
R. G. Loeliger

THREADED INTERPRETIVE
LANGUAGES

THEIR DESIGN AND
IMPLEMENTATION

R.G. LOELIGER
Second Printing

BYTE BOOKS
70 Main St

Peterborough, NH 03458

Threaded Interpretive Languages

Copyright © 1981 BYTE Publications Inc. All Rights Reserved. No part of this

book may be translated or reproduced in any form without the prior written

consent of BYTE Publications Inc.

Library of Congress Cataloging in Publication Data

Loeliger, R G

Threaded interpretive languages.

Bibliography: p.

Includes index.

1. Programming languages (Electronic computers) 2. Interpreters

(Computer programs) I. Title.

QA76.7.L63 001.64'24 80-19392

ISBN 0-07-038360-X

To Sandi, Jill and Guy
with love

VII

PREFACE

This manuscript is the outgrowth of a sequence of events that began in July

1978. I had a very basic microcomputer with a very basic BASIC. Not the

most exciting combination. What I really wanted at that point was a compiler.

I had more or less decided that C looked like a reasonable language to imple¬

ment. My essential problem was how to bootstrap a C compiler. Clearly it

could be booted in BASIC, but the very thought appalled my sense of

rightness.

At the July 1978 National Computer Conference (NCC) at Disneyland, I

picked up a copy of Dr. Dobb's Journal of Computer Calisthenics & Or¬

thodontia that had an article on FORTH.* "Aha,” I said, "an extensible inter¬

preter." Clearly a much better approach than BASIC to bootstrap a compiler.

The problem then was how to get my hands on FORTH. After a quick trip to

Manhattan Beach for a copy of FORTH, Incs Microforth Primer for the Z80

and a two-week wait for the DECUS (DEC User's Society) FORTH manual for

the PDP-11, I had the ammunition for my own threaded interpretive language

(TIL) design.

By August 1978, six weeks after the NCC, I had an up and running version

of a TIL called ZIP (Z80 Interpretive Processor) merrily extending itself in all

directions. I had not built the initial C bootstrap compiler simply because ZIP

was so much fun to play with.

Because there was so much controversy about languages for microcom¬

puters during this time period, I decided to join the fray with a short article on

TILs and their advantages for small microcomputers. A call to BYTE magazine

resulted in a request for a 200-page book manuscript rather than an article!

Months later, a 500-page manuscript resulted. TILs are not the only extensible

things in this world.

The main point is that TILs are fun. They are easy to write, easy to use, and

very useful tools for the small computer user. I have built several versions of

*FORTH is a registered trademark of FORTH, Inc, 2309 Pacific Coast

Highway, Hermosa Beach CA 90254.

VIII

ZIP, some in as little as twenty hours. All have been fun and all have been

used. When I bought UCSD Pascal for my system, I used ZIPD (a disk-based

version of ZIP) to examine the Pascal files, specialize the I/O for my system,

and generate the disks to boot the compiler. The simple utility of threaded in¬

terpretive languages is one of their nicest attributes.

There's no need to be a software guru to write and code a TIL. I certainly

don't fit in the guru class, and yet I managed. I hope that others will also

manage, and on something other than a Z80-based system. I have attempted to

explain what I did as well as how. When using the system, be inventive. That's

precisely how ZIP evolved.

As a final note, special thanks go to Shirley Kalle, Carol Lee, Vicki Haas,

and Velva Hinkle for typing the manuscript.

