
Varieties of Threaded Code for
Language Implementation

Terry Ritter
Gregory Walker

Motorola Inc, Mail Drop M2880
3501 Ed Bluestein Blvd

Austin TX 78721

Between a high-level language (HLL) and its underlying
machine architecture lurk many language implementa-

. tion techniques . These include the older techniques of
interpretation and compilation, as well as newer ones like
intermediate languages and threaded code . In this article,
we will present four types of threaded code techniques for
implementing intermediate languages. We will examine
how these four logically equivalent techniques offer
various trade-offs of execution speed, program storage,
and use of processor resources .

lmplemention of a Language
The implementation of a high-level language on

various logical or physical machine architectures in­
volves such characteristic trade-offs as size of the
language implementation, si�e of generated code, and
speed of program execution. We will bypass other issues
of high-level language use (eg: interaction, debugging,
testing, etc) and concentrate on language implementation
considerations.

Language implementation techniques can be logically
divided into two categories: translation and interpre­
tation.

Translation: Translation techniques replace elements
of higher-level syntax with lower-level instructions that
perform an equivalent operation. The resulting transla-

About the Authors
Terry Ritter and Gregory Walker are software engineers at the

Motorola Microprocessor Design Group, wl1ere their exploration into
the structure of computer languages led them to examine FORTH and
other threaded languages for use as a possible software tool. Terry
Ritter is one of the co-architects of the MC6809 microprocessor and has
been involved with personal computing since 1 974. Gregory Walker is
on the IEEE floating-point standards committee and has been involved
with microcomputers since 1975.

206 September 1980 © BYTE Publications Inc

tion is then executed in order to run the program. A com­
piler is a computer program that translates high-level
language programs into instructions of another language .
Traditionally, assemblers and compilers translate their
input into machine-level code .

Interpretation: Interpretation techniques directly exe­
cute the high-level language program. The interpreter is a
program that sees the high-level language source program
as a series of operation (op) codes used to guide its execu­
tion. The interpretive system appears to the user as a
"virtual machine" that has the architecture of the high­
level language .

Any form of interpretation offers significant oppor­
tunities for implementing debugging tools. Tests per­
formed as each command is interpreted can result in a
programmer-controlled display of debugging informa­
tion. This is the basis for trace or breakpoint facilities
that can be included in the interpreter.

Combinations: Combination techniques may translate
the sequence of characters representing a high-level­
language keyword into a form that is easier to interpret.
Most BASIC interpreters translate the BASIC keywords
into one-byte tokens that are easier to identify. This
technique avoids the continual string searches of a tradi­
tional interpreter, but executes a language that is syntac­
tically unchanged from the high-level-language source
program. (For our purposes here, the term syntax will
specifically refer to the structural relationship between
language elements .)

Intermediate language: Intermediate-language (IL)
techniques translate the high-level-language programs in­
to a language that is simultaneously easier to deal with
and syntactically different from the original . Many com­
pilers translate a high-level-language program into an
intermediate language, which is then translated into

Diagnostics 1
for CP/M* & TRSDOS#

Someday your computer is going to break; even the most reliable
computer systems "go down". Often, finding exactly what is
wrong can account for the most time consuming part of repairing
the system, and the longer the system is down, the more
money you lose.
DIAGNOSTICS I is a complete program package designed to check
every major area of your computer, detect errors, and find the
cause of most common computer malfunctions, often before they
become serious. For years, large installations have run daily
or weekly diagnostic routines as a part of normal system
maintenance and check-out procedures.
DIAGNOSTICS I is designed to provide that kind of performance
testing for 8080/Z80 micro computers.
DIAGNOSTICS I will really put your system through its paces. Each
test is exhau.stive and thorough. The tests include:
• Memory Test · CPU Test (8080/8085/Z80) · Printer Test
· Disk Test · CRT Test
To our knowledge, this is the first CPU test available for 8080/Z80
CPU's. Many times transient problems, usually blamed on bad
memory, are really CPU errors.
A good set of diagnostics is an indispensable addition to your
program library even if your system is working fine. Hours have been
w()sted trying to track down a "program bug" when actually
hardware was to blame!
DIAGNOSTICS I als_o allows you to be confident of your system.
This can be critical when file merges or sorts and backups
are involved. You want to be as sure of your computer as possible
quring these critical times. Running DIAGNOSTICS I prior to
these and other important functions helps to insure that your
system is operating at peak performance.

DIAGNOSTICS I is supplied on discette with a complete users manual.

DIAGNOSTICS 1: $60.00 Manual only: $1 5.00

Requires : 24K CP/M; 1 6K d isc for TRS-80

formats: CP/M 8" SOFT SECTORED, NORTHSTAR CP/M
AND TRS-80 DOS

"CP/ Iro! RfGISHREO IAAD£MARK OIGIIAL R£S£AACH

•TASOOS TRS·BO lRAOEMAR�S lAIIOY CORP

All Orders and General Information:
SUPERSOFT ASSOCIATES
P.O. BOX 1 628
CHAMPAIGN, IL 61 820
(217) 359 -2112

Technical Hot Line: (217) 359-2691
(answered only when technician is available)

208 September 1980 © BYTE Publications Inc Circle 1 27 on i nqu iry card.

Intermediate-language techniques offer
the advantage of machine independence
of the source language .

machine code. When used in this manner, the inter­
mediate language can allow global code-optimization
techniques to be more easily applied.

Since the translation into the intermediate language is
independent of the target machine, different compilers
for the same target machine need only produce the
simpler code of the intermediate language. Similarly, dif­
ferent code generators (which translate the intermediate
language into machine language) can allow the same
compiler to produce code for different computers . Inter­
mediate-language techniques offer the advantage of
machine independence of the source language and allow
program portability, the ability to execute the same
source program on widely different computers.

The intermediate-language representation of a pro­
gram might also be interpreted instead of translated to
machine code. To minimize interpretation overhead, we
need complex and powerful machine-language routines.
But machine independence is best accomplished by hav­
ing . simple, easy-to-write machine-language routines.
This same trade-off of machine independence versus ex­
ecution speed must be made in the design of any inter­
mediate language. An example of this use of intermediate
language is the pseudocode {p-code) used to implement
most versions of Pascal .

This article is principally concerned with a class of
intermediate-language representations particularly suited
to interpretation; these are known as threaded codes.
Naturally, the intermediate-language code will be
generated by a compiler or by some other translation
program. We will not discuss the translation process,
which is a function of the syntax of the high-level
language and other programming considerations; rather,
we will discuss the resulting intermediate language and its
interpreter.

Aspects of Intermediate-Language Architecture
An intermediate language is composed of a set of

primitive operations (which, in combination, can express
any algorithm) and storage capabilities for both internal
and program data. In particular, it must be possible to
pass data values between routines that make up the inter­
mediate language. The intermediate-language program
can use a fixed number of memory locations to simulate
general-purpose registers, but then routines are needed
that load (and store) each register from memory, as well
as routines that simply move values between registers. If
the intermediate language approaches the complexity of
the original machine language, i ts use is of dubious value.

One approach that simplifies an instruction set is a
"zero-address" or stack architecture. In this architecture,
all operations will obtain values by pulling them from the
stack and results will be returned by pushing them onto
the stack. Only two operations with memory are now re­
quired: the "pull (from stack) and store (to memory)"
operation and the "load (from memory) and push (on the
stack)" operation . By designing a zero-address architec-

(I nto r m e d iota - L a n g u a g e cod e)

A· J S R L
J S R M

RTS

next
call
return

J S R A
J S R 8

(M a c h i n e code)

8 : m a c h i n e
l a n g u a g e
r o u t i n e

R T S

next call routine

JSR/RTS pair
JSR instruction
RTS instruction

Figure 1 : Diagram of subroutine-threaded code (STC). In this
and figures 2 thru 4, the pointer points to the main program be­
ing executed. Both A and B are subprograms called by the main
program; A is an intermediate-language subprogram of the same
type as the main program, and B is an in-line machine-language
program that directly executes the machine language of the host
computer. The words next, call, and return refer to operations
that must be performed for any threaded-code language. The in­
formation to the right of these words tells how each operation is
performed in the current type of threaded code.

PURCHASE 1 1 2-24 MONTH FULL , 36 MONTH
PLAN OWNERSHIP PLAN LEASE PLAN

PURCHASE PER MONTH
OESCRIPTION PRICE 12 MOS. 24 MOS. 36 MOS.

LA36 DECwriter II $1 ,695 $162 S 90 S 61
LA34 DECwriter IV 1 ,095 1 05 59 40
LA34 DECwriter IV Forms Ctrl. 1 ,295 1 24 69 47
LA1 20 DECwriter Ill KSR . . . 2 ,495 239 140 90
LA180 DECprinter I 2 ,095 200 1 1 7 75
VT100 CRT DECscope 1 ,895 1 82 1 01 68
VT1 32 CRT DECscope 2 ,295 220 1 22 83
DT80/1 DATAMEDIA CRT . . . 1,995 1 91 1 06 72
Tl745 Portab le Terminal 1 ,595 1 53 85 57
Tl765 Bubble Memory Terminal 2 ,595 249 1 46 94
Tl81 0 RO Printer 1 ,895 1 82 1 01 68
Tl820 KSR Printer 2 , 1 95 210 1 1 7 79
Tl825 KSR Printer 1 ,595 1 53 85 57
ADM3A CRT Terminal 875 84 47 32
ADM31 CRT Terminal 1 ,450 1 39 78 53
ADM42 CRT Terminal 2 , 1 95 2 1 0 1 1 7 79
QUME Letter Qual ity KSR . . . 3,295 316 176 1 1 9
QUME Letter Quality RO 2,895 278 1 55 1 05
HAZELTINE 1 420 CRT 945 91 51 34
HAZELTINE 1 500 CRT 1 , 1 95 1 1 5 6 4 43
HAZELTINE 1 552 CRT 1,295 1 24 69 47
Hewlett-Packard 2621A CRT . 1 ,495 1 44 80 54
Hewlett-Packard 2621 P CRT . 2 ,650 254 1 42 96

FULL OWNERSHIP AFTER 12 OR 24 MONTHS
1 0% PURCHASE OPTION AFTER 36 MONTHS

ACC�SSORIES AND PERIPHERAL EQUIPMENT
ACOUSTIC COUPLERS o MODEMS o THERMAL PAPER

RIBBONS o INTERFACE MODULES o FLOPPY DISK U N ITS

PROMPT DELIVERY • EFFICIENT SERVICE -

B J. KA fV;:)l � � I CORPiJRATION
1945 ROUTE 22 201-688-7800 UNION, N .J. 07083 TWX 7 10-98 5- 548 5

I

210 September 1980 © BYTE Publications Inc Circle 1 29 on i nqu iry card.

A :

next

call

return

l i s t pointer l D i r e e l - Threaded
Code) · J�---:-:-�

(I L c od e) (Ma c h i ne Code)

m a c h i n e code 8 : m a c h i n e code
rou t i n e for call

� L
� M

� return

m a c h i ne code
for next

next call return

1 . copy cu rrent list item to temporary storage
2. point list pointer to next list item
3. jump to machine code at address in

temporary storage

1 . push cu rrent list pointer onto stack
2. load list pointer with address of the

intermediate-language subroutine l ist
3 . do " next"

1 . load list pointer with top of stack
2 . do " next"

Figure 2: Diagram of direct-threaded code (DTC). Here, "tem­
porary storage" refers to a memory location that is used to hold
the address of the machine-code routine associated with the
current unit of code.

