
Session #2026: J2ME Platform, Connected Limited Device Configuration (CLDC)

Virtual Machine Design
Lecture 1: Overview and History

Antero Taivalsaari
August 2003

Admin
Note
http://www.cs.tut.fi/~taivalsa/kurssit/VMDesign2003/VMDesign1.pdf

2

Welcome!

• Welcome to the Virtual Machine Design
Seminar.

• TUT seminar 8109035.

===============================

• First time a VM design course has been
organized in Finland.

• Glad to see that there is so much interest
in this topic!

3

Goals

● Introduce you to the world
of virtual machine (VM) design.

● Explain the key technologies that are
needed for building virtual machines,
such as automatic memory management,
interpretation, multithreading, and
dynamic compilation.

4

Structure of the Seminar

• The seminar consists of two parts:
– Lectures (6 or 7 lectures in total)
– Student presentations

• Lectures will be held in room TB223 on
Wednesdays, 10:15 – 11:45 am.
– Lecture attendance is not required but recommended.

• To get the credits (2 ov), you must prepare and
give a presentation on a selected topic related
to virtual machine design.
– Presentations will begin in November.
– A list of suggested topics will be available later.

5

Lecture Schedule (Preliminary)

• Sep 10: History and overview of VM design

• Sep 17: Memory management

• Sep 24: Interpretation and execution

• Oct 1: Multithreading, synchronization and I/O

• Oct 8: Internals of the Java virtual machine

 (Oct 15: No lecture)

 (Oct 22: No lecture)

• Oct 29: High performance VMs (guest lecture)

• Nov 5: Student presentations begin

6

About the Lecturer

• Built virtual machines since the mid-1980s.
– Main interests in the 1980s/early 1990s:

Forth, Smalltalk, Self, other “dynamic” OO languages.

• In 1997, moved to California to work on Java
virtual machines at Sun Microsystems.
– Wrote the K Virtual Machine (KVM) at Sun Labs in 1998.
– KVM became the starting point for Java 2 Micro Edition

(J2ME), a popular version of the Java platform for mobile
devices.

• Engineering manager of the J2ME/KVM virtual
machine team at Java Software, 1999-2001.
– Led early J2ME standards activities (CLDC 1.0/1.1)
– Co-author of the first Java Series book on J2ME.

7

Introduction

8

What is a Virtual Machine?

• A virtual machine (VM) is an “abstract”
computing architecture or computational
engine that is independent of any particular
hardware or operating system.

• “ Software machine” that runs on top of a real
hardware platform and operating system.

• Allows the same programs to run “virtually”
on any hardware for which a VM is available.

9

Characteristics of a Virtual Machine

• A virtual machine typically introduces its own
instruction set that is used for executing
programs.
– This instruction set is independent of the architecture

of the host operating system.

• A virtual machine usually also has its own
memory system.
– Access to the memory system of the host operating

system is minimized.

• In general, access to the host operating system
is often limited and controlled by the virtual
machine's native function interface.

10

Typical High-Level Architecture

Hardware

Operating System

Virtual Machine

Application

11

Example: Components of a Java
Virtual Machine (JVM)

Memory System and Garbage Collector

Native
Interface

Internal Runtime
Structures

Threading System and Thread Scheduler

Interpreter and Execution Stacks

Class Loader and JAR Reader

Compiler
(optional)

Verifier

12

Some Background

• Virtual machines have been studied and built
since the late 1950s.

• Many early programming languages were built
around the idea of having a portable runtime
system.

• Yet VM design was always a fairly specialized
topic; not many books or articles were written
until recently.

• Popularity of the area exploded in the
mid-1990s when the Java programming
language was introduced.

13

Languages that Use
Virtual Machines

• Well-known languages using a virtual machine:
– Lisp systems, 1958/1960-1980s
– Basic, 1964-1980s
– Forth, early 1970s
– Pascal (P-Code versions), late 1970s/early 1980s
– Smalltalk, 1970s-1980s
– Self, late 1980/early 1990s
– Java, mid-1990s

• Numerous other languages:
– ... PostScript, TCL/TK, Perl, Python, C#, ...

14

Why are Virtual Machines
Interesting?

• Provide platform independence.