Dayton, Ohio

August 1979

IX

CONTENTS

1. OVERVIEW
1.1 Introduction

1.2 What is a TIL?

1.3 The Elements

1.4 The Attributes

1.5 Implementation Notes

2. HOW A TIL WORKS

2.1 Operator's View

2.2 Dictionary Format

2.3 Outer Interpreter

2.4 Inner Interpreter

2.5 Defining Words and the Compiler Mode

2.6 Vocabularies

2.7 Synthesis

3. HUP, TWO, THREE, FOUR

3.1 An Inner Interpreter for a Generic Computer

3.2 An Inner Interpreter for the Z80

3.3 Double Time

4. THE TOWER OF BABEL REVISITED

4.1 Naming Conventions
4.2 Data Types

4.2.1 Numbers

4.2.2 Logical Flags

4.2.3 Strings and Things

4.2.4 Constants

4.2.5 Variables

4.2.6 Arrays

4.2.7 User Parameters

4.2.8 System Parameters

4.3 Operator Keywords

4.3.1 Stack Operators

4.3.2 Memory Reference Operators

4.3.3 Interstack Operators

4.3.4 Arithmetic Operators

4.3.5 Logical Operators

1
1

2

3

6

7

9

9

12

14

18

21

25

26

28

28

32

38

39

39
40

48

X

4.3.6 Relational Operators

4.3.7 Input/Output Operators

4.3.8 System Operators

4.3.9 Utility Operators
4.4 Loop and Branch Keywords

4.4.1 BEGIN... END

4.4.2 IF...ELSE...THEN

4.4.3 WHILE

4.4.4 DO... LOOP

4.4.5 Case Constructs

4.5 Compiling and Defining Keywords

4.5.1 CREATE

4.5.2 Compiling Directives

4.5.3 Parameter Defining Words

4.5.4 Defining USER Blocks

4.5.5 High Level Defining Words

4.5.6 Vocabulary Defining Keywords

4.6 Vocabulary Keywords 72

4.7 Babblings 73

ROUTINES, ROUTINES, ROUTINES 74

5.1 Core TIL Design Notes 74

5.2 Outer Interpreter Design 77

5.3 Routine Routines 87
5.3.1 START/RESTART

5.3.2 INLINE

5.3.3 Token Extracting

5.3.4 SEARCH

5.3.5 NUMBER

5.3.6 QUESTION

5.3.7 ‘STACK

5.3.8 SPATCH

5.4 Doing It 99

5.5 Arithmetic Routines 100

WORDS, WORDS, AND MORE WORDS 103

6.1 The Word 103

6.2 A Classy Cross Reference 174

6.2.1 Arithmetic Keywords

6.2.2 Compiler Directives

6.2.3 Compile Mode Directives

6.2.4 Defining Words

6.2.5 I/O

6.2.6 Interstack
6.2.7 Literal Handlers

6.2.8 Logical

6.2.9 Memory Reference

6.2.10 Program Control Directives

6.2.11 Relational

XI

6.2.12 Stack

6.2.13 Subroutine

6.2.14 System

6.2.15 System Directives

6.2.16 System Variables

6.2.17 Utility

6.2.18 Vocabulary

6.3 Sum Total

7. EXTENSION PLEASE

7.1 Introductions

7.2 Assemblers

7.2.1 Assembler Overview

7.2.2 Architecture and the Assembler

7.2.3 The Z80 Assembler
7.2.3.1 The Operands

7.2.3.2 The Constants

7.2.3.3 The Eight Bit Move Group

7.2.3.4 Sixteen Bit Move Group

7.2.3.5 Arithmetic and Logic Group

7.2.3.6 Rotate and Shift Group

7.2.3.7 Bit Addressing

7.2.3.8 Block Directed Instructions

7.2.3.9 Miscellaneous Instructions

7.2.3.10 Call and Return Group

7.2.3.11 Jump Instructions

7.2.3.12 Summary

7.2.4 Structured Assembly Code

7.2.4.1 BEGIN...END Loops

7.2.4.2 IF...ELSE...THEN

7.2.4.3 WHILE

7.2.4.4 DO...LOOP

7.2.4.5 Construct Summary

7.2.5 Assembler Design Notes
7.3 Virtual Memory

7.3.1 The Device

7.3.2 Disk Access

7.3.3 Buffer Control

7.3.4 Screens

7.3.5 Data Manipulation

7.3.6 Loose Ends

7.4 Editor

7.4.1 Line by Line

7.4.2 In a Line

7.5 Cross Compilation

7.5.1 The End Result

7.5.2 The Process

7.6 Widget Sorters

179

180
180

182

210

220

224

226

XII

7.7 Floatingpoint 228

7.7.1 Formats

7.7.2 Floating Keywords

7.7.3 Summary

7.8 Extension Summary 233