A:

next

call

return

R ETURN: I � return

-?- 8

(I L code) (M a c h i n e code)

� call 8: � 8 STRT

� L 8STRT: m ac h i n e c od e

� R E T U R N

next call return

rout ine

J M P next

1 . copy cu rrent list item to indirect temporary
storage

2 . point l ist pointer to next l ist item
3. load code temporary storage with item at

address in indirect temporary storage
4. jump to machine code at address in code

temporary storage

1 . push current list pointer onto stack
2. point indirect temporary storage to next list

item
3. load current list pointer from indirect

temporary storage
4. do " next"

1 . load cu rrent list pointer from top of stack
2. do " next"

Figure 3: Diagram of indirect-threaded code (fTC). Here, "in­
direct temporary storage" and "code temporary storage" store
the indirect and direct pointers to the machine code routine
associated with the current unit of code.

ture into the intermediate language, the parameter trans­
fer location is implied and need not be part of the inter­
mediate language representation. (A stack architecture is
certainly simpler than other architectures, but that does
not mean it is better; many complex trade-offs that are
beyond the scope of this article are involved.)

Threaded Code
Threaded code is an intermediate-language implemen­

tation technique that organizes the control of program
flow into a sequence of subroutine invocations. No other
aspects of the language are represented in threaded code.
Threaded code is especially applicable to interpretation;
the interpretation process consists of transferring control
to the routines selected by the threaded-code op codes .
The functions available in the intermediate language are
provided by the subroutines that are invoked and are not
an inherent part of the threaded code itself.

[The characteristics of the language FORTH are in­
dependent of its current implementation via threaded
code. FORTH enthusiasts often blur the distinction,
attributing the language 's speed and compactness to the
language instead of to its threaded-code implementation .
I think this is an important point to remember when talk­
ing about the advantages of FORTH GW)

Threaded-code intermediate languages are especially
applicable to the implementation of virtual machines em­
bodying zero-address architectures. As such, the tech­
nique of using threaded code to implement a language
can be applied to, for example, Pascal (using the p-code
intermediate language), LISP interpreters, or, of course,
FORTH. We classify four varieties of threaded code:
subroutine, direct, indirect, and token.

All varieties of threaded code consist of a data struc­
ture that is a sequence of unique subroutine identifiers.
Traditionally, threaded code has been kept close to the
machine level and has included actual pointers to the
subroutines (which themselves may be either interme­
diate language or machine code) . Also traditionally, a
portion of the processor resources-in particular, pro­
cessor registers-has been dedicated to the use of the
threaded-code interpreter. As we shall see, neither ab­
solute pointers nor register resources need be used to im­
plement threaded code.

Implementing Threaded Structures
We will now describe the structures associated with the

various types of threaded code. Figures 1 through 4 pre­
sent diagrams of subroutine-, .direct-, indirect-, and token­
threaded code structures, respectively, along with a des­
cription of the three operations, next, call, and return,
which make up the complete threaded-code interpreter.
In the diagrams, the notation "-A" means a pointer to
the memory location labeled "A".

Subroutine-threaded code: A sequence of subroutine
calls with no other embedded instructions implements an
intermediate language. Each subroutine call may be con­
sidered a single intermediate-language operation, which
need not be related to the underlying machine architec­
ture . Subroutine-threaded code (STC) is a control
mechanism that is widely supported at the machine­
hardware level.

The peculiar program organization consisting only of

The
2nd Generation
is shaping up . . .

MEASU REM ENT systems &.. controls
incorporated

�5����.��. Software
Crabt r e e B l v d .
R a l e r g h , N o r t h Ca r o l i n a 27604 (9 1 9) 833-4094

AT LAST' A fu l ly implemented computer based file management system.
Only a few minutes or instruct ion and you arc creating and using your own
client l ists, mailing l is ts . i n ventories. bibliographies, vendor l ists, and more.

U H M S 8 0

Files, l is ts . or records , w i t h u s e r defined format s . can be created. sorted,
edited, and printed wi t h ease . Sub-files L" a n b e created o u t o r parts o f exis t i ng
files, selecting parts of a record or i n d i vidual rc�.:ords by a search n i t cr ion.

ALSO available with D B M SSO .

R E I' O R T 8 0

Build your own custom defined and formatted reports and data summaries.
Print lables with user specified format� t ha t w i l l f i t your own forms.

DBMSSO and R E P O RTSO will run under either C P/ M or T R S DOS

DBMSSO . $250.00
REPO RTSO . $ 1 00.00
Manuals each $25.00

OTHER P R O DUCTS O F M l CRO BYTE SOFT W A R E :

EDIT80 , , . , , . . , $ 100.00

Text editor and print formatter wh ich runs under CP /M or T R S DOS
UISK80 , . $50.00

Ut i l i ty which allows you to examine and patch a disk.
UTI LS , . $50.00

Apple PASCAL ut i l i t ies: extensions to Apple Pascal , together with file
control ut i l i t ies. cross-reference, etc.

I' A YROI.I . $ 100.00

Apple PASCAL payroll for 1 50 employees, full
dedu�.:t ion opt ions, ell.: .

\\'rite or �.:all today for further detai l.' on our product s .
Source I D#TCE373

AI-'1-'I.E is a lrademarL. uf Appll' l"ttnllllllt'r (·urp .
TH:SUOS is a lrademurk uf Taml� l"urp. CI'/M is a lradl'mark uf DiJ,!ilal Hl')ot•arl·h

Owing to a printer error a wrong telephone number was run in
August. Our apologies for any i nconvenience this caused. Our
correct telephone n umber is 91 9-833-4094.

Circle 1 30 on i nquiry card. September 1980 © BYTE Publications Inc 211

subroutine calls is rarely used by programmers (who
have no reason to resist obvious opportunities for op­
timization), but it is sometimes used by compilers . It is
the most general intermediate language possible, and it
retains the advantages of machine independence by not
generating in-line machine language. (The difference in
the form of subroutine call and return instructions on
various computers is usually trivial .)

Subroutine-threaded code will incur less execution
overhead than most intermediate languages because its
interpretation is handled by hardware rather than by a
sequence of instructions. Furthermore, subroutine­
threaded code can be optimized by using in-line machine
code for operations where subroutine overhead is ex­
cessive, an advantage unobtainable with other types of
threaded code. Of course, the resulting optimized code is
no longer machine-independent; the additional transla­
tion step converts the intermediate language into object
code for a particular machine.

Direct-threaded code: Direct-threaded code (DTC)
may be considered a sequence of machine-language sub­
routine calls with the "call" op code removed. This results
in a list of addresses, each of which points to a machine­
language subroutine. Since the direct-threaded program
includes no op codes, a short machine-language program
must be written to read the next address in the list and
transfer control to that address. Traditional direct-

(I L c o d e)

A: token col/

t o k e n L

t o k e n M

t o k e n end

next

next

call

return

TABLE: (indexed by tok en)

token A : � A
t o k e n B : � B

t o k e n A
t o k e n b s t : - BST

t o k e n B
:

t o k e n col/ : - col/

t o k e n end : - return

(M a c h i n e code)

B: t ok e n bst

BST: mach i ne code
r o u t i n e

m a c h i n e code
for next

col/ return

1 . get current token from list
2. point l ist pointer to next l ist item
3. look up address corresponding to token
4. get indi rect token at address
5. look up address corresponding to indi rect

token
6. jump to machine code at that address

1 . push cu rrent list pointer onto stack
2. load list pointer with start of new list
3. do "next"

1 . load current list pointer from top of stack
2. do "next"

Figure 4: Diagram of token-threaded code (TTC) . Since tokens
can be made shorter than addresses, this makes the threaded
code more compact, but the table lookup makes the resulting
code slower. Here, the "indirect token" is the contents of the
table entry that matches the current token of code.

212 September 1980 © BYTE Publications Inc

threaded code implementations do not allow the use of
true subroutines at the machine level but instead require
that each routine terminate by executing the next opera­
tion.

In order to call direct-threaded routines (see the
instructions for "call" in figure 2), machine-language code
(executing the instructions for "call") must be included at
the beginning of each direct-threaded routine to put the
current value of the list pointer on an address stack, load
the list-pointer register with the start address of the list of
routine addresses for this just-begun, direct-threaded
routine, and execute the next operation.

The next operation (coded here as in-line machine
code) causes the computer to execute the routine pointed
to by the list pointer, regardless of whether the routine
pointed to is another intermediate-language routine or a
machine-language routine.

In order to return to a higher level of nesting, the last
list item in an intermediate-language routine points to the
code for the return operation . When executed by the next
operation, this operation recovers the previous value of
the list pointer from the stack, then executes the next
operation, which in turn executes the first routine past
the routine the computer just returned from.

Thus direct-threaded code is implemented in three
operations : next, call, and return .

Indirect-threaded code: Indirect-threaded code (ITC)
consists of a list of addresses, but each address points to
another address which then points to the machine-code
routine. (See figure 3 .) As compared to direct-threaded
code, in indirect-threaded code, the interpreter must go
through an extra level of indirection. Indirect-threaded
intermediate-language subroutines do not contain rna­
chine-language code for the call operation, and one ad­
vantage of indirect-threaded code is that a compiler using
it need only produce pointers. By manipulating only
pointers, the compiler generates intermediate-language
code that does not include machine-language code itself;
thus it is independent of the target machine . However, a
disadvantage of indirect-threaded code is that the inter­
preter has the overhead of an extra level of indirect ad­
dressing.

Token-threaded code: The varieties of threaded code
previously mentioned contained pointers that were actual
addresses of the subroutines in memory. Using memory
addresses to select routines wastes storage because the
number of subroutines in the system is far smaller than
the number of memory locations. A savings in inter­
mediate-language program size can be obtained by using
short tokens to identify the subroutines to be invoked.
Typically, token-threaded code (TTC) can be im­
plemented by using the current token to index into a table
of subroutine addresses . (See figure 4 .)

High-Level Descriptions o f Threaded-Code
Interpreters

Listings 1 thru 3 illustrate the logical implementation of
direct-, indirect-, and token-threaded code, respectively.
The program descriptions are written in a high-level
language that is similar in appearance to Pascal. It differs
from Pascal in that the variables are not declared as stan­
dard Pascal data types . Also, the next, call, and return
operations are not written as Pascal procedures; this was

. done to remain faithful to actual implementations where

these three code segments are reached by jump instruc­
tions rather than by subroutine calls.

