 

The low-level interpreter has several important 
properties. First, it is fa___sst. Indeed on some 
computers it executes only one instruction for 
each word, in addition to the code implied by 
the word itself. Second it interprets compsc_~t 
definitions. Each word used in a definition is 
compiled into a single memory location. Finally, 
the definitions are machine-independent, for 
the definition of one word in terms of others 
does not depend upon the computer that inter- 
prets the definition. 

As a result, most of the words in a FORTH vocab- 
ulary will be defined by ':' and interpreted by 
the low-level interpreter. The high-level 
interpreter itself is defined in this way. 

5.4 Assembler 

By using the defining word CODE, the progra~ner 
can define words that will cause specified ~chine 
instructions to be executed. This type of defi- 
nition is necessary to perform I/0, implement 
arithmetic operations, and do other machine.- 
dependent processing. 

This is an important feature of FORTH. It ]per- 
mits explicit computer-dependent code in manage- 
able pieces with specific interfacing conven- 
tions. To move an application to a different 
computer requires re-coding only the CODE words, 
which will interact with the other words in a 
computer-independent manner. As FORTH itself 
only contains about five hundred instructions of 
code, it is also moveable with relative ease-- 
~ypically 4-6 man-weeks. 

The assembler is an ordinary FORTH vocabulary and 
therefore is implemented by the standard FORTH 
interpreters. Instruction mnemonics are words 
whose execution at assembly time causes machine 
instructions to be entered in the dictionary. 
Register designations, addressing modes, and 
addresses put parameters on the stack which will 
be used by the mnemonic operator to assemble the 
instruction. 

The assembler is quite small. Its major cost is 
the dictionary space occupied by the nmemonlc 
definitions, typically 500 bytes. The push-down 
stack eliminates the symbol table, a large memory 
requirement with conventional assemblers. It 
does this by effectively eliminating the need to 
name memory locations. Verbs find their param- 
eters on the stack, rather than taking them out of 
named locations. Variables and locations, however, 
may be named, and such names are found in the 
dictionary as usual. 

5.5 Virtual memory 

The final key element of FORTH is its blocks-- 
1024 byte sections of secondary memory (normally 
disk, although other media may be used). Two or 
more buffers are provided in memory into which 
blocks are read automatically whenever referenced. 
Each block has a fixed block number, which is a 
direct function of its physical address in secon- 
dary memory. If a Block is modified in core, it 
will be automatically replaced on disk when its 
buffer must be re-used. Thus, explicit reads and 
writes are not required; the programmer may pre- 
sume the data to be in memory whenever it is 
referenced. 

Blocks are used to store the text that defines the 
vocabulary. These blocks are compiled into core 
when requested by a user. An editing vocabulary 
formats a block for display into 16 lines of 
64 characters. It allows the user to modify and 
re-compile his source code from secondary memory. 

Blocks are also used to store data. The program- 
mer can easily combine small records into a 
block, or spread large records across several 
blocks. The fact that blocks appear to have the 
same physical record size, regardless of computer, 
makes it easy to move an application from one 
computer to another. 

6. IMPLEMENTATION 

The FORTH functions described so far are made 
available through an intrinsic vocabulary of 
about I00 defined words. This basic dictionary 
is resident in about 3K memory locations, on all 
machines on which it has been implemented so far, 
supplying terminal I/O, disk I/0 in the form of 
virtual memory, interpreters, number conversion, 
arithmetic, assembler, compiler, multlprogrammer 
and text editor. 

The basic vocabulary includes several commands 
which are, in fact, compiler directives andwhlch 
give the programmer the necessary tools to 
control logical flow. The DO...LOOP construction 
resembles the FORTRAN DO. IF...ELSE...THEN is 
the basic conditional logic as in ALGOL (except 
for a "Polish" order of clauses). A set of 
condition evaluation commands operate on the 
stack to provide a truth value as a parameter for 
IF. BEGIN...END gives a loop which will continue 
until the parameter for END (which is computed 
inside the loop) is TRUE. Analagous structures 
are also available in the assembler. There is no 
GO TO construction: the discipline of "structured 
programming" is a natural consequence of FORTH 
programming. To the basic vocabulary will be 

236 



added additional words required by the application 
(such as extended mathematics and an appropriate 
level.of file management) and finally the appli- 
cation itself. 