• Isolate programs from hardware details.

• Simplify application code migration.

• Can support dynamic downloading of software.

• Can provide additional security that machine-
specific implementations cannot provide.

• Can hide complexity of legacy systems.

• Many programming languages are built around
a virtual machine.

15

Virtual Machines vs. Operating
Systems
• There is a lot of similarity between VM and OS

design.
– The key component areas are pretty much the same

(memory management, multithreading, I/O, ...)

• A few key differences:
– Virtual machines are usually designed to be as

independent of the host operating system as possible.
– Operating systems are “extensions of the underlying

hardware”. They are built to facilitate access to the
underlying computing architecture and maximize the
utilization of the hardware resources.

– Also, virtual machines are commonly tied to a particular
programming language or language family.

– Operating systems are usually language-independent.

16

Existing Material on VM Design

• There is a lot of material available on virtual
machines.

• However, the material is scattered/fragmented
and it is difficult to find any comprehensive
presentations.

• A few books on the topic:
– Bill Blunden, Virtual Machine Design and Implementation

in C/C++, Wordware Publishing, March 2002.
– Ronald Mak, Writing Compilers and Interpreters, John

Wiley & Sons, July 1996.

• Unfortunately, these books don't cover the area
very well.

17

A Brief History of
Programming Languages that

Utilize a Virtual Machine

18

LISP

• John McCarthy, 1958
– http://www-formal.stanford.edu/jmc/history/lisp/lisp.html
– LISP is the second oldest programming language still

in widespread use (after Fortran)

• LISP is characterized by the following ideas:
– Computing with symbolic expressions rather than

numbers,
– representation of symbolic expressions and other

information by list structure,
– composition of functions as a tool for forming more

complex functions out of a few primitive operations,
– the representation of LISP programs as LISP data, and

the function eval that serves both as a formal definition
of the language and as an interpreter.

19

Sample Lisp Code

 (define (primes)

 (letrec ((sieve (lambda (s)

 (cons (car s)

 (delay (sieve (filter

 (lambda (n)

 (> (remainder n (car s)) 0))

 (force (cdr s)))))))))

 (sieve (force (cdr nat)))))

20

Why is Lisp Interesting from VM
Designer's Viewpoint?

• The first language to widely use garbage collection as a
means of automating memory management.

• The first language to use recursion extensively.

• One of the first truly interactive languages that didn't require
a “compile-link-execute-crash-debug” cycle.

• Lisp was one of the first systems where programs run in a
“sandbox”; access to the operating system is limited and
programs cannot really crash the system.

• The first truly “reflective” programming language as well;
LISP has a very small language core; the rest of the system
can be written in itself; programs can be manipulated as
data.

21

UCSD Pascal

• The Pascal language was developed by
Nicklaus Wirth in 1969.

• A fairly “conventional” programming language.
– Predecessor to a large family of other languages

(Modula..., Oberon...)

• Pascal did not become popular until Ken
Bowles of the University of California San
Diego (UCSD) implemented the P-Code
system in the late 1970s.
– A portable pseudocode system/language runtime.
– http://www.threedee.com/jcm/psystem/
– The P-Code system made the implementation extremely

portable, increasing the popularity of Pascal rapidly.

22

Sample Pascal Code
 PROGRAM Fibonacci(input,output);

 VAR

 lo : INTEGER; hi : INTEGER; n : INTEGER;

 golden_ratio : DOUBLE; ratio : DOUBLE;

 BEGIN

 golden_ratio := (1.0 + sqrt(5.0))/2.0;

 lo := 1; hi := 1; n := 1;

 WHILE hi > 0 DO

 BEGIN

 n := n + 1; ratio := hi / lo;

 WRITELN(n : 2, ' ', hi, ratio : 25, ' ', (ratio - golden_ratio) : 21 : 18);

 hi := lo + hi; lo := hi - lo

 END

 END

23

Why is UCSD Pascal Interesting
from VM Designer's Viewpoint?

• The P-Code system popularized the idea of
using pseudocode to improve portability of
programming language runtime systems.