Several other notational conventions used in these
listings may also need explanation. The data type pointer
means an actual machine address. If ip is a pointer
variable, then - ip means the value at the location
which is pointed to by the address in variable ip .
Therefore, the statement

goto - ip;

means jump to a new location using the contents of
variable ip as the address at which to proceed with execu­
tion.

Implementation Concerns
The traditional implementations of threaded-code

interpreters have had one or more machine registers
dedicated to the exclusive use of the interpreter; imple­
mentations on microcomputers have tended to use all
microprocessor resources . One problem with these imple­
mentations is that all machine-language routines (where
all real computation is done) must save processor
registers before modifying them and must restore them
before returning to the interpreter.

Additionally, this use of machine resources, simply for
the transfer of control, 'obstructs the use of standard
machine-language subroutines that pass parameters
through the registers. In the context of microcomputer

The world's most popular microcomputer, with 1 6K of
memory and Level I I basic for only $685 . complete with
full 90 day Radio Shack warranty. We accept check,
money order or phone orders with Visa orMasterCharge.
(Shipping costs added to charge orders).
Disk drives, printers,
peripherals, software
and games . . . you
name it, we've got it
(Both Radio Shack &
other brands). Write
or call for our
complete price list.

C&S

_ ___ ________,.. _ fl.h I 1'ii 8 -� " ' ' ' ' "
/ - ' - - ��-- -

Shown Is Level I.
Level II includes
Alphanumeric keypad.

ELECTRONICS MART
Ltd.

32E. Main Streete Mila n M ichigan 481 60 e (313)439-1 400

214 September 1980 © BYTE Publications Inc Circle 1 32 on inquiry card.

Listing 1: Description of a direct-threaded code interpreter in a
Pascal-like language. See figure 2 .

c a n s t p o i n t er _ l e n g t h = < l e n g t h o f a n a d d r e s s p o i n t e r) ;
c a l l _c o d e_l e n g t h = (l e n g t h o f '' c a l l '' c o d e s e g me n t > i

var l i s t _p o i n t e r : p o i n t e r ; { i n t e r p r e t e d p r o g r a m c o u n t e r }
l i s t _ i t e m : p o i n t e r ; { c o n t a i n s t h r e a d e d - c o d e i te m }

l a b e l n e x t , c a l L r e t u r n ;

n e x t : l i s t_ i t e m : = "· l i s t _p o i n te r ;

c a 1 1 :
{
{

l i s t _p o i n t e r : = l i s t _p o i n t e r + p o i n t e r _l en g t h ;
g o t o A i i s t_i t e m ;

'

p u s h _o n _s ta c k < l i s t_p o i n t er) ;
T h e v a l u e o f l i s t_i t e m wa s s e t b y t h e p r e c e d i n g

' ' n e x t '' o p e r a t i on .
l i s t_p o i n te r : = l i s t _i t e m + c a l l _c o d e _l e n g t h ;

T h e f o l l ow i n g c o d e d u p l i c a t e s t h e '' n e x t '' o p e r a t i o n .
l i s t_i t e m : = A l i s t_p o i n t e r ;
l i s t _p o i n t e r : = l i s t _p o i n t e r + p o i n te r _l e n g t h ;
g o t o A I i s t_i t e rn ;

r e t u r n : l i s t _p o i n t e r : = p o p _f r om_s t a c k () ;
{ T h e f o l l o w i n g c o d e d u p l i c a t e s t h e '' n e x t '' o p e r a t i o n .

l i s t i t e m : = A l i s t_p o i n t e r ;
l i s t _p o i n t e r : = l i s t - p o i n t e r + p o i n t e r _l e n g t h ;
g o t o A l i s t i te m ;

Listing 2: Description of an indirect-threaded code interpreter in
a Pascal-like language. See figure 3.

c an s t p o i n te r _l e n g t h = (l e n g t h o f a n a d d r e s s p o i n te r) ;
var l i s t _p o i n t e r : p o i n t e r ; { i n t e r p r e t e d p r o g r a m c o u n t e r }

l i s t i te m : p o i n t e r ; { c o n t a i n s t h r e a d e d - c o d e i t em }
c o d e _p o i n t e r : p o i n t e r ; { p o i n t s t o a c t u a l ma c h i n e c o d e }

l a b e l n e x t , c a l l . r e t u r n ;

n e x t : l i s t i te m "'· l i s t _p o i n t e r ;

c a 1 1 :
{
{

l i s t _p o i n t e r : = l i s t _p o i n t e r + p o i n t e r _ l e n g t h ;
c o d e _p o i n t e r : = "'· l i s t_i t e m ; { h e r e i s t h .e e x tr a

g o t o A c o d e_p o i n te r ;

p u s h _on_s t a c k (l i s t _p o i n t er) ;

{ l e v e l o f i n d i re c t i o n

T h e va l ue of l i s t_ i t e m wa s s e t by t h e
p r e c e d i n g '' n e x t o p e r a t i o n .

l i s t _p o i n t e r : = l i s t_i t e m + p o i n t e r_l e n g t h ;
T h e f o l l ow i n g c o d e d u p l i c a t e s t h e '' n e x t '' o p er a t i on .

l i s t_i t e m : = "'· l i s t _p o i n te r ;
l i s t _p o i n te r : = l i s t _p o i n t e r + p o i n t er_l e n g t h ;
c o d e _p o i n t e r : = '' l i s t_i t em;
g o t o A c o d e _p o i n t e r ;

r e t u r n : l i s t _p o i n t e r : = p o p _f r om_s t a c k () ;
{ T h e f o l l ow i n g c o d e d u p l i c a t e s t h e '' n � x t '' o p er a t i on .

l i s t_i t e m : = "" l i s t _p o i n t e r ;
l i s t _p o i n t e r : = l i s t _p o i n t e r + p o i n te�_l e n g t h ;
c o d e_p o i n t e r : = .., l i s t i te m ;
g a t e c o d .e_p o i n t e r ;

Listing 3: Description of a token-threaded code interpreter in a
Pascal-like language. See figure 4.

c an s t t o k en_l e n g t h = (l e n g t h o f t o k e n)
c a l l _c o d e_l e n g t h = (l e n g t h o f " c a l l " c o d e s e g men t) ;
t o k n u m b e r = (n umber o f t o k e n s p o s s i b l e) ; { i s 256 f or an

{ 8-b i t t o k e n
var l i s t _p o i n ter : p o i n te r ; { i n t e r p r e t e d p r o g ram c o u n t e r }

c o d e_p o i n t e r : p o i n t e r ; { p o i n ter to mat h i ne c o d e }
t a b l e : arra y [! . . t o k numb e r J of p o i nt e r ; { s u b r o u t i ne ta b l e }
t o k en i t e m : s h or t t o k e n ;

l a b e l n e x t:-c a l 1 . r e t u r n ;

ne x t :

c a l l :
{
{

t o k en i tem : = A l i st_p o i n t e r ;
l i s t_Po i n t e r : = l i st_p o i n t e r + t o k en_l e n g t h ;
c o d e _p o i n t e r : = t a b l e [t o k en_i tem J ;
t o k en_i tem : � ,c o d e_p o i n t e r J
c o d e_p o i n ter : = t a b l e [t o k en_i t e m) ;
g o t o A c o d e _p o i n t e r ;

p u s h_on_!i t a c k (1 i s t _p o i n t e r) J
The va l u e of t h e c o d e _p o i n t e r w a s s e t b y t h e p r e c e d i n g

' 'ne x t '' o p e r a t i on .
l i s t_p o i n ter : = c o de_p o i n te r + c a l l _c o d e_ l e n g t h ;

T h e f o l l ow i n g c o d e d u p l i c a t e s t h e ' 'ne x t '' o p er a t i on .
t o k en_i tem : = A l i s t _p o i n t e r ; ·
l i st_p o i n t e r ; = l i s t_p o i n te r + t o k e n _l e n g t h ;
c o d e _p o i nter : = t a b l e [t o k en_i tem) ;
g o t o Ac o d e_p o i n t e r ;

ret urn : l i s t_p o i n ter : = p op _fr om_s t a c k () ;
{ T h e f o l l ow i n g c o d e d u p l i c a t � s t h e ' 'ne x t '' o p e r a t i o n .

t o k e n_i tem : = A i i s t_p o i n te r ;
l i s t_p o i n ter : = l i s t_p o i n t e r + t o k en_len g t h ;
c o d e_p o i n t e r : = t a b l e [t o k en_i t e m J ;
g o t o A c o d e_p o i n ter;

listing 4: A simple direct-threaded code interpreter for the
MC6809 microprocessor.

RETURN' PULS Y

JMP C . Y++J

GET NEW THREAD PTR

DO "NEXT"

Ma c h l R o u t i n e

JMP C. Y++J

IL R o u t ine

CALL: PSHS Y

LEAY *+7, PCR

JMP [, Y++ J

FOB RETURN

STACK OLD THREAD PO INTER

ADDR OF FOLLOWING IL CODE

AOOR OF " R ETURN"

systems (which may want to use read-only memory
modules)., this . limitation requires that special "header"
and "trailer" code be written to move data values used by
the intermediate language to and from the registers used
by previously written machine-language· code. .

It is also possible to eliminate the use of processor
resources in an intermediate. language by storing the
interpreter's "registers" in memory; this leaves the pro­
cessor free for. use by machine-language code at .the ex­
pense of additional overhead during interpretation. [This
overhead consists of having to move these registers be­
tween memory and the hardware registers of the host
processor when you want to manipulate the contents of
the interpreter registers GW) The use of absolute loca­
tions in memory would itself be a problem, because these
locations can then conflict with locations used by other
software packages. By saving the intermediate-language
registers on the stack, the language may be made inde-

M I C RO ·M ISCELLANY

$79.95

Interfaces Printers, synthesizers
keyboards, and JBE A·D D·A Converter
& Switches. This Interface has 4 110
ports with handshaking Iagle, 2·6522
VIA's and a 74LS74 for timing. Inputs
and outputs are TTL compatible.
79-295K Complete Kit $69.95
79·295A Assembled $79.95

Analog to Digital, Digital to Analog
Converter, AtoO conversion time 20us. DtoA conversion 5us. Uses Include
Speech and music synthesizing and
slow scan TV. Single power supply
(5V), 8 Bits wide, latched 110, strobe
lines. ·
79·287K Complete Kit $49.95
79-287A Assembled $69.95

� ' �� I '0 _}" � ! !�=- -c .l ,-.J ,� } JiJ w. ��,.;y! ·!'k : .�: �":.� {,,� l;l
$44.95

$1 2.50
Your computer can control power
(120VAC) to your printer, lights, and
olher 120VAC appliances up to 720
watts (6AMPS at 120VAC). Input 3 to 15
VDC, 2·13 MA TT L compatible, Isola·
lion 1500V.
79·282 1 Channel Kit $ 9.95

Assm. $12.50
79·282 4 Channel Kit $34.95

Assm. $44.95

8088 5-CHIP SYSTEM $29.95 8085 3·CH I P SYSTEM $24.95
MEMORY BOARD

8208 64K DYNAMIC $39.95

JOHN BELL ENGINEERING
P.O. Box 338

Dept. 4
Redwood City, CA 94064

(415) 367·1 1 37
Add 6% sales tax In California and
$1.00 shipping and handling for orders
less than $20. Add 4% for VISA or M.G.

