
Programming 
Techniques 

R. Morris 
Editor 

Threaded Code 
James R. Bell 
Digital Equipment Corporation 

The concept of "threaded code" is presented as an 
alternative to machine language code. Hardware and 
software realizations of it are given. In software it is 
realized as interpretive code not needing an interpreter. 
Extensions and optimizations are mentioned. 

Key Words and Phrases: interpreter, machine code, 
time tradeoff, space tradeoff, compiled code, subroutine 
calls, threaded code 

CR Categories: 4.12, 4.13, 6.33 

1. Introduction 

One of the most fundamental tradeoffs in software 
engineering is that of space versus time. It is normally 
possible to write a faster and larger (or a smaller but 
slower) version of a given program. In this paper we 
describe a technique called threaded code of implement­
ing programs. Under suitable circumstances, it is shown 
to achieve a desirable balance between speed and small 
SlZe. 

The most common alternative techniques of pro­
gramming might be denoted "hard code" and "in­
terpretive code." Hard code (or machine code) is the 
most used method of programming. Each instruction 
of the program is chosen from the set wired into the 
host computer by its designers. Each such instruction 
executes rapidly since it is wired into the physical cir­
cuitry of the computer. On the other hand, the given in­
struction set is suboptimal for almost any specific 
problem because the user is forced to accept unneeded 
generality in some places and to circumvent a lack of 

Copyright© 1973, Association for Computing Machinery, Inc. 
General permission to republish, but not for profit, all or part 
of this material is granted provided that ACM's copyright notice 
is given and that reference is made to the publication, to its date 
of issue, and to the fact that reprinting privileges were granted 
by permission of the Association for Computing Machinery. 

Author's address: Digital Equipment Corporation, 146 Main 
Street, Maynard, MA 01754. 

370 

desired generality in others. In summary, when writing 
hard code the user needs relatively many instructions, 
each of which executes relatively rapidly. 

An interpreter, by contrast, is a vehicle by which the 
user can choose his own instruc:tion set to correspond 
to his specific problem. Obviously such freedom allows 
a much shorter program for that problem to be written. 
The penalty is that the instruction set of the interpreter 
is not in fact implemented in the computer's hardware. 
Instead the interpreter must itself be a computer pro­
gram which simulates the action of the interpretive in­
struction set in terms of the actual instruction set. This 
can be a time-consuming proposition. Thus interpretive 
code tends to be shorter but slower than hard code. 

It is instructive to look at the relation between the 
host hardware and the alternatives discussed. In the 
case of hard code an instruction directs the flow of 
processing by its actual execution from the IR, or in­
struction register, of the machine. In the case of an in­
terpreter, an "instruction" is in fact merely a datum 
from the interpreting program. Thus it directs the flow 
of processing from an accumulator or the equivalent. 
We may now describe a "threaded code computer"-a 
machine in which an "instruction" controls the PC, or 
position counter. 

2. Threaded Code: Hardware and Software Realizations 

Let us imagine a computer which works in the fol­
lowing way: 

Step 1. S, the value of the Pcth word of memory, is 
fetched. 

Step 2 (a). The routine starting at location S of mem-
ory is executed. 

Step 2 (b). The value of PC is incremented by one. 
Step 3. Go to Step 1. 

We shall call this machine a threaded code computer. 
It is quite feasible to build a physical device corre­

sponding to the above description. However, this is un­
necessary. We shall show that it is possible to eco­
nomically transform a suitable general purpose com­
puter into a threaded code computer via programming. 

Let us describe the implementation on a PDP-11 
computer. Let the PC of the threaded code computer 
correspond to a general register R of the PDP-11. Then 
to use the PDP-11 as a threaded code computer we 
need only end each of the set of routines described in 
Step 2(a) with the instruction 

JMP @ (R) + 
which links the end of one routine to the beginning of 
the next. This is PDP-11 notation for: 

Step A. Transfer control to the routine beginning at 
the location whose address is the value of the Rth 
word of memory. 

Step B. Increment R by one word. 

Communications 
of 
the ACM 

June 1973 
Volume 16 
Number 6 



Fig. 1. Flow of control: hard 
code. 