The basic FORTH program is itself written in FORTH, 
which makes it easy to generate FORTH for a new 
computer, given a computer on which FORTH is 
presently available. 

A diagram showing memory utilization in a typical 
application is shown in Figure 3. The shaded 
area at the bottom is the only precompiled portion 
of the program. As much of the system as possible 
is kept in source form, to facilitate changes and 
additions. This costs little, since to re-compile 
the entire system and application into memory 
takes only a few seconds. Re-compiling is rarely 
necessary on an operational system. 

You will see that each terminal task has a parti- 
tion which contains its stacks and into which may 
be compiled a selected vocabulary to do some 
particular kind of processing which is a subset 
of the vocabulary, but is not available to users 
at other terminals. The data acquisition task 
MONITOR has a much smaller area, with only enough 
space for his stacks. The routines it executes 
are located in the cormnon area. 

ii i - 

APPLICATIOF# 
VO A~ULARr 

~cor~o~) 

rxslc FOeT:~ 

~ pRE.C~IL£ D prOGRAM 

Fig. 3 - Memory allocation in a typical 
system. 

7. AVAILABLE SYSTEM FUNCTIONS 

Most of the words used by FORTH are available to 
the programmer to perform system-related functions. 
Some of these are summarized briefly here: 

Usage Description 

n EXPECT Accepts up to n characters from a 
terminal into the user's input 
buffer. The string may be termi- 
nated early by a RETURN character, 
where 0 < n < 80. 

PAD n TYPE Sends to the user's terminal a 
string n characters long located 
at PAD (an address), where 
0< n< 128. 

b BLOCK Returns to the user the address in 
memory of the first word of disk 
block b, having read it if necessary 
(i.e. if it wasn't already in 
memory), where 0 < b < capacity 
of mass memory in 1024°byte blocks. 

Usage 

m WORD 

Description 

Parses the input massage buffer 
using the constant m (an ASCIY 
character code) as delimeter, 
moving the resulting string to a 
standard location~ along with its 
length. 

(word) Searches the dictionary for (word) 
and returns the location of its 
definition, where (word) is a char- 
acter string containing upto 64 
non-blank characters. 

VOCABULARY (name) Defines a chain of defi- 
nitions, which will he linked to the 
current chain named (name). (name) 
is an ASCII character string with 
no embedded blanks. Subsequent 
use of (name) will specify this 
chain as the one in which searches 
begin. 

(name) DEFINITIONS Specifies that future 
dictionary entries will be linked 
to the chain named (name) defined 
by VOCABULARY above. 

QUIT Stop execution for this user and 
return to the terminal for control. 

n QUESTION Aborts this user, emptying his 
stacks and issuing error message 
number n. 

r s MEMORY (task) Defines a terminal-less task 
named (task) with s words of para- 
meter stack and r words of return 
stack. 

(task) ACTIVATE RUN n STOP ACTIVATE starts the 
task named (task), defined using 
MEMORY above. 
RUN performs some previously defined 
function, n STOP stops him, leaving 
his status set to the integer value 
n. 

(name) GET Attaches facility named (name) to 
this user if it is available. 
Waits if it is in use. 

(name) RELEASE Releases the facility named (name) 
NOTE: The GET...RELEASE mechanism 
may be used to control access to 
both logical and physical facili- 
ties, ranging from disk to a non- 
re-entrant software function. 

(task) PROMPT Forces the task named (task) to 
abort whatever it is doing. 

8. DEVICE DRIVERS 

FORTH systems Support all hardware devices 
attached to a particular computer. However, in 
recognition of the tendency of mini systems to 
add or change peripherals, all device drivers 
are supplied in source form, to be loaded option- 
ally. For example, it is common to find a tape 
drive used only for occasional backups. In such 
a case, a user would load the tape driver as 
part of the backup utility vocabulary. 