J O H N B E L L E N G I N EE R I N G

216 September 1980 © BYfE Publications Inc Circle 1 34 on inquiry card.

listing 5: A simple indirect-threaded code interpreter for the
MC6809 microprocessor. In this and listings 6 thru 8, each block
of information in lowercase is a "stack picture"-ie: a diagram
of what is on the stack at that particular place in the code.

5 -)t h r e a d
t h re a d

NEXT: LEAS -2. S
PSHS X

5 ->x
s p a c e
t h re a d
t h re a d

LOX (, Y++ J
STX 2. S

5 ->x
r o u t i ne
t h r e a d
t h r e a d

PULS X, PC

5 -> t h r ead
t h r e a d

CALL: PSHS y
LOY , --Y
LEAY 2. Y
BRA NEXT

RETURN: PULS y
BRA NEXT

p t r 1

p t r 2

p t r 1

p t r 2

a d d r
p t r 1

p t r 2

p t r 1
p t r 2

MAKE SPACE
SAVE X

GET ADDRESS OF ROUTINE
SAVE AS UPCOM I NG PC

RECOVER X AND GO !

SAVE CURRENT THREAD PTR
GET PREV I OUS INDI RECT PTR
NEW THREAD PTR

RECOVER OLD THREAD PTR

Listing 6: A more complex direct-threaded code interpreter for
the MC6809 microprocessor. Execution of the intermediate­
language subroutine starts at the label ENTRY.

5 -)ne x t
t h r e a d p t r 1
t h re a d p t r 2

RETUR N : LEAS 2 . S D I SC A R D " N E X T "
P ULS y GET SAVED THREAD PTR

N 1 : BSR N2 PUSH ADDR OF N E X T
5 -> t h r e a d p t r 2

NEX T : B R A N 1 SET UP R ETURN TO NEXT
N2 : JMP L Y++ J GO TO ROUT I N E

5 -> n e x t
t h r e a d p t r 2

1 -C o d e R o u t i n e (s t a r t a t ENTR Y >

ENTR Y :

0 :

PSHS X
S -:> X

SAVE X

t h r e a d p t r 0

s p a c e

LOX
STX
STY

n e x t
t h r e a d
t h r e a d

6 . S
4 . S
6 . 5

s -> x

p tr
p t r 2

GET ADDR OF " N E X T "
MOVE I T
SAVE OLD THREAD P TR

t h re a d p t r 0

PULS
JMP
LEAS
BSR

n e x t
y (0 l d
t h r e a d
t h r e a d

x . y
(, Y++ J -2, 5

t h re a d p tr l
p t r 1
p tr 2

RECOVER X , NEW THREAD P T R
DO S I MPLE " NE X T "
MAKE SPACE

PUSH NEW THREAD PTR , GOTO PSHS X
START OF THE I L CODE

ADDR OF " R ETUR N "

Software can be written to function
properly on widely varying computers
that use the same microprocessor .

pendent of particular programmable memory locations.
Another way to eliminate the use of processor re­

sources, as well as maximize throughput, is to use
subroutine-threaded code (STC) . Subroutine-threaded
code makes use of only the program counter and the sub­
routine return stack, resources already dedicated to the
control of program flow. Thus, the processor resources
traditionally available to the programmer remain free for
use by machine-language code.

Distribution of Software
It is possible to conceive of a mass market for software;

such a market would allow high-quality programs to be
distributed at low cost. We will assume that such code
will be distributed in the form of read-only memory
modules, so that a purchaser actually receives a physical
product for his money. Furthermore, the memory needed
to store the program is included in the purchase price, a
characteristic not obtained with distribution on magnetic
media. Software piracy will be possible for advanced
hobbyists, but these represent only a small portion of the
consumer market .

To maximize sales, it is necessary that everyone who
has a computer and who wants to use the program be

able, to do so. Given machine-language distribution, the
market is already limited to those users with a particular
processor; it should not also be limited to those users
with a particular computer system.

Software can be written such that it functions properly
on systems that use different locations for programmable
memory, read-only memory, and input/output (I/0) de­
vices, as well as systems that use completely different I/0
devices. The system-independent read-only memory
must be written in code that is position independent, and
it must also include features for linking to other similar
modules. These criteria can be satisfied with machine­
language code (on certain processors) or with a correctly
designed intermediate language . Widest distribution re­
quires such properly written code.

Machine-Language Examples of
Threaded-Code Interpreters

Here we present assembly-language code for the
Motorola MC6809 microprocessor which implements
complete interpreters for direct-threaded code, indirect­
threaded code, and token-threaded code. Most of these
listings are punctuated by "stack pictures" (typed in
lowercase) that represent the current state of the stack at
various points in the listing; visualization of the stack is
often crucial to understanding the interpretive process.

An illustration of subroutine-threaded code (using
subroutine jump and return instructions) would be
trivial, and thus is not included. However, it should be
noted that a position-independent form of subroutine­
threaded code is available on computers with long rela-

� Produced and widely used in Eng l and and U .S.A.

CO M P L ETE B U SI N ESS PAC KAG E

INCLUDES EVERYTHING FROM INVENTORY TO SALES SUMMARY
PROMPTS USER, VALIDATES EACH ENTRY, MENU DRIVEN

Approximately 60·100 entries/Inputs require only 2·4 hours weekly and your entire business is under control.

PROGRAMS ARE INTEGRATED· SELECT FUNCTION BY NUMBER·

01 = ENTER NAM ES/ADDRESS, ETC
02 = ENTER/PRINT INVOICES
03 = ENTER PURCHASES
04 = ENTER AJC RECEIVABLES
05 = ENTER AJC PAY ABLES
06 = ENTER/UPDATE INVENTORY
07 = ENTER/UPDATE ORDERS
08 = ENTER/UPDATE BANKS
09 = EXAM I N E/MONITOR SALES LEDGER
10 = EXAM I N E/MONITOR PURCHASE LEDGER
11 = EXAM I N E/MONITOR (INCOM PLETE RECORDS)
12 = EXAMINE PRODUCT SALES

13 = PRINT CUSTO M ER STATEM ENTS
1 4 = PRINT SUPPLI E R STATEMENTS
15 = PRINT AGENT STATEMENTS
16 = PRINT TAX STATEMENTS
17 = PRINT WEEK/MONTH SALES
1 8 = PRINT WEEK/MONTH PURCHASES
, 9 = PRINT YEAR AUDIT
20 = PRINT PROFIT/LOSS ACCOUNT
21 = U PDATE END MONTH FILES MAI NTENANCE
22 = PRINT CASH FLOW FORECAST
23 = ENTER/UPDATE PAYROLL (NOT YET AVAILABLE)
24 = RETURN TO BASIC

WHICH ONE? (ENTER 1 ·24)
01 SUB. MENU EXAMPLE: 01 = EXAMINE: 02 = INSERT: 03 = AMEND: 04 = DELETE

05 = PRINT (1 ,2,3): 06 = NUMERIC COMBINATIONS: 07 = SORT
VERY FLEXIBLE. ADD YOUR OWN FUNCTIONS. EASY TO INTEG RATE.

All programs in BASIC for CP/M. PET. 6800

G. W. COM PUTERS L,. TD, the producers of th is beaut ifu l package i n U.K.

WE EXPORT TO ALL COUNTRIES:
BARCLA YCARD ACCEPTED

CBM APPROVED

CP/M Ver. 9.00 is one 16 K core program
using random access releasing both drives for

data storage, and 250 word vocabulary Is
translatable in any foreign language.

PRICES: Programs 1 ·23 EXC (19,20,22,23) £475

218 September 1980 © BYTE Publications Inc

CALLERS BY APPOINTMENT ONLY
89 Bedford Court Mansions

Bedford Avenue
London WC1, U.K.

CONTACT TONY WINTER 01 -636-8210
BARCLAYCARD ACCEPTED

CBM APPROVED

CP/M Ver. 9.00 Is one 16 K core program
using random access releasing both drives for

data storage, and 250 word vocabulary is
translatable in any foreign language.

£575 Stock Integrated Option + £100 Bank Integrated Option + £100

Circle 1 36 on inquiry card.

tive branch instructions (eg : the LBSR, long branch-to­
subroutine, and RTS, return-from-subroutine, instruc­
tions on the MC6809).

Listing 4 illustrates a very simple implementation of a
direct-threaded code interpreter. This particular imple­
men'tation is very fast, but it has the following
undesirable properties:

• it requires a special machine-language return instruc­
tion (ie: JMP [, Y + +]) ;

• it reserves the Y register for use by the interpreter;
• it requires that the interpreter location (the address of

RETURN) be known to the compiler, making the
resulting intermediate-language code definitely
position-dependent.

In operation, the Y register points to the next address in
a direct-threaded code list; that address, of course, points
directly to machine code. Executing the operation JMP
[, Y + +] (indirect, autoincrement by 2) causes the
machine to start execution at the address contained in the
list element; simultaneously, the Y register fs updated to
point at the next item In the list of addresses. ·

The single instruction JMP [, Y + +] ends each
machine-language subroutine. By reserving a processor
register for use as the current thread pointer, a speed ad­
vantage is obtained; transfer of control using JMP
[, Y + +] requires nine machine cycles (on the MC6809),
while a JSR-RTS pair requires thirteen.

The situation becomes more complex when control is
transferred to a subroutine composed of intermediate- ·
language statements. Machine-language instructions are
included at the beginning of the intermediate-language
subroutine to perform the call operation. The Y register
may be thought of as the topmost location of the stack of
intermediate-language return addresses; its contents are
pushed onto the stack, and Y is loaded with the address
of the start of the intermediate-language subroutine list .

The last item in an intermediate language list is the
address of the return routine. This recovers an old inter­
mediate-language pointer from the stack and continues
interpretation where it left off when it did a subroutine
call.

In listing 5, we show a very simple indirect-threaded
code interpreter. As in the previous example, the inter­
pretation process is fast, but again it has the following
limitations :

• it must use a position-dependent, machine-language
return instruction (eg: JMP NEXT);

• it uses the Y register to hold the list pointer;
• it still requires that the compiler generate position­

dependent pointers to the CALL and RETURN
routines .