Fig. 2 Flow of control: interpre­
tive code. 

Fig. 3. Flow of control: threaded 
code. 

HARD 
CODE 

D 

SUBROUTINES 

FET~~ DATA u 
INTERPRETIVE 

CODE 

INTERPRETER 

But note that Step A does exactly what was specified 
in Steps I and 2(a) of our description of the threaded 
code machine. Similarly, Step B does exactly what was 
specified in Step 2(b). Thus we have in fact transformed 
a PDP-11 into a threaded code computer. 

If a computer contains instructions which can 
increment a register and can load the PC through two 
levels of indirect addressing or the equivalent, then 
such a procedure is possible. If these things can all be 
done with a single instruction, then a very economical 
implementation using that instruction is available. 

What we have created is in effect interpretive code 
which needs no interpreter. Figures I, 2, and 3 contrast 
the flow control patterns of threaded, hard and inter­
pretive code. 

3. The Economics of Threaded Code 

Let us now show the practical value of threaded 
code. As an example let us use the evaluation of arith­
metic expressions. Ignoring unary operators we may 
visualize such an expression as an infix sequence 
X1 opz Xa op4 • • • Xn , where each X is a variable name 
and each op is an arithmetic operation. 

This expression can be rearranged by well known 
methods into a Polish suffix sequence P 1 P 2 P 3 • • · P n , 

where each P; represents either variable name or an 
operator. A wide variety of code might be generated 
to evaluate this sequence. For example, one straight­
forward possibility is to generate a sequence C of code 

Cl Cz Ca ... Cn 

Here a P; which is a variable name generates code C; 
to stack the value of that variable, and a P; which is 
an operator causes code C; to be generated which 
applies that operation to the stack top. Given suitable 
hardware, the sequence C should execute rapidly. If 
the size of C is sufficiently small, then this "hard code" 
solution serves well. 

371 

INTERPRETIVE 
ROUTINES 

THREADED 
CODE 

SERVICE 
ROUTINES 

However, there are reasons that C may become 
unduly bulky: a multiple word instruction or a multiple 
instruction sequence may be needed to implement some 
of the C;'s. Some data types (e.g. long floating, double 
integer, or complex numbers) may be awkward to 
move. Or some operations may have to be executed by 
a software routine (e.g. floating operations or integer 
multiply/divide on many small machines; complex 
arithmetic on almost all machines). 

Under such conditions threaded code has the ad­
vantage of an interpreter (i.e. shorter code than the 
hard code) while still being quite competitive with 
regard to speed. The speed of the threaded code is due 
primarily to the fact that the single instruction for 
threading can replace both a call and a return from a 
subroutine. For example, on the PDP-II Model 45, 
threading takes 1.2 J.J.S whereas a subroutine call plus a 
return takes 2.6 J.LS. Of course, an inline code sequence 
needs no linkage and thus is 1.2 f.J.S faster than threaded 
code. Therefore, threaded code is relatively the most 
attractive where subroutines are frequent. 

Time and space comparisons are heavily influ­
enced by the examples chosen and the assumptions 
made about the code generated (e.g. whether registers 
or a stack is used). Using a large sample of actual 
FORTRAN programs compiled into threaded code on the 
PDP-11 computer, we have found threaded code 
roughly equal to hard code in speed (typically 2 or 3 
percent slower) while somewhat shorter (typically 
10-20 percent). Since this particular compiler generates 
threaded code even for those operations such as integer 
arithmetic, where such a course is not advantageous, it 
is reasonable to assume that threaded code can be even 
more beneficial in other applications. 

Threaded code tends to become more attractive as 
program size increases, since the cost of each threaded 
service routine can be amortized across more calls. It 
is also worth noting that threaded code, unlike typical 
interpreters, contains only those service routines actu­
ally called upon by a given program. 

