
::::: .:"::". :?: .:!:i

Forth Report
E d i t o r : Paul Frenger, P O. Box 820506, Houston, TX 77282; pfrenger@ ix.netcom.com

EXTREME Forth
Paul Frenger

1 EXTREME Introduction

In November, 1999 1 attended ACM's OOPSLA Confer-
ence in Denver, Colorado. OOPSLA'99 was a well or-
ganized, well-attended meeting set in a breathtaking lo-
cale. Incidentally, I presented a poster [1] on object ori-
ented programming using the Forth language (the only
Forth paper there, as I recall). Between presentations I
ran across a book on "extreme programming" at one of
the bookseller's exhibits [2]. Thumbing through this book
quickly gave me the gist of the concept, which I found in-
teresting but (to me as a Forth programmer) not extraor-
dinary. Now, over a year later, I realize that my non-Forth
colleagues might like to hear about extreme programming
(it is usually abbreviated XP) and why a Forth user would
not find it all so new and exciting.

To begin, you might want to hear about XP directly
from those who espouse its use. Go to the official website
[3] and browse around. Take it all in. Cogitate on the dif-
ferences between XP (which is a programming method-
ology, not a programming language) and more traditional
requirement-oriented system design techniques.

(While the compulsive programmers are browsing their
way through the Web hypertext mentioned above, the rest
of us hang-loose code hackers will stay here and talk in-
formally about XP. They will rejoin us later).

XP is described as a "lightweight" software develop-
ment methodology, which means it has very few, easy-
to-follow rules. Writing code and testing it starts right
away. In contrast, "heavyweight" methods involve many
(precise) rules, mostly centered around extensive plan-
ning and the production of volumes of system documen-
tation; the actual coding comes in later almost like an af-
terthought.

ject oriented programming movement. It is a "work in
progress", so tomorrow it may look different in various
details. Three persons are described [4] as its creators
(they are informally known as the "Three E~emos") :
Ward Cunningham, Kent Beck and Ron 3effries.

Ward Cunningham is a computer consultant well-
known for his work in object oriented programming prac-
tices. Kent Beck is also a computer consultant; he is
credited with bringing the XP core practices together and
giving it its name. Starting in 1996, Beck worked with
Ron Jeffries on a payroll project which is now referred
to as "C3" (the Chrysler Comprehensive Compensation
project), the first XP opportunity. What we now know as
XP was put together "ad hoe" during this C3 project. The
first thing Beck and Jeffries did after looking over the C3
mess was to throw out everything which had been done
on the project up to that time and start over anew.

"Extreme Programming" is a misnomer: there is noth-
ing really extreme about it. You do not see gangs of gun-
toting hackers in black leather apparel, blasting into office
buildings in a hail of bullets, killing business-suited pro-
grammers and taking over their commercial projects (a la
"The Matrix"). The term "Extreme Programming" is a
typical (somewhat juvenile, I might add, Mr. Beck) com-
puting hyperbole intended as an attention-getting device,
like: "my program BOMBED" (oh did it, was anyone
hurt?) and the term HACKER itself (hmm, has anyone
seen my meat cleaver lately?). To Beck's credit, though,
I must admit that the phrase "Extreme Programming"
printed on the spine of a computer book did grab my at-
tention easily at OOPSLA'99.

3 EXTREME Practices

2 EXTREME Personalities

The following short tale encompasses my understand-
ing of the history of XP. XP is an outgrowth of the ob-

Now (getting to the point) what does XP methodology
entail? Instead of huge mounds of (probably off-base)
plans and documents, you start with a few "user stories"
on Ronald Reagan sized 3-by-5 index cards. A user story
describes in not more than three sentences something a

20

Admin
Sticky Note
http://delivery.acm.org.ezproxy.liv.ac.uk/10.1145/610000/609763/p20-frenger.pdf?key1=609763&key2=5204527921&coll=DL&dl=ACM&CFID=8314149&CFTOKEN=81162919

, : :: :;.':',:., :::: .:::

part of the program has to do, like "check the customer
name against the customer database and if not found as-
sign a new customer number, otherwise show the cus-
tomer number which was found". Simple enough. Very
modular. Hardly mysterious. Eminently codable in most
programming languages. Start collecting these user sto-
ries and the program you need to craft will become ap-
parent.

Next, start writing programs (ignore the fact that you
don't have the user's entire requirements in hand yet ...
loosen up a little!). Programs are to be written by pairs of
programmers working together at one workstation. The
purpose here is to let one programmer "coach" the other
as they work, helping to create a language to describe the
problem at hand. XP adherents feel that each duo will be
more productive together than if they worked separately.
Conversely, every programmer "owns" the entire project
and may browse through the work of other team mem-
bers.

Preparing to write the code fragment embedded in their
user story, the programming pair first creates "unit tests".
A unit test is an OOP message or data or whatever, which
will enable immediate checking of the code which the
team will now write. The intent is to find mistakes early
in the game, when they can be fixed quickly and cheaply.