Listing 6 is an example of a moderately complex direct­
threaded code interpreter. It is somewhat slower than the
simple interpreter in listing 4, but it uses a standard RTS
instruction to return from machine-language routines.
Thus, the machine-language routines need not contain
pointers to the next operation. Still, this advantage is
bought at the expense of additional machine-language
code in each intermediate-language subroutine. The
intermediate-language subroutines themselves do have

220 September 1980 © BYrE Publications Inc

Listing 7: An improved direct-threaded code interpreter for the
MC6809 microprocessor. This interpreter does not use any of
the microprocessor registers.

s -) p tr t o n e w t h r e a d
a d d r o f " n e x t "
o l d t h r e a d p t r

C AL L : P SHS D
LDD 2 , S
STD 4 , S

SAVE D
GET NEW PTR
THREAD PTR

s -)d
s p a c e
n e w t h r e a d p tr
o l d t h r e a d p t r

P ULS D
LEAS 2 , S

NE X T : LEAS -4, S

R E C OVER D
DELETE SPACE
MORE SPACE

s -)s p a c e
s p a c e
t h r e a d p t r

R ETUR N : P SHS X , D SAVE X , D

s -) d

s p a c e
s p a c e
t h r e a d p t r

L D X S , S
LDD , X++
STX S . S
STD 4 , S
LEAX N E X T , P C R
S T X 6 , S

s -) d
X

GET THREAD PTR
GET N E X T MACHL ADDR
STACK THREAD P T R
STACK R O UT I NE ADDR
GET ADDR OF " NE X T "
SAVE A S MACHL RETURN

m a c h l r o u t i n e
a d d r o f " n e x t "
t h r e a d p t r

P ULS D , X , P C GO TO MACHL R O UT I NE

s -)a d d r o f " n e x t "
t h r e a d p t r

I -C O D E : J S R C ALL < i n s t l > . . . <RETURN>

Listing 8: Token-indirect token-threaded interpreter for the
MC6809 microprocessor. Because of the use of two levels of
lookup, this interpreter is completely position independent.

N E X T :

s -> t a b l e a d d r
o l d i n d i r e c t
t h r e a d p t r

L E A S -4 , S

P SH S U , X , D

s '-) d

X
u
s p a c e
s p a c e
t a b l e a d d r
i n d i r e c t
t h r e a d p t r

MAKE F R E E STACK S P A C E
S A V E R E G I S T E R S

Listing 8 continued on page 222

BUSINESS - PROFESSIONAL - GAME
SOFTWARE FOR APPLE AND TRS-80

0 HOME FINANCE PAK I : Complete package $49.95 A p ple, TRS-80
0 BUDGET: The heart of a comprehensive home finance system. Allows user to define up to 20 budget

items. Actual upense input can be by keyboard or by automatic reading of CHECKBOOK I I files. Costs are
automatically sorted and compared with budget. BUDGET produces both monthly actual/budget/variance
report and a year-to-date by month summary of actual costs. Color graphics display of expenses . . . $24.95

0 CHECKBOOK 11 : This extensive program keeps complete records of each check/deposit. Unique check
entry system allows user to set up common check purpose and recipient categories. Upon entry you select
from this pre-defined menue to minimize keying in a lot of data. Unique names can also be stored lor com­
pleteness. Rapid access to check files. Check register display scrolls for ease of review. 40 column print·
out. Up to 100 checks per month storage. Files accessible by B U D G p program , , $19.95

0 SAVINGS : Allows user to keep track of deposits/withdrawals for up to 1 0 savings accounts. Cpmplete
records shown via screen or 40 column printer. $14.95

0 CREDIT CARD: Keep control of your cards with this program. Organizes, stores and dis111ays purchases,
payments and service charges. Screen or 40 column printer display. Up to 1 0 separate cards $14.95

0 TH E U N I V E RSAl C OMPUTING MAC H I N E : $39.95 Apple, TRS-80
A user programmable computing system structured around a 20 row x 20 column table. User defines row
and column names and equations forming a unique computing machine. Table elements can be multiplied,
divided, subtracted or added to any other element. User can define repeated functions common to a row or
column greatly simplifying table setup. Hundreds of unique computing machines can be defined, used, stored
and recalled, with or without old data, for later use. Excellent for sales forecasts, engineering design analysis;
budgets, inventory lists, income statements, production planning, project cost es1imates-in short for any
planning, analysis or reponing problem that can be solved with a table, Unique curser commands allow you
to move to any element, change its value and immediately see the effect on other table values. Entire table
can be printed by machine pages (user-defined 3-5 columns) on a 40 column printer. Transform your com·
puter into a UNIVERSAL COMPUTING MACHINE.

O C O L O R C A L E N D A R : HI-RES color graphics display of your personal calendar. Automatic
multiple entry of repetitive events. Review at a glance important dates, appointments, anniversaries, birth·
days, action dates, etc. over a 5 year period. G raphic calendar marks dates. Printer and screen display a
summary report by month of your full text describing each day's action item or event. Ideal for anyone with
a busy calendar . . (Apple Only) , S19.95

0 B USIN ESS SO FTWA R E S E R I ES: E ntire package $1 99.95 Apple, TRS-80
O MICROACCOUNTANT: The ideal system for the small c_ash business. Based on classic T-accounts and

double-entry bookkeeping, this efficient program records and produces reports on account balances,general
ledger journals, revenue and expenses. Screen or 40 column printer reports. Handles up to 500 joumal
entries per period, up to 100 accounts, Instructions include a short primer in Financial Accounting. S49.95

0 UNIVERSAL BUSIN ESS MAC H I N E : This program is designed to SIMPLIFY and SAVE TIME lor the
serious businessman who must periodically Analyze, Plan and Estimate. The program was created usinu our
Universal Computing Machine and it is programmed to provide the following planning and forecas1ing tools.

CASH FLOW ANALYSIS PROFORMA BALANCE SHEET SOURCE ANO USE OF F U N OS
PROFORMA PROFIT & LOSS SALES F O RECASTER JOB COST ESTIMATOR

Price, including documentation and a copy of the base program, Universal COillflll ling Machine $89.95

0 1NVOICE: Throw away your pens. Use the ELECTRONIC INVOICE facsimile displayed on your CAT.
The program prompts and you fill in the data. Includes 3 address fields (yours, Bill to and Shi11 to). Invoice
No., Account No., Order No., Salesman, Terms, Ship Code, FOB Pt. and Date. Up to 10 items per sheet with
these descriptions: Item No., No. of units, Unit Price, Product Code, Product Oescription, Total Dollar
amount per item and invoice total dollar amount. Generates, at your optiOn, hard copy invoices, shi11ping
memos, mailing labels. audit copies and disc updates to master A/A files. (48K) 549.95

D BUSINESS CHECK R E G ISTER: Expanded version of the Checkbook I I program. Handles up to 500 checks
per month wittl complete record keeping. (48K). S29.95

0 BUSINESS BUDGET: As described above and companion program to Business Check Reaister. Handles
500 transactions per month, up to 20 cost categories. Accesses BCR files for actual costs. (48K) S29.9S

0 E l E C T R I C A L E N G I N E E R I N G S E R I E S : Both programs S1 59 .95 A p ple
0 LOGIC SIMULATOR: SAVE TIME AND MONEY. Simulate your digital logic circuits before you build

them. CMOS, TTL, or whatever, if it's digital logic, this program can handle it. The program is an inter­
active, menu driven, lull-fledged logic simulator capable of simulating the bit-time by hit-time response of a
logic network to user-specified input patterns. I t will handle up to 1000 gates, including NANOS, NOAS, It�·
verters, FLIP-FLOPS, SHIFT R E G ISTERS. COUNTERS and user-defined MACROS. Up to 40 user-defined,
random, 01 binary input patterns. Simulation results displayed on CRT or printer. Accepts network des·
criptions from keyboard or from L O G I C DESIGNER lor simulation. Specify 1000 gate version (48K re·
qui red) or 500 gate version (32K required) S89.95

0LOGIC DESIGNE R: Interactive HI-RES Graphics program for designing di!)ital lngic systems. A menu
driven series of keyboard commands allows you to draw directly on the screen up to 15 different gate types,
including 10 gate shape patterns supplied with the program and 5 reserved for user specification. Standard
patterns supplied are NAND, NOR, INVERTER, EX-OR, T-FLOP, JK-F L O P. 0-FLOP, RS·FLOP, 4 Bit
COUNTER and N-BIT SHIFT R E G ISTER. User interconnects gates just as you would normally draw using
line graphics commands. Network descriptions for L O G I C SIMULATOR generated simultaneously with the
CRT diagram being drawn. Drawing is done in pages of up to 20 gates. Up to 50 pages (1 0 per disc) can be
drawn, saved and recalled. Specify 1000 gate (48K) o r 500 gate (32K) system ·$89.95

0 MAT H EMATICS S E R I ES: Complete Package $49.95 A1111le only
0 NUMERICAL ANALYSIS: HI-RES 2-0imensional p lot of any function. Automatic scaling. At your OJJtion,

the program will plot the function, plot the INTEGRAL, plot the D E RIVATIVE, determine the ROOTS,
find the MAXIMA and MINIMA and list the INTEGRAL VALUE. For 16K $19.95

0 MATAIX: A general purpose, menu driven program for deterrnininu the INVERSE and DETERMINANT of
any matrix, as well as the SOLUTION to any set of SIMULTANEOUS LINEAR EQUATIONS. Disk 1/0 lor
data save. Specify 55 eqn. set (48K) or 35 eqn. (32K) . . . , S19.95

0 3-0 SURFACE PLOTTER: Explore the ELEGANCE and BEAUTY of MATHEMATICS by creating H I-RES
PLOTS o1 3- dimensional surfaces from any 3-variable equation. Disc save and recall routines for plots. Menu
driven to vary surface parameters. Demos include BLACK H O L E gravitational curvature equations . . 51 9.95

0 A CT I O N A D V E NT U R E GAMES SE R I ES : E ntire series $29.95 Apple on ly
0 REO BARON: Can you outlly the R E O BARON? This fast action game simulates a machine-gun DOG·

F IGHT between your W O R L D WAR I BI·PLANE and the baron's. Y:lu can LOOP, DIVE, BANK or CLIMB
in any one of 8 directions - and so can the BARON. in HI-R E S graphics S14.95

0 BATTLE O F MIDWAY: You are in command of the U.S.S. HORN ETS' DIVE-BOMBER squadron. Your
targets are the Aircraft carriers, Akagi, Soryu and Kaga. You must fly your way through ZEROS and AA
F I R E to make your D IV E-BOMB run. In HI-RES graphics S14.95

O suB ATTACK : It's April, 1 943. The enemy convoy is headed for the CORAL SEA. Your sub, the
MORAY, has just sighted the CARRIERS and BATTLESH IPS. Easy pickings. But watch out lor the D E·
STAOVEAS - they're fast and deadly. In HI-RES graphics . . . 514.95

0 FREE CATALOG- All programs are supplied in disc and run on Ap1lle I I w/Oisc & Ap1Jiesolt ROM Card &
TRS·BO level I I and require 32K RAM unless otherwise noted. Detailed instructions inclmled. Orders
shipped within 3 days. Card users include card number. Add S1.50 postage and handling with each order.