LIFE WITH A TIL 234

8.1 Starting Out 234

8.2 Program Structure 235

8.2.1 Vocabulary Definition

8.2.2 Data Type Definitions

8.2.3 Global Data Definitions

8.2.4 Procedure Definitions

8.2.5 Main Program

8.2.6 Physical Records

8.3 Program Design 239

8.3.1 Vertical Design

8.3.2 Program Executives

8.4 Entry and Test 241

8.4.1 Keyword Contention

8.4.2 Keyword Testing

8.5 Tricks of the Trade 243

Bibliography and Notes 244

Index 248

XIII

FIGURES

2.1 Typical Dictionary Organization 13

2.2 Outer Interpreter Example 16

2.3 Typical Memory Configuration 18

2.4 Inner Interpreter Routines 19

2.5 Code Bodies 20

2.6 CONSTANT and 2GROSS 24

2.7 Vocabulary Structure 25

3.1 Memory Map of Top 4 K Bytes on Typical Z80 System 34

3.2 System Memory Map 35

4.1 High-Level Definition Example 71

5.1 Outer Interpreter Flowchart 79

5.2 Outer Interpreter Code Design 80

5.3 7SEARCH Code Design 82

5.4 7EXECUTE Code Design 83

5.5 7NUMBER Code Design 84

5.6 INLINE Flowchart 88

5.7 TOKEN Flowchart 90

5.8 SEARCH Flowchart 93

5.9 NUMBER Flowchart 95

7.1 Z80 Processor Registers 183

7.2 A Cross-Compiled DUP Primitive 315

7.3 Two Common Floating-Point Number Formats 320

TABLES

3.1 Stepping Through the Pseudo-Code for Routine FUNNY 33

3.2 Z80 Register Assignment 34

3.3 A Z80 Inner Interpreter 36

XIV

5.1 Outer Interpreter Keyword Sizes 86

5.2 Multiply and Divide Operators 101

7.1 Mask Patterns That Address Registers, Register Pairs, and Condition Codes 184

LISTINGS

3.1 Pseudo-Code Implementation of Inner Interpreter 30

3.2 Memory Contents After Routine FUNNY Has Been Compiled 32

5.1 START/RESTART Assembly Code 87

5.2 INLINE Primitive 89

5.3 TOKEN Primitive 91

5.4 SEARCH Primitive 93

5.5 NUMBER Primitive 97

5.6 QUESTION Primitive 98

5.7 *STACK Primitive 98

5.8 SPATCHCode 99

7.1 EDITOR Screens 305

THREADED INTERPRETIVE
LANGUAGES

OVERVIEW 1

1 I Overview

This text is intended for people owning either a microcom¬

puter or minicomputer with minimal peripherals, those who

write software for these types of systems, and those who are

interested in learning about such systems.

1.1 Introduction

The topic of this book is the design of TILs (threaded interpretive
languages). The goal is to reverse the trend toward language standardization
advocated by the users of large computer complexes. Using FORTRAN to
write a program is fine if the compiler fits on the machine you own and pro¬
duces efficient code. In general, this is not true for microcomputers and is only
marginally true for most minicomputers. If you have a real-time application,
you may have trouble. A threaded interpreter can solve your problem without
resorting to assembly language programming.

A threaded interpreter approach is a way of developing a standard,
nonstandard language. This is not quite as strange as it sounds. Embedded in
the language is a compiler which allows the user to extend the language and
redefine operators and data types. If you know what someone else's program
does, you can simply modify your existing language to encompass the defini¬
tions of the other program and then directly execute it. The modifications may
be done by using either existing language constructs or machine language. In
either event the extensions are done using the existing language.