The user is given the "current release" of the project
software on a frequent basis (not more than two weeks
apar0. By so doing, the programmers keep the users ap-
praised of current progress on the project, and allow the
users to make changes and catch conceptual or procedural
errors (repeat after me) early in the game, when they can
be fixed quickly and cheaply. This avoids the terrible mo-
ment often experienced with heavyweight programming
methodologies, where the programming team gives the
user the "deliverables", only to have the user reject the
product angrily.

The XP "prime directive" is to do the simplest thing
which could possibly work. No frills. No grand ideas.
Just working code. This concept pushes the project to-
ward completion at the fastest possible rate. If the user
wants to extend the program capabilities, that's another
(user) story.

A corollary of this rule is the use of "spike solution"
or just "spike". A spike is a minimal program solution
intended to get the programmer through a difficult area
in the project, such as a new algorithm. The spike does
not use the existing framework, classes or code; it takes
the team past all distractions and hangnps and focuses on
getting a code fragment to work. Once the code runs,

the essence of the spike solution is assimilated into the
"official" program and the spike is discarded.

XP methodology involves a lot more, but the above is
a useful thumbnail sketch of the essentials.

Well, I see that the website browsers are back again,
just in time for me to mention some of my own XP-like
experiences and then to bring up the subject of the Forth
language.

4 A S e m i - E X T R E M E Personal Ex-
perience

Twenty years ago, I found myself hired to design a com-
puter system to allow patients to obtain health care by
telephone [5].

To describe it briefly, the (preregistered) patient would
call the service, where a receptionist would verify mem-
bership and put the patient into the virtual "Waiting
Room". A Nurse would initiate a new chart entry by tak-
ing the patient's complaint and assigning a priority to the
call. The Doctor would take the next call in the Wait-
ing Room and speak with the patient, further extending
the chart and making the diagnosis. Treatment would en-
sue: give advice, call prescriptions to the pharmacy or re-
fer the patient to a Specialist or to an Emergency Room.
We called this service a "Telephone HMO" and spent
three years bringing it up on an IBM $370 mainframe,
in COBOL, with Intecolor 80-by-48 character color dis-
plays.

But in the first week of the project in late 1979, the
Doctor who wanted to commission the design asked me
to "show him something he could relate to" as far as
the layout of the system was concerned (he was very
visually-oriented). He gave me two calendar weeks to
accomplish this. I decided to forego giving him the usual
flowcharts and planning documents and to go straight to
a computerized model he could browse through and play
with, hands-on, himself. I asked him to purchase a"Com-
pucolor II" 8080- based personal computer by Intecolor
(I'm not giving you a reference here because you really
don't want to know about it) for my use and went into
seclusion for two weeks. Using the Compucolor's BASIC
interpreter I literally "threw together" a 32 Kbyte pro-
gram which modeled the core system function screens in
living color: Registration, Waiting Room, Charting (with
pop-up Help Screens for the Doctor), Prescriptions, Ad-
vice, Referral and Reports. When I presented this simu-
lation program (on time, mind you), the Doctor and his

21

IIIIIII '

staff were thrilled and the initial project funding was ap-
proved.

I will never forget the impact this little "throw-away"
simulator had. In addition to its use as a "proof of con-
cept" and a funding tool, its little 64-by-32 character dis-
plays were expanded to the full 80-by-48 Intecolor dis-
plays (I extended the original BASIC code to drive the big
monitor via the Compucolor II's serial port). This setup
was later used to clue-in the COBOL programmers who
wrote the "real" system for us, and it was a surprisingly
effective design and verification tool [6].

Was this an XP-like experience? In some ways, it wa~s
(remember, this was circa 1980, before the IBM PC, be-
fore the Internet, before Windows ... heck, even before
Bill Gates made his first billion dollars!).

For example, when building the expanded 80-by-48
character simulator, the user (and his staff) made writ-
ten suggestions regarding its format and content which
I put into a small binder for later coding. These notes
were functionally similar to "user stories". These sug-
gestions were quickly converted into "spikes" and then
into fleshed-out functional programs, at first by myself
alone, but later with an assistant. The updated simula-
tor served as the "current release" of the system software.
The big simulator's BASIC code was made as modular as
possible; this facilitated our updates. Much of the BA-
SIC screen/keyboard handling code (ie: cursor X-Y lo-
cations, input/output field sizes, pop-up screen details)
later were converted into their COBOL equivalents for
the final mainframe system. Indeed, the COBOL system
wa~s created via a "heavyweight" technique, but largely by
copying my simulator's information into the final speci-
fications and documentation. We avoided a number of
traps and problems by building and honing that system
simulator. Eventually the little Intecolor II and its BASIC
code was discarded, but not before it had saved us tens of
thousands of development dollars by our estimates. The
"heavyweight" programming company we hired to write
the final COBOL code eventually adopted this simulator
technique for their other client jobs.