-
VISA -

-
California residents add 6Yt% sales taK. Make checks payable to:

SPECTRUM SOFTWARE
OEALER I N Q U I R I ES
INVITED

P.O. BOX 20B4 · 142 CARLOW, SUNNYVALE, CA 94087
FOR PHONE O R D ERS - 408-738-43B7

222 September 1980 © BYTE Publications Inc Circle 138 on inqu iry card.

Listing 8 continued:

LDU

LDX

LDB

STX

CLRA

ASLB

R OLA

LDX

ADDD

TFR

LDB

S T X

C L R A

ASLB

R OLA

LDD

ADD

TFR

STX

LEA X

STX

P ULS

1 0 , S

1 4, S

I X +

1 4, S

D . U

4. S

D, X

' X+

1 2 , S

D . U

4 . S

D , X

6 , 5

N E X T , P C R

e , s
D , X , U, P C

GET TABLE ADDR

GET THREAD P T R

G E T I ND I RE C T TOKEN

SAVE THREAD PTR

TWO B YTES P ER TOKEN

TABLE-RELAT I VE I N D I R E C T PTR

NOW AB SOLUTE

GET TOKEN

SAVE I ND I RE C T PTR

TABLE-RELAT I VE MACHL ADDR

NOW AB SOLUTE

SAVE AS UPC OM I NG P C

ADDR O F N E X T

S A V E F O R M A C H L R T S

R EC OVER R E G S + GO !

5 -:> a d d r o f " n e x t "
t a b l e a d d r
i n d i r e c t
t h r e a d p tr

CALL :

R ETUR N :

PSHS D SAVE D

5 -> d

LDD

STD

P ULS

B R A

P SHS

5 ->

LDD

STD

LDD

LEAS

B R A

a d d r o f " n e x t "
t a b l e a d d r
i n d i r e c t
t h r e a d p t r

4 , 8 GET TABLE

2, 8 MOVE I T

D R EC OVER D

NEXT

D SAVE D

d
a d d r o f " n e x t "
t a b l e a d d r
o l d i n d i r e c t
t h r e a d p t r 1
t h r e a d p tr 2

ADDR

4. S

6 , S

Q , S

6 , S

N E X T

G E T T A B L E ADDR

MOVE I T

R EC OVER D

D I SC A R D JUNK

pointers to the return operation, of course (making the
code position-dependent), and the interpreter reserves the
Y register for its own use .

Listing 7 illustrates a direct-threaded code interpreter
that does not reserve any processor registers; this inter­
preter also allows the return from machine-language
routines by means of a standard RTS instruction. The ab­
solute locations of the interpreter call and return routines
must be included in each direct-threaded code sub­
routine; this usually precludes the distribution of such
subroutines in read-only memory.

Type of Threaded Code

Subroutine-threaded code

Relative subroutine-threaded
code

Simple di rect-threaded
code (listing 4)

Simple indi rect-threaded
code (as in l isting 5)

Moderately complex d i rect-
th readed code (as in l isting 6)

Improved di rect-threaded
code (as in l isting 7)

Token-threaded code (as
in l isting 8)

M C6809 Machine
Cycles Used

9 1

98

93

371

228

552

1 083

Ratio of Cycles
Used

1 .0

1 . 1

1 . 1

4 . 1

2.5

6 . 1

1 1 .9

· Relative S ize of
Resu l t i n g
I ntermed iate-
Language
Code

3

3

2

2

2

2

Can this Code
Be M arketed to
All Users of
a G iven
M icroprocessor?

no

yes

no

no

no

no

yes

Table 1: Comparison of threaded-code techniques. Notice that only two forms of threaded code, the relative subroutine-threaded
code and the token-indirect token-threaded code are sufficiently system-independent to be used for mass distribution to (poten-
tially) all users of a given microprocessor. ·

· · ·

A possible alternative would be to modify the direct­
threaded code interpreter in listing 7 to use strictly self­
relative pointers_ Then· by including code for call and
return in each read-only memory device, a form of
distributable direct-threaded code might be obtained_
However, because the read-only memory stili contains
machine-dependent code, the use of direct-threaded code
in a read-only memory environment offers little advan-
tage_

·

The improved direct-threaded code interpreter allows
the use of most previously coded machine-language
modules and allows " these routines to pass parameters
through the processor registers. Routines cannot pass
parameters on the hardware stack (which is used to main­
tain the state of the interpreter), but could easily use the
user stack of the MC6809 microprocessor for parameter
transfer_

A similarly improved interpreter could be built for
indirect-threaded code, but the position-independence
problem is inherent in this intermediate language as well.
Each indirect-threaded subroutine must include a pointer
to the call routine, thus making the resulting

intermediate-language code unsuitable for distribution in
read-only memory.

However, it is possible to build a token-thread inter­
preter that has a completely position-independent
intermediate-language representation . Listing 8 shows
one implementation that achieves these goals. Notice the
increased complexity and overhead when compared to
our original direct-threaded code interpreter.

This token-thread interpreter produces intermediate­
language code that is more compact than that produced
by previously mentioned interpreters. The advantage of a
compact representation need not affect execution speed
severely; remember that the overall efficiency of any in­
terpretation scheme (including· the hardware interpreta­
tion of op codes) depends more upon the work actually
accomplished than the time spent in the interpretation
process· itself.

·

This particular implementation is essentially a token­
indirect token-thread interpreter. Two levels of token
lookup are involved so that neither machine-language
nor absolute addresses need be included as part of the
intermediate-language subroutine. Of course, perhaps

$ G O L D D I S K $
CP/M® Compatible Z-80 Disassembler

• R EC R EATES Z-80 ASSEM B LY LAN G UAG E SOU RCE FI LES FROM
ABSOLUTE CODE (.COM F I LES) FO R ALTERAT I O N . $

_ FEAT U R ES M N EM O N I C LAB E LS F O R EASY P ROGRAM TRAC I NG . 6200 - I NCLU D ES CO M P LETE D OC U M ENTAT I O N A N D FREE UTILITY
FOR SPEC I FY I N G A N D D ECO D I NG ASC I I SECT I O N S OF CODE. . .

• OPERATES U N DER M I N I M U M CP/M' CO N FI G U RATI ON (1 6 K RAM). POSTPA I D
• DOC U MENTAT I O N O N LY: $ 1 2 (MAY B E A PPLI E D T O DISK O R DER).

ONE DAY SERVI C E FOR CR EDIT BOWER-STEWART & ASSOCIATES "WORTH I TS W EI G HT IN GOLD"

CAR D CUSTO M E RS: O R D E R DISK �� P.O. BOX 1 389 .] BY P H O N E FREE! (WE W I LL PAY � HAWT H OR N E, CA. 902 50 S PECIFY D R I VE A N D SYST E M

YO U B A C K FOR T H E P H O N E CALL) (213) 676-5055 AVA I LA B LE ON 5 1A " O R 8" I B M SS/SD D I S K

CALIF. R ES I D E NTS A D D 6 '/. SALES TAX. 'CP/M IS A T RADEMARK OF D I G ITAL R ESEARCH

224 September 1980 © BYTE Publications Inc Circle 1 40 on inquiry card.

other, more advantageous forms of token-threaded code
interpreters are possible. However, we have shown that
there is no longer a question whether position­
independent threaded code is possible; now the question
is : "at what cost?"

The Cost of Implementation
The claims made for threaded-code techniques in an

intermediate-language implementation include reduced
program storage · and high speed of execution. Unfor­
tunately, these claims are justified only in certain limited
contexts . The original implementations of threaded code,
which occurred on the Digital Equipment Corpora­
tion PDP-11, made use of the instruction JMP @ (Rn) + ;
this instruction jumps through a memory pointer while
retaining the location of next in a register. This is
equivalent to the MC6809 instruction JMP L r + +] .

The instruction JMP @ (Rn) + does not save a return
address on a memory stack and thus is faster than a JSR
instruction. In the environment of a single intermediate­
language program that calls only machine-language sub­
routines, stacking and unstacking of the return address
need not occur. Of course, when intermediate-language
programs call intermediate-language subroutines, such
stacking must occur in a process that will take longer
than a normal JSR. Thus, for maximum speed, the
threaded-code intermediate-language program should
not call intermediate-language subroutines.

On the other hand, the instruction JMP @ (Rn) + does
eliminate the in-line 16-bit JSR op code for a 50 % code
reduction (on the PDP-11) . But the 50 % code reduction

- .-r· :t,� • ;t, .. . <. '
. · ' ··· ·. �: �

"""' -.;., -\::-JI·1lL :.;,
. ..;B .I::.· . -! ' .tJ-,..�. ·.

,- .�
PRESENTS: �

Computers
� Gamblln1

Ma1aalne·
P R O BAB I LITY
HAN D I CAP P I N G
D EV I C E I

A 1 6 K BASIC PROGRAM FOR:

H O R S E R AC E H AN D I CAP P I N G !
This amazing program was written by a professional software consultant to TAW Space

Systems and is being introducod by the publishers of Computers and Gambling Prowcts
Magazine. "PHI}. 1 " is a large complex basic program requiring a full 1 6 K. � is carefully human
factored for easy use. PHD-1 is a comprehensive horse racing system for spotting overlays in
thoroughbred sprint races (less than 1 mile). You simply s� down w�h your computer end the
Racing Furm the night before the raco and answer 5 or 6 questions about each horse's past
performance. Your computer then accurately predicts the win probability and odds�ine for each
horse allowing you to spot. overlaid horses while et the track. The users manual contains a
complete explanation of overlay betting.

Statistics for thousands of horses were used to davelop this handicapping system. The
appendix of the manual contains a detailed tab run of a 100 consecutive race system workout
showing an amazing 45% positive return (45C for each S 1 .00 wagered). A graph is
also included showing PHD- 1 's close fit to the 1deal predicted probabil� vs. actual win
percentage curve.

This program features: D Win probability end odds for each horse D Verification
display of each horse's �rameters prior to en!Ty for easy error correction D Bubble� or!
routine for final display U Fecil�y for line printer output D Cassette ARCHIVE routine to
store PHD- 1 's output for later analysis D Complete users manual.

The user's manual may be ordered separately for your perusal for $7.95 and will be cred�ed
if you purchase PHD-1 .

Order now to get on our list and receive back issues FREEl

PH D-1 User's Manual and 1 6 K Cassette for: Apple I I
Applesoft Challenger (Specify Type), TRS-BOt Lave I l l $29.95

Ca. res. edd 6%
Make checks pa yable to: J O E CO M P UTER

2 27 1 3 Ventura Blvd., Suite F, Woodland Hills, CA 9 1 364
• BE A WINNER: Get on the Computers and Gambling Prowcts M111Jazine mailing list fnr $3.00
and receiw available back issues.
t TRS-80 is a registered trademark of Tandy Corpora tion.

226 September 1980 © BYTE Publications Inc Circle 1 43 on inquiry card.

achieved on the PDP-11 (which uses a 16-bit JSR op code)
is only a 33 % code reduction on most microcomputers,
which have 8-bit JSR op codes . (The LBSR instruction
can be used in the case of the MC6809 .) And if the
motivation for threaded code is reduction of the
intermediate-language code size, token-threaded code
implementations can improve the storage efficiency by
another 50 % .