To see a non-trival example of FORTH in use, 
consider the tape driver in Figure 4, coded for 
the NOVA computer. The two blocks shown compile 
into about 150 words of memory. They are designed 
to be loaded into the user partition of someone 
wishing the use of the tape driver. 

237 



6'1 
o 

R 

r~ 
o 
7 
8 
g 

10 
11 
IZ 
,3  
14 
IS 

OS- 

0 

1 
t 

( TAPE l ID  ) TAPE GET 
DCTAL O VARIABLE STATUS U R VARIABLE TAPE 
C~DE COHHAND 0 S) O LDA 22 DpA IB ~A,T 
CpD[ TRANSFER O S) 0 LDA 0 O MEG 22 DpC 

| $) D EDA 22 B~D 2e~e 
BEG|N VAPE ) O STA 22 NIA OD STATUS O STA 22 INTERRUPT 

CODE REWIND TWO 6 + 0 bOA 22 DJA ID NEXT 
READ TRAflSFER O COMHANU ; 
WRITE TRANSFER ~0 COMMAND ; 
BACKSPACE O I TRANSFER 40 COHHABD ; 
SKIP O 0 TRARSFER 30 COHHAHD ; 

RARIVY STATUS @ 2040 AND ; 
E~F STATUS B 400 AND ; 

DECIHAL 

. O 
I0 
11 
12 
13 
14 
15 

( TAPE ERRpR RECpVENY ) 
0 VARIABLE ERRORS • 
: (READ) 2DUP READ PARITY IF 

1ERRpRS +! BACKSPACE 2DUP READ PARITY IF 
BACKSPACE 2DUP READ THEE THEN 2DRpP ; 

pCTAL : ERASE 70 COMMAND ; DECIMAL 
: (WHITE) ~DUP WRITE PARITY IF BEGI~ 

] ERRORS +1 BACKSPACE ERASE 2CUP WRITE PARITY NOT ERI~ 
VHEH 2BR~P ; 

Fig. 4 - Example showing magnetic tape I/O. 
Lines 2-5 of block 64 coded for the NOVA 
computer. 

The key words 

STATUS 

TAPE 

COMMAND 

TRANSFER 

REWIND 

READ and 
WRITE 

SKIP and 
BACKSPACE 

PARITY and 
EOF 

ERRORS 

defined are as follows (Figure 4) 

variable containing tape status as 
of the last operation (set by tlhe 
interrupt handler). 
variable (defined previously) con- 
taining the address of the user of 
the tape. The phrase TAPE GET, 
executed at compile time checks that 
no one else is using the drive, and 
sets the current user's address in 
TAPE, 
issues a connnand to the tape con- 
troller and waits for an interrupt 
indicating completion. The cOW,hand 
code is on the stack. COMMAND ends 
with WALT, a macro which assemtlles a 
return to the multiprogrammer with 
this task set inactive pending an 
interrupt. 
sets up the parameters for a ~A 
transfer to the tape. It requires 
a starting address and count on the 
stack. 
issues a "rewind" con~nand. Unlike 
all other tape commands, it does not 
get an interrupt from the controller 
on completion. Thus, this code ends 
with NEXT (inner interpreter return) 
instead of WAlT (multiprogrammer 
return). 
each use TRANSFER (with parameters on 
the stack) and then issue an approp- 
riate COMMAND). 
are similar to READ and WRITE except 
that dummy parameters required by 
the controller are supplied to 
TRANSFER. 
test STATUS for certain condition 
bits, leaving a truth value on the 
stack. 
is a variable which "remembers" how 
many tape errors have occurred. It 
may be queried and reset elsewhere. 

. (READ) 

(WRITE) 

performs a READ, with source address 
and count on the stack. It will try 
up to three times for an error-free 
transfer, and finally will accept 
what it gets. Only one error is 
tallied. 
as in (READ) performs a WRITE with 
error checking, plus tape erasure if 
recovery is necessary. (WRITE) will 
try indefinitely to write correctly 
(hoping eventually to come to good 
tape after leaving a long erased 
area). 