One point must be stressed. There is no right threaded interpretive language
and no right way to implement the language. It is strictly applications-
dependent. TILs can be used to write a program for a microcomputer monitor,
a general-purpose language, an editor, or a real-time program for sorting
widgets. I shall concentrate on developing an interactive interpreter which will
include some of the above as a subset and will support the generation of the
others.

2 THREADED INTERPRETIVE LANGUAGES

This text is tutorial in nature. It presumes a nonextensive familiarity with

computers and programming terminology. It is not for the rank amateur, nor

is it for the PhD in computer science. The former will not find it easy going and

the latter will not find anything new.

The examples in the text are directed toward the Zilog Z80 instruction set

simply because I own a Z80-based microcomputer. Any other microcomputer

would serve as well for illustration purposes.

1.2 What is a TIL?

To define a TIL, it is necessary to view it in the context of translation. A

translator is a computer program which converts source language into target

language. Each language has well-defined semantic and syntactic constructs. If

the source language is FORTRAN or Pascal and the target language is

assembly language or machine language, the translator is known as a com¬

piler. If the source language is assembly language and the target language is

machine language, the translator is known as an assembler.

An interpreter for a source language accepts the source language as input

and executes it directly. It does not produce a target language but translates

directly to an action. A pure interpreter will analyze a source language state¬

ment each time it is executed. Fortunately, these beasts are rare. Most inter¬

preters actually employ two phases. The first phase translates the source

language to an intermediate language or internal form. The second phase then

interprets or executes the internal form. The internal form is designed to

reduce subsequent analysis and execution times. Most BASIC interpreters do

exactly this, with the first phase occurring during program input/edit and the

second phase occurring at run time.

A threaded code interpreter produces a fully analyzed internal form. The in¬

ternal form consists of a list of addresses of previously defined internal forms.

The list is threaded together during the first translation phase. This first phase

is remarkably similar to that of a compiler and is generally called the compile

mode. During execution the interpreter executes consecutive internal forms

without performing any analyses or searches, since both were completed

before execution was evoked.

If the concept is extended to include a broad class of internal forms and a

method of interacting with the interpreter, a threaded interpretive language

(TIL) results. TILs are characterized by extensibility since they have the full

power of the compile mode to augment their existing internal forms. Our TIL

will also allow pure interpretation directly from the input line. Most TILs

resort to stacks and reverse Polish notation to achieve an acceptable level of ef¬

ficiency. I shall consider this class of threaded interpretive languages.

If the full scope of the desired TIL is known, the compile mode may be

deleted (since all internal forms are known), producing a threaded interpretive

OVERVIEW 3

program. This type of program is useful for real-time, fixed process controllers

and system monitors with a fixed scope. These types of programs are generally

placed in read-only memory but require a minimal amount of programmable

memory to support system variables and stacks. It sounds impressive. Let's see

if it is!

1.3 The Elements

There are certain elements that characterize any language implementation.

The elements that characterize threaded interpretive languages will be extend¬

ed to include those of an interactive terminal-directed implementation. The

presumptions will be based on a minimum system consisting of a keyboard, a

video display, a microcomputer with at least 8 K bytes of programmable

memory and some type of mass storage. An operating system or monitor

which supports program generation and modification is presumed to be

available.

The visible attribute of any language is the man-machine interface. The

keyboard and display device are critical since they are the means of interacting

with the system. The inputs to the system will be tokens separated by spaces.

A token may be composed of any sequence of ASCII (American Standard

Code for Information Interchange) characters that your system supports. A

token may be any of the following:

• a number (integer, real, etc)

• an operand (constant, variable, etc)

• an operator (logical or arithmetic, such as +, —, < , > , etc)

• a function (fixed subprogram that returns a result)

• a subroutine (subprogram which performs some action but does

not necessarily return a result)

• a directive (system control command)

• a program (desired operation or action)

Examples of tokens could include @, +, TOKEN, Rumplestiltskin, <R, or

Token lengths are only limited by the line length of your input device or

your own personal preference. The only token separator is an ASCII space (■
in this text).