The two traditional forms of threaded code (direct and
indirect) are optimized for the environment of a par­
ticular computer architecture that is represented by the
PDP-11 (and also reflected in the MC6809) . Consequent­
ly, many microcomputer threaded-code implementations
have provided neither maximum code efficiency nor
maximum speed and have devoured virtually all of the
machine-level microprocessor resources . Comparisons of
the four types of threaded code demonstrate that it is
unlikely that the speed and code-efficiency maxima will
ever coincide.

The main factor affecting code compaction is the use of
subroutines instead of in-line code; but the use of
subroutines inherently increases interpretation overhead.
Since all methods of threaded-code implementation allow
the use of subroutines, effects due to the use of
subroutines can be disregarded and the efficiency of the
implementation methods can be compared directly .
Table 1 shows this comparison with values from the
machine-language routines developed earlier (based on
six next operations for each call and return operation) .

Conclusions
Languages that have been historically associated with

threaded code will probably continue to use these tech­
niques when implemented on microcomputers. New
implementations should take advantage of the inter­
pretive nature of threaded code to provide extensive
debugging facilities. However, there is no excuse for the
threaded-code implementor to prohibit the use of pre­
viously coded machine-language modules by eliminating
parameter passage through microprocessor registers.
Either the interpreter can be designed to keep these
registers free, or special routines· must be written by the
implementor to save and restore these registers when
using library routines stored in read-only memory.

Similarly, the motivation for distributing software in
an open market (to many different users with many dif­
ferent systems) leads directly to the requirement for posi­
tion independence . While the MC6809 directly supports
position-independent code at the machine-language level,
it is also possible to devise threaded-code intermediate
languages that are position independent. But any inter­
mediate language or interpreter that requires particular
absolute storage locations is so obnoxious as to be un­
worthy of discussion in polite programming society.
Absolute-address storage requirements are simply unac­
ceptable in code written for mass distribution.

Within these constraints, the various forms of threaded
code offer different trade-offs of speed and code effi­
ciency. Because these forms are logically equivalent, a
single compiler could be used tb generate any of them at
the user's choice. Thus, without changing the source pro­
gram, a threaded-code technique could be selected that
would give the desired trade-off between speed and code
efficiency for a particular situation.

In the end, threaded-code implementation techniques

are neither particularly compact nor are they particularly
fast . Continued development of direct-threaded code
structures could result in a language representation that
would look more like Pascal p-code than threaded code.
Threaded code does offer a conceptually simple and
general control-transfer technique that displays a clear
boundary between interpretation and language .
However, threaded code is probably not an optimal
representation for any particular language, including
FORTH . •

Bibl iography
1) Bartholdi, P, Stepwise Development and Debuging (sic) Using a
Small Well Structured Interactive Language for Data Acquisition and
Instrument Control. Copy received from the author. (Author's ad­
dress: Observatoire De Geneve, CH-1 290-Sauverny, Switzerland.)
2) Bel l , James R, "Threaded Code," Communications of the ACM,
volume 1 6, number 6, June 1 973, pages 370 thru 372.
3) Dewar, Robert K , " I ndirect Threaded Code," Communications of
the ACM, volume 1 8 , number 6 , June 1 975, pages 330 thru 331 .
4) Dewar, Robert K and A P McCann, " MACRO SPITBOL-A
SNOBOL4 Compi ler," Software Practice and Experience, volume 7 ,
number 1 , 1 977, pages 95 thru 1 1 3.
5) fig-FORTH Installation Manual, FORTH I nterest Group, San Carlos
CA, May 1 979.
6) FORTH Dimensions, volume 1 , numbers 1 to 4, FORTH Interest
Group, San Carlos CA.
7) Gaebler, Robert F , " Make it Natura l , " Electronics, volume 52,
number 1 4, Ju ly 5 , 1 979, page 6.
8) Grappel, Robert D, "STRUBAL vs FORTH," Dr Dobb's Journal,
volume 3, number 8, September 1 978, page 28.

'

9) Brinch Hansen, Per and C Heyden, " M icrocomputer Comparison,"
Software Practice and Experience, volume 9, number 3, 1 979, pages
2 1 1 thru 2 1 7 .
1 0) James, John S , " FORTH Dump Programs, " D r Dobb's Journal,
volume 3, number 28, September 1 978, pages 26 thru 27.
1 1) James, John, " FORTH for M icrocomputers ," Dr Dobb's Journal,
volume 3, number 25, May 1 978, pages 26 th ru 27.
1 2) Main, Richard B, " FORTH vs Assembly," Dr Dobb's Journal,
volume 4, number 3 1 , January 1 979, pages 45 thru 47.
1 3) Meinzer, Karl, " I PS, An U northodox H igh Level Language,"
January 1 979 BYTE, volume 4, number 1 , pages 1 46 thru 1 59.
1 4) MicroFORTH Primer. FORTH Inc, Hermosa Beach CA, December
1 976.
1 5) Moore, Charles H, " FORTH : A New Way to Program a Mini ­
Computer ," Astronomical Astrophysics Supplement, volume 1 5 ,
1 974, pages 497 thru 5 1 1 .
1 6) Moore, Charles H , and El izabeth D Rather, "The Use of FORTH in
Process Contro l ," Proceedings of the International Mini-Micro Com­
puter Conference, Geneva, March 26, 1977.
1 7) Oliver, John P, "Astronomy Application for PET FORTH ," Dr
Dobb 's Journal, volume 3, number 30, November and December
1 978, page 46.
1 8) Phi l l ips, J B, M F Bu rke, and G S Wilson, "Th readed Code for
Laboratory Compute rs," Software-Practice and Experience,
volume 8, 1 978, pages 257 thru 263.
1 9) Rather, El izabeth D , and Charles H Moore, "The FORTH Ap­
proach to Operating Systems," ACM ' 76 Proceedings, October 1 976,
pages 233 thru 240.
20) Rawson, Edward B , " Let i t Be," Electronics, February 14 1 980,
volume 52, number 4, page 8.
2 1) Ritter, Terry F , and Joel Boney, "A Microprocessor for the
Revolution: The 6809-Part 1 : Design Phi losophy," January 1 979
BYTE, volume 4, number 1 , pages 14 thru 42; " Part 2: Instruction Set
Dead Ends, Old Trails and Apologies ," February 1 979 BYTE, volume
4, number 2, pages 32 th ru 42; " Part 3 : Final Thoughts," March 1 979
BYTE, volume 4, number 3, pages 46 thru 52.
22) Roichel, Ancelme, "SAM76-FORTH-STRU BAL," Dr Dobb's Jour­
nal, volume 3, number 30, November and December 1 978, pages 44
thru 45.
23) Sachs, John , STOIC (Stack Oriented Interactive Compiler), M IT
and Harvard Biomedical Engineering Center, Cambridge MA, 1 977.
24) Sirag, David J, " DTC Versus lTC for FORTH on the PDP-1 1 ,"
FORTH Dimensions, volume 1 , number 3 , June and July 1 978, pages
25 thru 29.

The 2nd
Generation . . .

It's all that it's
Cracked up to be.

MEASU REMENT systems &.. controls
i n corporated

CP/M® USERSf
The ED-80 TEXT EDITOR

• $50,000 i n Deve lopment Costs -
You rs for O n ly $99 !

• For a l l C P/ M , C romemco, TRS- 80
M od I I , a n d N orth Sta r Systems.

• Fu l l Screen Text Ed itor w/Scro l l i ng.

• For a l l CRT a nd V ideo M o n itors.

• Featu res Fou nd o n ly on I B M , CDC,
U N I VAC a nd DEC Systems.

• Forward or Backward Locate a n d
Cha nge Com ma nds.

• F ie ld P roven - M ore tha n 2 Yea rs.

A Terrific $9900 Write for FREE
Value - Color Brochure

Software Development & Tra ining, I nc.
Post Office Box 45 1 1 , Dept. B

H u n tsvi l le , Ala ba m a 3 5802

Circle 1 44 on inquiry card.