Line 5 contains the interrupt handler for the tape. 
It is not a normal FORTH definition, as it has no 
name and no heading. Instead, it is merely a 
string of machine instructions assembled into the 
dictionary. At assembly time, BEGIN pushes the 
address of the beginning of the string onto the 
stack; INTERRUPT takes this address and enters it 
into a table of interrupt vectors, in the place 
appropriate for device 22; it then assembles a jump 
to the interrupt return code which is standard for 
the NOVA. 

FORTH normally runs with interrupts enabled. When 
an interrupt occurs, FORTH's NOVA interrupt handler 
saves 2 registers and executes a vectored jump to 
the code whose address is in the appropriate table 
entry for the interrupting device. This interrupt 
handler returns to instructions which restore 
registers and resume processing. 

Although this mechanism is heavily machine 
dependent, every effort is made to standardize the 
protocol, so that all FORTH interrupt handlers 
appear very similar. 

The main principle is that all logic is perfor- 
med by high-level routines such as (READ), rather 
than at interrupt time. Being high level, 
(READ) may be easily modified to handle errors 
differently; this would be much more difficult if 
error handling were embedded in a code driver. 
Moreover, having the very simple routine READ 
available means it will be easy to use READ in a 
diagnostic routine which would probably want to 
handle errors quite differently from (READ). 

9. SUMMARY: FORTH PROGRAMMING 

The task of programming an application consists of 
identifying the functions to be performed, speci- 
fying the block or blocks to be used, defining a 
preliminary top level user vocabulary, and then 
defining all the words used to implement the user 
words. These will have to be loaded in reverse 
order as well. 

Testing consists of putting reasonable parameters 
on the stack and typing the word to be tested. 
This applies both to CODE definitions and ''' 
definitions. Any memory location may be examined 
('?') or a region may be dumped at any time, in 
any number base. These simple but powerful aids, 
plus extreme modularity (most routines are about 
20 instructions long) make FORTH applications 
unusually easy to debug interactively. 

238 



Over the past several years, FORTH has been used 
in a wide variety of application areas: on-llne 
data acquisition, analysis, interactive graphics, 
image processing and data base management. The 
goal in every case has been to preserve in the 
language the ability to solve problems at hand 
easily and efficiently, without imposing the 
penalty in efficiency of trying to do everything 
in one system. 

The s u c c e s s  of FORTH in retaining its small size 
and simple structure has paid an additional divi- 
dend. Basic FORTH contains only about 500 explicit 
machine instructions. To code FORTH for a new 
computer means replacing these instructions with 
their functional equivalents. Thus, it is 
possible to prepare FORTH for a new computer in 
several man weeks. Present work on microprocessor 
systems (6) confirms the universality of the FORTH 
technique. 

REFERENCES 

(I) D. L. Mills, Executive systems and software 
development for minicomputers, Proc. iEEE, 
vol. 61, November, 1973, 1556-1562. 

(2) J. Koudela, Jr., The past, present and future 
of minicomputers, Proc. IEEE, vol. 61, 
November, 1973, pp. 1526-1534. 

(3) R. Burns and D. Savitt, Microprogramming 
and stack architecture ease the minicomputer 
programmer's burden, Electronics, vol. 46, 
15 February 1973. 

(4) P. Stein, TheFORTH dimension: Mini language 
has many faces, Computer Decisions, November, 
1975, pp. I0. 

(5) C. H. Moore, FORTH: A new way to program a 
minicomputer, Astro ~. Astrophys Supp L 15 
1974, pp. 497-511. 

(6) E. D. Rather and C. H. Moore, FORTH high- 
level programming technique on micro- 
processors, paper presented at Electro 76 
Professional Program, Boston, MA, May 11-14, 
1976. 

(7) D. E. Knuth, The art of computer program- 
ming, vol. I. Reading, MA: Addison-Wesley, 
1968. 

(8) G. A. Korn, Minicomputers for Scientists and 
Engineers. New York: McGraw-Hill, 1973. 