• Uses a stack-oriented instruction set and five
virtual registers.
– Only one stack (no separate operand & call stacks)

• The first virtual machine implementation widely
available to hobbyists.
– Especially the Apple II implementation was very popular.
– http://homepages.cwi.nl/~steven/pascal/book/10pcode.html
– http://www.wikipedia.org/wiki/P-Code_machine

24

P-Code Sample Instructions

 Inst. Stack Stack Description
before after

 ADI i1 i2 i1+i2 add two integers

 ADR r1 r2 r1+r2 add two reals

 DVI i1 i2 i1/i2 integer division

 INN i1 s1 b1 set membership; b1 = whether i1 is a member of s1

 LDCI i1 i1 load integer constant

 MOV a1 a2 move

 NOT b1 ~b1 boolean negation

25

BASIC
• Beginners All-purpose Symbolic Instruction

Code.

• Developed by John Kemeny and Thomas Kurtz
at Dartmouth College (USA) in mid-1960s.
– http://www.kbasic.org/1/history.php3

• Interactive nature made it suitable for mini-
and microcomputers (good timing!)

• Paul Allen and Bill Gates wrote the first
interpreted implementation in 1975; this
improved the portability of the language
dramatically.

26

Sample BASIC Code

 100 INPUT “Type a number”; N

 120 IF N <= 0 GOTO 200

 130 PRINT “Square root=” SQR(N)

 140 GOTO 100

 200 PRINT “Number must be > 0”

 210 GOTO 100

27

Why is BASIC Interesting from VM
Designer's Viewpoint?
• It really isn't very interesting...

– The language has no specific contributions except ease
of learning and ease of use.

– Excessive use of GOTOs led to some horrible programs.

• However, the popularity of BASIC coincided
with the microcomputer boom.
– Many early microcomputer companies decided to

integrate BASIC in their products.
– You could either program in assembly language or

BASIC...

• Some BASIC systems used pretty interesting
intermediate code representation techniques.

28

Forth

• Invented by Charles Moore in the early 1970s.
– http://www.forth.com/Content/History/History1.htm

• Originally designed to control radiotelescopes.

• Characteristics:
– Forth is a “word-oriented” programming language; there

is no syntax or grammar in the traditional sense.
– All the primitive functions/words are also language

keywords; open stack used for parameter passing.
– Forth makes subroutine definition extremely cheap; this

provides for extensibility and high level of procedural
abstraction.

– Extreme minimalism: The entire Forth system (including
a simple multitasking programming environment) can fit
in 8-15 kilobytes.

29

Sample Forth Code
 : xReverse \ reverse the horizontal direction of the ball
 xStep @ +/- xStep ! ;
 : yReverse \ reverse the vertical direction of the ball
 yStep @ +/- yStep ! ;
 : checkLeft \ check for the left edge of the screen
 x @ 1 <= IF xReverse THEN ;
 : checkRight \ check for the right edge of the screen
 x @ xMax >= IF xReverse THEN ;

 ASCII o CONSTANT "ball"

 : showBall \ draw the ball on the screen
 "ball" xyPlot ;
 : hideBall \ hide (undraw) the ball
 "bl" xyPlot ;
 : tryBall \ test the ball drawing routines
 BEGIN
 showBall
 checkLeft checkRight checkTop checkBottom
 hideBall xyStep
 AGAIN ;

30

Why is Forth Interesting from the
VM Designer's Viewpoint?
• One of the easiest virtual machines to build.

• The VM consists of a small number of distinct
components (stacks, dictionary, interpreter,
virtual registers, primitives); no extra “fat”.

• The language itself is small, simple and
efficient, and provides an unusual combination
of high-level abstraction and very low level
programming capabilities.

• High level of reflection (significant portions of
the VM written in the language itself.)

• Ideal for embedded systems (if the awkward
syntax is not exposed to the end user...)

31

Smalltalk
• Developed by Alan Kay's team at Xerox PARC

– There are various versions (Smalltalk-72, -76, -80).
Smalltalk-80 is the best known.

– http://users.ipa.net/~dwighth/smalltalk/bluebook/bluebook_imp_toc.html

• Characteristics:
– The first truly interactive object-oriented programming

language (unlike Simula which was a compiler-based
system.)

– Took “everything is an object” and “message passing”
metaphors to the extreme.

– Everything is available for modification, even the VM
itself (very high level of reflection.)