V ISA or MC

September 1980 © BYTE Publications Inc 227

	2012_02_13_09_27_36
	2012_02_13_09_27_37
	2012_02_13_09_27_39
	2012_02_13_09_27_40
	2012_02_13_09_27_41
	2012_02_13_09_27_42
	2012_02_13_09_27_44
	2012_02_13_09_27_45
	2012_02_13_09_27_47
	2012_02_13_09_27_47_000
	2012_02_13_09_27_49
	2012_02_13_09_27_50
	2012_02_13_09_27_52
	2012_02_13_09_27_53
	2012_02_13_09_27_54
	2012_02_13_09_27_55
	2012_02_13_09_27_57
	2012_02_13_09_27_58
	2012_02_13_09_28_00
	2012_02_13_09_28_00_000
	2012_02_13_09_28_02
	2012_02_13_09_28_03
	2012_02_13_09_28_05
	2012_02_13_09_28_06
	2012_02_13_09_28_07
	2012_02_13_09_28_08
	2012_02_13_09_28_10
	2012_02_13_09_28_11
	2012_02_13_09_28_13
	2012_02_13_09_28_14
	2012_02_13_09_28_15
	2012_02_13_09_28_16
	2012_02_13_09_28_18
	2012_02_13_09_28_19
	2012_02_13_09_28_21
	2012_02_13_09_28_21_000
	2012_02_13_09_28_23
	2012_02_13_09_28_24
	2012_02_13_09_28_26
	2012_02_13_09_28_27
	2012_02_13_09_28_28
	2012_02_13_09_28_29
	2012_02_13_09_28_31
	2012_02_13_09_28_32
	2012_02_13_09_28_34
	2012_02_13_09_28_35
	2012_02_13_09_28_36
	2012_02_13_09_28_37
	2012_02_13_09_28_39
	2012_02_13_09_28_40
	2012_02_13_09_28_41
	2012_02_13_09_28_42
	2012_02_13_09_28_44
	2012_02_13_09_28_45
	2012_02_13_09_28_47
	2012_02_13_09_28_48
	2012_02_13_09_28_49
	2012_02_13_09_28_50
	2012_02_13_09_28_52
	2012_02_13_09_28_53
	2012_02_13_09_28_54
	2012_02_13_09_28_55
	2012_02_13_09_28_57
	2012_02_13_09_28_58
	2012_02_13_09_29_00
	2012_02_13_09_29_01
	2012_02_13_09_29_02
	2012_02_13_09_29_03
	2012_02_13_09_29_05
	2012_02_13_09_29_06
	2012_02_13_09_29_08
	2012_02_13_09_29_09
	2012_02_13_09_29_10
	2012_02_13_09_29_11
	2012_02_13_09_29_13
	2012_02_13_09_29_14
	2012_02_13_09_29_15
	2012_02_13_09_29_16
	2012_02_13_09_29_18
	2012_02_13_09_29_19
	2012_02_13_09_29_21
	2012_02_13_09_29_22
	2012_02_13_09_29_24
	2012_02_13_09_29_25
	2012_02_13_09_29_26
	2012_02_13_09_29_27
	2012_02_13_09_29_29
	2012_02_13_09_29_30
	2012_02_13_09_29_31
	2012_02_13_09_29_32
	2012_02_13_09_29_34
	2012_02_13_09_29_35
	2012_02_13_09_29_37
	2012_02_13_09_29_38
	2012_02_13_09_29_39
	2012_02_13_09_29_40
	2012_02_13_09_29_42
	2012_02_13_09_29_43
	2012_02_13_09_29_45
	2012_02_13_09_29_46
	2012_02_13_09_29_47
	2012_02_13_09_29_48
	2012_02_13_09_29_50
	2012_02_13_09_29_51
	2012_02_13_09_29_53
	2012_02_13_09_29_53_000
	2012_02_13_09_29_55
	2012_02_13_09_29_56
	2012_02_13_09_29_58
	2012_02_13_09_29_59
	2012_02_13_09_30_00
	2012_02_13_09_30_01
	2012_02_13_09_30_03
	2012_02_13_09_30_04
	2012_02_13_09_30_06
	2012_02_13_09_30_07
	2012_02_13_09_30_08
	2012_02_13_09_30_09
	2012_02_13_09_30_11
	2012_02_13_09_30_12
	2012_02_13_09_30_14
	2012_02_13_09_30_14_000
	2012_02_13_09_30_16
	2012_02_13_09_30_17
	2012_02_13_09_30_19
	2012_02_13_09_30_20
	2012_02_13_09_30_22
	2012_02_13_09_30_23
	2012_02_13_09_30_24
	2012_02_13_09_30_25
	2012_02_13_09_30_27
	2012_02_13_09_30_28
	2012_02_13_09_30_30
	2012_02_13_09_30_31
	2012_02_13_09_30_32
	2012_02_13_09_30_33
	2012_02_13_09_30_35
	2012_02_13_09_30_36
	2012_02_13_09_30_38
	2012_02_13_09_30_38_000
	2012_02_13_09_30_40
	2012_02_13_09_30_41
	2012_02_13_09_30_43
	2012_02_13_09_30_44
	2012_02_13_09_30_45
	2012_02_13_09_30_46
	2012_02_13_09_30_48
	2012_02_13_09_30_49
	2012_02_13_09_30_51
	2012_02_13_09_30_51_000
	2012_02_13_09_30_53
	2012_02_13_09_30_54
	2012_02_13_09_30_56
	2012_02_13_09_30_57
	2012_02_13_09_30_58
	2012_02_13_09_30_59
	2012_02_13_09_31_01
	2012_02_13_09_31_02
	2012_02_13_09_31_04
	2012_02_13_09_31_05
	2012_02_13_09_31_06
	2012_02_13_09_31_07
	2012_02_13_09_31_09
	2012_02_13_09_31_10
	2012_02_13_09_31_11
	2012_02_13_09_31_12
	2012_02_13_09_31_14
	2012_02_13_09_31_15
	2012_02_13_09_31_17
	2012_02_13_09_31_18
	2012_02_13_09_31_20
	2012_02_13_09_31_21
	2012_02_13_09_31_22
	2012_02_13_09_31_23
	2012_02_13_09_31_25
	2012_02_13_09_31_26
	2012_02_13_09_31_28
	2012_02_13_09_31_29
	2012_02_13_09_31_30
	2012_02_13_09_31_31
	2012_02_13_09_31_33
	2012_02_13_09_31_34
	2012_02_13_09_31_35
	2012_02_13_09_31_36
	2012_02_13_09_31_38
	2012_02_13_09_31_39
	2012_02_13_09_31_41
	2012_02_13_09_31_42
	2012_02_13_09_31_43
	2012_02_13_09_31_44
	2012_02_13_09_31_46
	2012_02_13_09_31_47
	2012_02_13_09_31_49
	2012_02_13_09_31_49_000
	2012_02_13_09_31_51
	2012_02_13_09_31_52
	2012_02_13_09_31_54
	2012_02_13_09_31_55
	2012_02_13_09_31_56
	2012_02_13_09_31_57
	2012_02_13_09_31_59
	2012_02_13_09_32_00
	2012_02_13_09_32_02
	2012_02_13_09_32_02_000
	2012_02_13_09_32_04
	2012_02_13_09_32_05
	2012_02_13_09_32_07
	2012_02_13_09_32_08
	2012_02_13_09_32_09
	2012_02_13_09_32_10
	2012_02_13_09_32_12
	2012_02_13_09_32_13
	2012_02_13_09_32_15
	2012_02_13_09_32_15_000
	2012_02_13_09_32_17
	2012_02_13_09_32_18
	2012_02_13_09_32_20
	2012_02_13_09_32_21
	2012_02_13_09_32_23
	2012_02_13_09_32_24
	2012_02_13_09_32_25
	2012_02_13_09_32_26
	2012_02_13_09_32_28
	2012_02_13_09_32_29
	2012_02_13_09_32_31
	2012_02_13_09_32_32
	2012_02_13_09_32_33
	2012_02_13_09_32_34
	2012_02_13_09_32_36
	2012_02_13_09_32_37
	2012_02_13_09_32_38
	2012_02_13_09_32_39
	2012_02_13_09_32_41
	2012_02_13_09_32_42
	2012_02_13_09_32_44
	2012_02_13_09_32_45
	2012_02_13_09_32_46
	2012_02_13_09_32_47
	2012_02_13_09_32_49
	2012_02_13_09_32_50
	2012_02_13_09_32_51
	2012_02_13_09_32_52
	2012_02_13_09_32_54
	2012_02_13_09_32_55
	2012_02_13_09_32_57
	2012_02_13_09_32_58
	2012_02_13_09_32_59
	2012_02_13_09_33_00
	2012_02_13_09_33_02
	2012_02_13_09_33_03
	2012_02_13_09_33_05
	2012_02_13_09_33_05_000
	2012_02_13_09_33_07
	2012_02_13_09_33_08
	2012_02_13_09_33_10
	2012_02_13_09_33_11
	2012_02_13_09_33_12
	2012_02_13_09_33_13
	2012_02_13_09_33_15
	2012_02_13_09_33_16
	2012_02_13_09_33_18
	2012_02_13_09_33_19
	2012_02_13_09_33_21
	2012_02_13_09_33_22
	2012_02_13_09_33_23
	2012_02_13_09_33_24
	2012_02_13_09_33_26
	2012_02_13_09_33_27
	2012_02_13_09_33_29
	2012_02_13_09_33_29_000
	2012_02_13_09_33_31
	2012_02_13_09_33_32
	2012_02_13_09_33_34
	2012_02_13_09_33_35
	2012_02_13_09_33_36
	2012_02_13_09_33_37
	2012_02_13_09_33_39
	2012_02_13_09_33_40
	2012_02_13_09_33_42
	2012_02_13_09_33_43
	2012_02_13_09_33_44
	2012_02_13_09_33_45
	2012_02_13_09_33_47
	2012_02_13_09_33_48
	2012_02_13_09_33_50
	2012_02_13_09_33_50_000
	2012_02_13_09_33_52
	2012_02_13_09_33_53
	2012_02_13_09_33_55
	2012_02_13_09_33_56
	2012_02_13_09_33_57
	2012_02_13_09_33_58
	2012_02_13_09_34_00
	2012_02_13_09_34_01
	2012_02_13_09_34_03
	2012_02_13_09_34_04
	2012_02_13_09_34_05
	2012_02_13_09_34_06
	2012_02_13_09_34_08
	2012_02_13_09_34_09
	2012_02_13_09_34_11
	2012_02_13_09_34_11_000
	2012_02_13_09_34_13
	2012_02_13_09_34_14
	2012_02_13_09_34_16
	2012_02_13_09_34_17
	2012_02_13_09_34_18
	2012_02_13_09_34_19
	2012_02_13_09_34_21
	2012_02_13_09_34_22
	2012_02_13_09_34_24
	2012_02_13_09_34_25
	2012_02_13_09_34_27
	2012_02_13_09_34_28
	2012_02_13_09_34_29
	2012_02_13_09_34_30
	2012_02_13_09_34_32
	2012_02_13_09_34_33
	2012_02_13_09_34_34
	2012_02_13_09_34_35
	2012_02_13_09_34_37
	2012_02_13_09_34_38
	2012_02_13_09_34_40
	2012_02_13_09_34_41
	2012_02_13_09_34_42
	2012_02_13_09_34_43
	2012_02_13_09_34_45
	2012_02_13_09_34_46
	2012_02_13_09_34_47
	2012_02_13_09_34_48
	2012_02_13_09_34_50
	2012_02_13_09_34_51
	2012_02_13_09_34_53
	2012_02_13_09_34_54
	2012_02_13_09_34_55
	2012_02_13_09_34_56
	2012_02_13_09_34_58
	2012_02_13_09_34_59
	2012_02_13_09_35_00
	2012_02_13_09_35_01
	2012_02_13_09_35_03
	2012_02_13_09_35_04
	2012_02_13_09_35_06
	2012_02_13_09_35_07
	2012_02_13_09_35_08
	2012_02_13_09_35_09
	2012_02_13_09_35_11
	2012_02_13_09_35_12
	2012_02_13_09_35_14
	2012_02_13_09_35_15
	2012_02_13_09_35_16
	2012_02_13_09_35_17
	2012_02_13_09_35_19
	2012_02_13_09_35_20
	2012_02_13_09_35_21
	2012_02_13_09_35_22
	2012_02_13_09_35_24
	2012_02_13_09_35_25
	2012_02_13_09_35_27
	2012_02_13_09_35_28
	2012_02_13_09_35_30
	2012_02_13_09_35_31
	2012_02_13_09_35_32
	2012_02_13_09_35_33
	2012_02_13_09_35_35
	2012_02_13_09_35_36
	2012_02_13_09_35_38
	2012_02_13_09_35_38_000
	2012_02_13_09_35_40
	2012_02_13_09_35_41
	2012_02_13_09_35_43
	2012_02_13_09_35_44
	2012_02_13_09_35_45
	2012_02_13_09_35_46
	2012_02_13_09_35_48
	2012_02_13_09_35_49
	2012_02_13_09_35_51
	2012_02_13_09_35_52
	2012_02_13_09_35_53
	2012_02_13_09_35_54
	2012_02_13_09_35_56
	2012_02_13_09_35_57
	2012_02_13_09_35_58
	2012_02_13_09_35_59
	2012_02_13_09_36_01
	2012_02_13_09_36_02
	2012_02_13_09_36_04
	2012_02_13_09_36_05
	2012_02_13_09_36_06
	2012_02_13_09_36_07
	2012_02_13_09_36_09
	2012_02_13_09_36_10
	2012_02_13_09_36_11
	2012_02_13_09_36_12
	2012_02_13_09_36_14
	2012_02_13_09_36_15
	2012_02_13_09_36_17
	2012_02_13_09_36_18
	2012_02_13_09_36_19
	2012_02_13_09_36_20
	2012_02_13_09_36_22
	2012_02_13_09_36_23
	2012_02_13_09_36_25
	2012_02_13_09_36_26