Communications 
of 
the ACM 

June 1973 
Volume 16 
Number 6 



4. Variations on Threaded Code 

The previous example assumed a stack was used as 
the basic discipline for data. Actually this assumption 
is unnecessary. The threaded code service routines can 
pass or receive data according to any convention; they 
may even be passed parameters if desired. The param­
eters of a routine can immediately follow the threaded 
link to the routine. As each is used by the service 
routine, the link pointer can be incremented to step 
through the parameters. For example, on the PDP-11 
a two-parameter routine to copy a word A to a word B 
could look like this: 

CALL: COPY 

COPY: 

A 
B 

MOV @ (R) +, @ (R) + 
JMP@ (R) + 

threaded code 

service routine 

We have presented the concept of threaded code in 
its most basic form. There are numerous time and space 
optimizations which could be made. For example, it 
can easily be determined whether a given service 
routine R is always followed by the same other service 
routine S. If so, then R can end with a jump directly 
to S, leaving one less link to thread. Moreover in many 
cases the routine for R can be placed immediately 
before the routine for S, thereby eliminating the need 
for any jump at all. This clearly saves both space and 
time. 

In a practical application it may be expedient to 
write some sections in threaded code and some in hard 
code, provided that shifting between modes is rapid. 

5. Conclusions 

We have shown that under certain circumstances 
threaded code provides an attractive alternative to 
hard code, saving space at little cost in time. 

Acknowledgments. The FORTRAN IV compiler for 
DEC's PDP-11 has been written to generate threaded 
code. In the course of that project many improvements 
have been suggested by those associated with it. Of 
particular value to the author have been the ideas of 
Ronald Brender, David Knight, Louis Cohen, Nick 
Pappas, and Hank Spencer. 

Received June 1971; revised December 1972 

372 

L.D. Fosdick and 
Algorithms A.K. Cline, Editors 
Submittal of an algorithm for consideration for publica­
tion in Communications of the ACM implies unrestricted 
use of the algorithm within a computer is permissible. 

Copyright © 1973, Association for Computing Machinery, Inc. 
General permission to republish, but not for profit, all or part 
of'this material is granted provided that ACM's copyright notice 
is given and that reference is made to the publication, to its date 
of issue, and to the fact that reprinting privileges were granted 
by permission of the Association for Computing Machinery. 

Algorithm 447 

Efficient Algorithms for Graph 
Manipulation [H] 
John Hopcroft and Robert Tarjan (Reed. 24 March 
1971 and 27 Sept. 1971] 
Cornell University, Ithaca, NY 14850 

Abstract: Efficient algorithms are presented for partitioning a 
graph into connected components, biconnected components and 
simple paths. The algorithm for partitioning of a graph into simple 
paths is iterative and each iteration produces a new path between 
two vertices already on paths. (The start vertex can be specified 
dynamically.) If Vis the number of vertices and E is the number of 
edges, each algorithm requires time and space proportional to 
max (V, E) when executed on a random access computer. 

Key Words and Phrases: graphs, analysis of algorithms, graph 
manipulation 

CR Categories: 5.32 
Language: Algol 

Description 
Graphs arise in many different contexts where it is necessary 

to represent interrelations between data elements. Consequently 
algorithms are being developed to manipulate graphs and test them 
for various properties. Certain basic tasks are common to many 
of these algorithms. For example, in order to test a graph for 
planarity, one first decomposes the graph into biconnected com­
ponents and tests each component separately. If one is using an 
algorithm [4] with asymptotic growth of V log(V) to test for 
planarity, it is imperative that one use an algorithm for partition­
ing the graph whose asymptotic growth is linear with the number 
of edges rather than quadratic in the number of vertices. In fact, 
representing a graph by a connection matrix in the above case 
would result in spending more time in constructing the matrix 
than in testing the graph for planarity if it were represented by a 
list of edges. It is with this in mind that we present a structure for 
representing graphs in a computer and several algorithms for simple 

This research was carried out while the authors were at Stan­
ford University and was supported by the Hertz Foundation and 
by the Office of Naval Research under grant number N-00014-67-
A-0112-0057 NR-44-402. Reproduction in whole or in part is 
permitted for any purpose of the United States Government. 

Communications 
of 
theACM 

June 1973 
Volume 16 
Number 6 

Admin
Rectangle