Consider a line-oriented I/O (input/output) scheme. An input line consists

of a sequence of tokens (separated by spaces) terminated by a carriage return.

In order to correct input errors, the I/O routine must recognize a rubout or

backspace to erase the last character on the line and a line delete command to

erase the entire input line and return to the input mode. The input is im¬

plemented using an input line buffer. Output is also line-oriented. Successful

completion of an input operation is usually followed by the system echoing a

message to the operator. The usual "OK" may be used, or any other sequence

4 THREADED INTERPRETIVE LANGUAGES

you wish to use. If the system does not recognize a token, it will echo the token

followed by a question mark (?). I prefer this to the somewhat ubiquitous

'"WHAT?" employed by others. A simple question mark seems less threaten¬

ing. Internal errors detected by the system result in an error message after

which control reverts to the operator.

This is about as simple an operator's interface as can be devised. It is also ex¬

tremely effective and flexible. Several extensions to the above I/O scheme can

be implemented. I usually allow lowercase alphabetic characters as input, but

they are stored in the input buffer as uppercase. All system responses are in up¬

percase. This clearly separates commands from responses. I also display a

marker at the end of any line that has been deleted. These are niceties that

make life easier.

A central element that characterizes our TIL is a dictionary. Almost all of

the language is composed of dictionary entries. There is an entry for every

token defined in the system. Tokens other than input numbers are called

keywords. The dictionary is the medium that allows the system to locate

keywords. The dictionary is segmented into vocabularies that contain

keywords associated with a particular function. A core vocabulary exists that

contains the primary language keywords. The core coexists with any specific

vocabulary such as an assembler or an editor vocabulary.

This TIL will contain defining words which create new dictionary entries.

The keyword attributes may be specified using machine or assembly code or

may be defined in terms of previously defined keywords using the compile

mode. The TIL will also contain defining words which create dictionary entries

of a generic type. Examples of these include constant and variable defining

words and other more complex operations.

Defining words are defined using more primitive defining words. Defining

words always create dictionary headers for the keyword being defined. The

headers form a linear linked list to facilitate identifying a specific keyword

when the dictionary is searched. One or more vocabularies may be searched

during a given dictionary search. I will consider several header forms and

search policies in greater detail later in the text.

Another central element in this TIL will be the use of stacks. These are the

standard LIFO (last-in, first-out) push-down stacks supported by many

microcomputers and minicomputers. Specifically there are two stacks used to

implement the TIL. A data stack is used to store numbers and addresses of

operands. Operators generally expect data on the stack in a predefined order

and return results to the stack. A second stack called the return stack is used to

store program flow-control parameters. This stack can also be used for tem¬

porary data storage (carefully). Two stacks are used to separate data from

control parameters. The data stack, commonly called just the stack, is always

16 bits wide. The return stack will always be called just that and is usually 16

bits wide. Sometimes the return stack is only 8 bits wide.

The element which is most unusual is the use of RPN (reverse Polish nota¬

tion) to represent arithmetic or logic expressions. RPN specifies simply and ex¬

actly the order in which expressions are to be evaluated. The operators come

after the operands. The general rules are:

OVERVIEW 5

• The identifiers, operands or numbers appear in the same order

in both infix notation and reverse Polish notation.

• The operators appear in the same order (from left to right) as

they are to be applied.

• The operators appear immediately after the identifiers.

For example:

7X6/4 - 7B 6BXB4B/

3 + (4 X 6—2)/7 - 3B4B6BXB2 B-B7B/B +

The use of the data stack and reverse Polish notation allows an easy left-to-

right scan of an input line. As each number is scanned, its value is pushed onto

the stack. Binary operators pop two values from the top of the stack and push

the result onto the top of the stack. Unary operators simply replace the top

stack value.

One of the most common programming errors is mismanagement of the

stack because operators expect values on the stack. During interactive pro¬

gram execution, stack underflow should be checked by testing for underflow.