– Even code is treated as objects (blocks).
– The language is very closely coupled with a graphical

interface; source code of a program cannot be easily
separated from the programming environment.

32

Sample Smalltalk Code

 | aString vowels |

 aString := 'This is a string'.

 vowels := aString select: [:aCharacter | aCharacter isVowel].

 ===============================

 | rectangles aPoint |

 rectangles := OrderedCollection

 with: (Rectangle left: 0 right: 10 top: 100 bottom: 200)

 with: (Rectangle left: 10 right: 10 top: 110 bottom: 210).

 aPoint := Point x: 20 y: 20.

 collisions := rectangles select: [:aRect | aRect containsPoint: aPoint].

33

Why is Smalltalk Interesting From
the VM Designer's Viewpoint?
• Various implementation challenges:

– Everything can be changed on the fly.
– No static type system.
– Even numbers are objects that are manipulated by

message passing (= arithmetic operations can be slow.)
– Blocks (heap-allocated code objects/stack frames) are

difficult to implement efficiently.

• Extremely interactive/reflective => fun.

• Well-designed and mature class libraries
=> easy to write interesting software.

• There are high-quality public domain Smalltalk
implementations available.
– http://www.squeak.org/

34

Self
• Invented by David Ungar and Randall Smith at

Xerox PARC and Stanford University in
1986-1987.
– The majority of the actual implementation work was done

at Sun Labs in the 1990s.
– http://www.sunlabs.com/self

• Prototype-based flavor/variant of Smalltalk.
– Took the “everything is an object” metaphor even further

than Smalltalk.
– No more classes; objects can inherit (“delegate”)

behavior directly from each other.
– Extremely dynamic language: even the control structures

or the inheritance relationships of objects can be
changed on the fly.

35

Sample Self Code

 acc: bankAccount copy.

 acc balance: 100.

 b: [acc deposit: 50].

 acc balance. "returns 100"

 b value.

 b value.

 acc balance. "returns 200"

36

Why is Self Interesting from VM
Designer's Viewpoint?

• The Self language is so extremely dynamic that
the implementors had to push the limits of VM
technology very aggressively:
– Adaptive compilation to speed up execution.
– Generational garbage collection (originally invented by

David Ungar in his Ph.D. work.)
– Dynamic deoptimization to allow debugging of highly

optimized programs.
– Novel collaborative / visual programming and debugging

environment (tightly integrated with the VM.)

• Many of the key technologies that are used
today in mainstream Java virtual machines
were invented by the Self group.

37

Java
• Developed by James Gosling's team at Sun

Microsystems in the early 1990s.
– http://java.sun.com/people/jag/green

• Originally designed for programming consumer
devices (as a replacement of C++).
– Uses a syntax that is familiar to C/C++ programmers.
– Uses a portable virtual machine that provides automatic

memory management and a simple stack-oriented
instruction set.

– Class file verification was added to enable downloading
and execution of remote code securely.

• Again, great timing: the development of the
Java technology coincided with the widespread
adoption of web browsers in the mid-1990s.

38

Sample Java Code
 class Peg {
 int pegNum;
 int disks[] = new int[64];
 int nDisks;

 public Peg(int n, int numDisks) {
 pegNum = n;
 for (int i = 0; i < numDisks; i++) {
 disks[i] = 0;
 }
 nDisks = 0;
 }

 public void addDisk(int diskNum) {
 disks[nDisks++] = diskNum;
 }

 public int removeDisk() {
 return disks[--nDisks];
 }
 }

39

Why is Java Interesting from VM
Designer's Viewpoint?
• Most people had never heard of virtual

machines until Java came along!

• Combines a statically compiled programming
language with a dynamic virtual machine.

• The Java virtual machine (JVM) is very well
documented.
– Tim Lindholm, Frank Yellin, The Java Virtual Machine

Specification, Second Edition, Addison Wesley, Java
Series, April 1999.

• A JVM is seemingly very easy to build.

• However, tight compatibility requirements make
the actual implementation very challenging.
– Must pass tens of thousands of test cases to prove

compatibility.

40

Designing Virtual Machines

41

How are Virtual Machines
Implemented?