(9) M. S. Ewing, The Caltech FORTH manual, Owens 
Valley Observatory, California Institute of 
Technology, Int. Rep. 1974. 

(I0) C. H. Moore and E. D. Rather, The FORTH 
program for spectral line observing, 
Proc. IEEE, vol. 61, September, 1973, pp. 
1346-1349. 

(ii) E. R. Fisher, High level languages in mini- 
computer automation, paper presented at 
Electro 76 Professional Program, Boston MA, 
May 11-14, 1976. 

APPENDIX A 

5 ]t:;AM " I~0¢IIQ 

I'P' 
15 ~ '%I~TlPl/Ii~, DI%qDI~, A,gLG AND SUB- 

20 F~ 
30 L~.~L~ A 
hO Ih'PbT B 
50 LE~ C = A + B 
60 L~ A = A + 1 
70 LE'P E • B/C 
80 I~rF=A ~ 
90 L.-~C C = C - F 
100 IF A = l~D01, T~;,ii~J 200 
]I0 GO RO 50 
200 pRI~I' "~ LOOP IS DONg AT" 
210 

LLL BASIC benchmark program (ii), The compiled 
version for the Intel 8080 microprocessor occupied 
896 bytes memory. 

: GO i001 SWAP DO DUP I + 2DUP I i+ 
SWAP */ - DROP LOOP ; 

FORTH equivalent of the LLL benchmark. 
The user types 

b a GO 

where 'a' and 'b' correspond to the entry of A and 
B in the BASIC version. GO compiles into 42 bytes on 
most computers. The COSMAC version required 54 
bytes. 

Timings were obtained in all cases by running 
the loop a sufficient number of times to get an 
accurate measurement and dividing by that count 
to get the timing for one pass. The results are 
given in Table A.I. 

Z~TERPP, F.TER PROCESSOR M[LLISECO}~-~/LOOP ~L/OIV 

D6 RULTI-USER E~SIC :~OVA 8~0 q,5 P.ARD~Z~RE 
(O;IE USER DURIflG 

FORTII FJOVA 2/]0 .395 S~D4A,~E 

DEC ~ZC pLUS PDPLt/45 3.2 ~P~W,~P,E 
FORT, PDPI,,I/qO .~5 EAI~V, QRE 

If'KEL BASIC ]rEEL'S 8080 75. U.'i~t'MI 
LLL COW,PILED BASIC 8980 22. ~;OWJ 

FORTil ROt CDP]8~ 6.1 S ~ ' ~ £  

(C0S;%%C) 

Table A.I Comparison of FORTH with BASIC 
on some similar computers. All BASIC 
timings from E. R. Fisher, Lawrence Livermore 
Laboratory (Ii). 

Programming of the FORTH loop was done by three 
independent people with varying degrees of exper- 
tise in FORTH: an expert, an experienced program- 
mer/engineer, and a novice with less than a month's 
experience in FORTH. Minor differences appeared 
in the resulting definitions, with less than 10% 
effect on space or time. The clock time required 
for each person to code, test and time the loops 
was 6 minutes, ii minutes, and 15 minutes, respec- 
tively. 

Comparing these figures with those given by Fisher 
using other techniques on microprocessors, yields: 

Language Processor Man-Hours Bytes 

PLM 8080 16 1172 
LLL BASIC 8080 1 896 
Assembly 8080 32 98 
FORTH RCA 1802 .4 56 

The RCA 1802 microprocessor has timing features 
comparable to the Intel 8080. Preparation of 
FORTH for the 8080 is underway. 

239 



APPENDIX B 

A PROJECTEXAHPLE 

PROBLEM: Radio Telescope System:(10), 
--Telescope pointing 
--Data acquisition and record~mg 
--On-line interactive graphicf~ 

analysis 
--3 observing modes 

TYPICAL SYSTEM ESTIMATES : 
--6 man-years programming 
--$120K hardware costs 
--64K words memory 
--2 calendar years 

RES~UI~TS USING FORTH: 
--24 Man-weeks programming 
--$50K hardware coats 
--16K words memory 
- - 1 2  ca'lendar weeks 

240 