Stack overflow can be tested using the keyword. This keyword displays the

top stack value, destroying its value in the process. If the stack is empty, it

results in a stack underflow message. If a value should be on the stack, this

makes it available for verification. Gross stack overflow can cause the pro¬

gram to self-destruct as I have proven many times.

The most useful element of the TIL is its compile mode. Keywords may be

defined in terms of previously defined keywords using the compile mode. This

produces a threaded list definition of the new keyword. In point of fact, a pro¬

gram is nothing more than such a list produced by compiling the definition.

When the program is compiled, ie: the program keyword is defined, the com¬

piler produces a list of the addresses of the previously defined keywords and

stores them in a dictionary entry. This list may also include literal handlers

followed by literals or program control directives followed by relative jump

constants. Literals allow numbers and labels to be embedded in the program.

Control directives allow program branches to be mechanized. Dictionary

searches to locate keywords associated with tokens, handlers, and directives

occur only during compilation. Execution of a program involves only a single

dictionary search to find the program since the threaded list contains all the

data required to execute the program. This also explains why a pure inter¬

pretive mode is required. Without this mode it is impossible to execute a pro¬

gram or keyword.

6 THREADED INTERPRETIVE LANGUAGES

1.4 The Attributes

There are several advantages to a TIL as well as several disadvantages. It all

depends on whose side you are on. The general trade-offs will be discussed

briefly.

A threaded interpretive language is generally fast compared to most inter¬

preters available for microcomputers, and in some applications it is faster than

compiled code. My current TIL is about three times as fast as an integer

BASIC. TILs are slow relative to optimal assembled code. The very best com¬

pilers are about 10 to 15 % inefficient given a reasonable processor instruction

set. The very best microcomputer compilers are probably 15 to 50% inefficient

if they are cross-compilers hosted on a large computer and if significant code

optimization is included. Microcomputer compilers are not as efficient, par¬

ticularly if they are hosted on the microcomputer. The instruction sets of most

microcomputers do not support easy code optimization. Depending on the ap¬

plication, a 100% inefficiency is not unusual in a microcomputer compiler.

This is roughly the inefficiency of a TIL. In a purely number crunching ap¬

plication, however, a threaded interpretive language is nearly as efficient as

assembled code.

A major advantage of a TIL is the memory required to implement the

language. The core language can be contained in less than 4 K bytes, and an

assembler, editor, and virtual memory system requires an additional 2 or 3 K

bytes. Compare this to the 24 to 32 K bytes required to host a compiler on a

microcomputer or minicomputer. Once the core language is available, an ap¬

plication keyword can be added in an incredibly small space because the full

power of the core language is available. For example, a keyword to evaluate

an expression of the form A*2 + B;t + C normally requires less than 40 bytes.

If a real-time, stand-alone program is required, the program can be

developed and tested in an interactive mode. Then the program can be cross-

compiled to leave only the keywords needed for the application in the cross-

compiled version. All dictionary search bytes (the headers) may be removed,

leaving a minimal set of code. The resulting program can be placed in read¬

only memory for dedicated machine hosting.

One of the nicest features of a TIL is the simplicity with which programs can

be developed and tested. A top-down approach is assumed since the TIL is

fully structured. Each function or subroutine is a keyword. In the interactive

mode, numbers in the input line are pushed to the stack. The keyword follows

and expects its parameters on the stack. The keyword leaves its results on the

stack where they can be popped and examined by the user with the

keyword. A separate driver program is never needed to test a TIL keyword.

TIL coding ease is somewhere between that of a higher-order language and

an assembly-language—more difficult than the former and easier than the lat¬

ter. The only difficult feature is tracking the order and number of items on the

stack. Checkout is so easy, however, that the total time to develop and test a

program is shorter than the time needed for either a higher-order language or

an assembly-language program.

OVERVIEW 7

It should be noted that designing and implementing a TIL is quite simple.