• Virtual machines are typically written in
“portable” and “efficient” programming
languages such as C or C++.

• For performance-critical components,
assembly language is used.
– The more machine code is used, the less portability.

• Some virtual machines (Lisp, Forth, Smalltalk)
are largely written in the language itself.
– These systems have only a minimal core implemented

in C or assembly language.

• Most Java VM implementations consist of a
mixture of C/C++ and assembly code.

42

Typical High-Level Architecture

Hardware

Operating System

Virtual Machine

Application

43

Virtual Machine Design
Considerations

• Size

• Portability

• Performance

• Memory consumption

• Scalability

• Security

• ...

There are always trade-offs in VM design!

44

Virtual Machine Design
Considerations

• Unfortunately, for nearly all aspects of the VM:
• Simple implies slow
• Fast implies more complicated
• Fast implies less portable
• Fast implies larger memory consumption

– Examples:
• Interpretation
• Memory management
• Locking/Synchronization
• Dynamic compilation

45

Components of a Virtual Machine
• The components of a virtual machine vary

considerably depending on various factors:

– Is the language interactive (Smalltalk, Forth) or non-
interactive (Pascal, Java)?

– Does the language have reflection capabilities (can
you inspect or modify the VM or the program while it
is running)?

– Does the VM need to have performance that is
comparable to non-interpreted systems?

– Is multithreading support required?

– Is the VM required to run in a “sandbox”?

46

Example: Components of
a Java Virtual Machine (JVM)

Memory System and Garbage Collector

Native
Interface

Internal Runtime
Structures

Threading System and Thread Scheduler

Interpreter and Execution Stacks

Class Loader and JAR Reader

Compiler
(optional)

Verifier

47

Case Studies

48

Three Very Different Virtual Machines

• Ruka: A minimal, portable Forth virtual
machine.

• KVM: A Java virtual machine implementation
intended for small devices.

• Squeak: A feature-rich public domain Smalltalk
implementation.

49

Ruka: A Portable Forth VM

• Written in ANSI C.

• 5,000 lines of code.

• Minimal executable size about 17 KB.

• Like all Forth systems, allows interactive
definition and inspection of functions, and
provides unrestricted access to the underlying
operating system.

• Ported onto various small devices
(Palm OS, PocketPC, SymbianOS, ...).

50

KVM: A Java VM for Small Devices

• Written in ANSI C.

• Version 1.0.4: about 35,000 lines of
quite well-commented code.
– About 50,000 lines if debugging support, native functions

for the J2ME CLDC 1.0 libraries, and some network
protocol primitives are added.

• Fully compliant with the J2ME CLDC test suite.

• Minimal executable size about 70 KB.

• Ported onto numerous commercial mobile
phones all over the world.

 http://wwws.sun.com/software/communitysource/j2me/cldc/download.html

51

Squeak: A Public Smalltalk VM

• A complete, compact implementation of the
Smalltalk-80 Specification.

• Includes a very rich graphical programming
environment and class library.

• The core VM is about 35,000 lines of C code.

• A complete executable with all the graphics
libraries and plug-ins is about 1 MB.

• Various ports available.

http://sourceforge.net/projects/squeak/

52

More Information

• Virtual machine design:
– Bill Blunden, Virtual Machine Design and Implementation

in C/C++, Wordware Publishing, March 2002

• Designing “small memory” software:
– James Noble, Charles Weir, Small Memory Software,

Addison-Wesley, 2001

• Conferences and workshops:
– ACM SIGPLAN Workshop on Interpreters, Virtual

Machines and Emulators (co-organized with PLDI
Conference), June 2003.

– Usenix Java Virtual Machine Research and Technology
Symposium (2001, 2002, 2004)

53

Forthcoming Lectures

Memory System and Garbage Collector

Native
Interface

Internal Runtime
Structures

Threading System and Thread Scheduler

Interpreter and Execution Stacks

Class Loader and JAR Reader

Compiler
(optional)

Verifier

24.9.

17.9.

1.10.

8.10.

8.10.

29.10.

Session #2026: J2ME Platform, Connected Limited Device Configuration (CLDC)

Questions?

Session #2026: J2ME Platform, Connected Limited Device Configuration (CLDC)

antero.taivalsaari@sun.com