I just wish we had Forth available for this project in-
stead of BASIC !

5 E X T R E M E Forth

Once you've used Forth for awhile, XP seems pretty ho-
hum. Why? One answer is that recommended Forth pro-
gramming style and techniques accomplish much of what

XP espouses. Another is that the forces which created XP
had also created Forth a generation earlier.

Forth had its own "Extremo" in the form of Chuck
Moore, inventor of the language. Moore claims he dis-
covered the language rather than creating it. You have to
talk to the man for awhile, a~s I have, to understand the
wry humor in this statement.

Moore's goal in creating the Forth language is remi-
niscent of the later XP "prime directive" (to do the sim-
plest thing which could possibly work). Even after twenty
years of using Forth, climbing though its innards and
even writing my own compiler, I often still wonder how it
works. Internally, the magic is in its user-accessible two-
stack design, user-extensible vocabularies, incrt,~aental
compiler and virtualized disk handling system• Some ex-
amples to consider.

First, Forth is a modular language. Writing modules
and sub-modules (called "words") is encouraged. Com-
plex programs are designed by repeatedly factoring the
problem top-down into subunits, then writing the code
bottom-up in modular fashion. XP "user stories" just beg
for this kind of approach, since they are modular by their
nature•

Forth encourages code-writing with a minimum of
timewasting, up-front documentation writing. Each and
every Forth "word" can be a spike solution if that's what
you need: write it, run it, test it, modify it. Working in
Forth's interpretive mode you can repeat this cycle over
and over in mere minutes (no separate compiling step, or
linking, or "making" to slow you down)• When you're
done with the code, assimilate it or throw it away.

Next, Forth encourages testing of each "word" as soon
as it is written. You may pass the new word its test pa-
rameters on the stack, and receive its results likewise on
the stack. The Forth word .gI'ACK will nondestruetively
show you what's on the stack while debugging in inter-
pretive mode. You may also put test data onto mass stor-
age and either LOAD it or access it by 1024 byte BLOCKs
• You may DUMP areas of RAM memory for examina-
tion before and after you exeeute a word. You may write
Forth words with debugging code embedded in it, and
compile the final programs "clean" (bypassing the debug
code with conditional eompilation).

Oh, Forth isn't an object oriented language, so how can
XP even be applied to it? Well, if you want objects, you
can have them• Most Forth vendors now provide object
oriented extensions you can easily add to their software.
You can add a "C++ like" OOP syntax to most Forths in
only 12 lines of code [7], thanks to Bernd Paysan. You are

22

. ~

free to modify or extend the compiler as you will. Indeed,
Forth is so plastic in its capabilities that it is often used to
create other languages and compilers. Forth never tells
me "no". I really hate "no", so now you see why I really
like Forth.

6 EXTREME Conclusion

The Forth language has a number of built-in features
which make it highly compatible with the XP concept.
These have been outlined above. A skilled Forth pro-
grammer will likely already be using XP-like practices in
his or her programming style. Few conventional compil-
ers facilitate this relationship the way Forth does (maybe
Lisp and Scheme; probably not C++ or Java; certainly not
BASIC, COBOL or Foaran, in my opinion). ANS Forth
code is highly transportable; Forth is equally at home in
mainframe applications, PC software, networks and tiny
embedded systems.

You try XP, try Forth, then decide for yourself. As Den-
nis Miller always says, I could be wrong.

Paul Frenger is a medical doctor who has been pro-
fessionally involved with computers since 1976. He has
worked as a computer consultant, published over one
hundred articles in the bioengineering and computer lit-
erature, edited the ACM SIGForth Newsletter for four
years and acquired three computer patents along the way.
Paul was bitten by the reverse Polish bug in 1981 and has
used Forth ever since. Being both a physician and a com-
puter programmer, Paul believes that the term 'hacker' is
doubly appropriate in his case.

7 EXTREME References

1. Frenger, P., "Objects in ANDROID.FORTH", OOP-
SLA'99, Denver, Conference Supplement, pg.59-60.

2. I don't recall that title, but a quick keyword search
with either Amazon.com or Barnes & Noble will reveal
the usual suspects.

3. http ://www. extremeprogramming • org.

4. Waters, J., "Extreme method simplifies development
puzzle", Application Development Trends, Vol.7 No.7,
July 2000, pg.20-26.

5. Frenger, P., "Advanced Techniques Used to Create
a Telephone Medical Consultation Service", Proc Rocky
Mountain Bioeng Sympos, Mayo Clinic, April 1983,
pg.103-107.

6. Frenger, P., "Using Microcomputers for Medical
Software Development, Modeling and Test Marketing",
Proc ISMM lntl Sympos on Microcomputer Applic in Med
and Bioeng, New York City, Oct 1984, pg.71-75.

7. http: //www. jwdt. com/~paysan/screenful, html.

23