My first design took about six weeks of evenings to implement in machine

code. Don't panic! My preference is to hand-assemble and machine-code short

routines. A TIL is nothing more than a sequence of very short routines. Few of

the keyword routines, including the dictionary headers, are longer than 20

bytes.

1.5 Implementation Notes

Technically, the type of threaded interpretive language considered here is a

tree-structured, threaded code interpreter. There are two types of keyword

structures: primitives and secondaries. Primitives have code bodies that con¬

sist of the machine code which implements the action. Secondary code bodies

are lists of addresses of previously defined primitives and secondaries. It is ob¬

vious that secondaries cannot be directly executed by the processor.

Primitives are closely akin to subroutines. Secondaries are akin to a list of

subroutines. The outer loop or executive of any TIL program is a secondary.

Each call to a primitive from a secondary causes the machine code of the

primitive to be executed and then control is returned to the next instruction in

the secondary (ie: the next address in the threaded list). If the next instruction

to be executed is a secondary, the following instruction's address is stored on

the return stack as the return address. When this new secondary completes all

of its threaded instructions, it retrieves the return address and returns to ex¬

ecute the next instruction following its call location. This effectively creates a

tree structure, the end nodes of which are always primitives. This will be ex¬

plained in much greater detail later in the text, since it is central to the opera¬

tion of a threaded interpretive language.

There are many ways to implement a threaded interpretive language. A

typical TIL can be implemented using as few as forty to sixty primitives and

defining all other keywords as secondaries using this minimal set of primitives.

This is the technique used in FORTH, a typical TIL. A secondary does,

however, require more overhead time to execute than a primitive. Using a

minimal set of primitives results in a slower, less efficient language. It does

produce a much more portable language. These types of implementations are

also extremely memory conservative. Depending on the application, you may

be interested in defining a minimal set of primitives. I tend to make all user-

available operator definitions primitives. This results in faster programs at a

slight memory penalty.

The heart of the TIL is the inner interpreter. The inner interpreter contains

the routines which step from address to address in the threaded list of instruc¬

tions, saving return addresses when a secondary is encountered, and retrieving

return addresses when a secondary completes. The inner interpreter code must

take as little time as possible since it determines how quickly the TIL can

operate. This is a case where time efficiency is far more important than

8 THREADED INTERPRETIVE LANGUAGES

memory minimization.

The outer interpreter is the system executive used to implement the interac¬

tive, terminal-directed operator's interface. The outer interpreter supports

both a pure interpretive mode similar to a BASIC calculator mode and a com¬

pile mode to extend the language. The outer interpreter will be written, oddly

enough, in TIL. Several variations on the outer interpreter theme will be con¬

sidered, but all will be endless loops. How else can we return to the operator?

Some dictionary entries need not be contained in any vocabulary. These en¬

tries fall into two general catagories. Certain system routines used to imple¬

ment the outer interpreter are of absolutely no earthly use to the operator.

Other routines such as the literal handlers and program-control directives are

available to the operator only indirectly. These routines are invoked by the

system only in the compile mode. It makes little sense to include header bytes

to locate something which cannot be used.

There are several ways to handle different data types. FORTRAN, for exam¬

ple, treats all variables starting with I, J, K, L, M, or N as integers unless the

variable is specifically declared to be a real type. The operators then resolve

the data types based on a predefined precedence rule. The philosophy adopted

for the TIL will be substantially different. All operators will presume operands

of a given type. For example, the operator " + " presumes two 16-bit integers

on the stack and will replace the top two elements by their sum. If floating¬

point addition is desired, an operator such as F+ must be used and it will

presume two floating-point number arrays on the stack. This places the

burden of data type resolution squarely on the programmer. What could be

simpler?

The threaded interpretive language I will investigate will be fully structured.

It supports branching and loop structures but not an unconditional jump

(GOTO). An experienced programmer can defeat this structured goal, but not

easily. I have no intention of telling anyone how this can be done.

The implementation will be directed toward defining a minimum threaded

interpretive language that supports self-generation of the remaining language.

Since the language contains a compiler, only a minimal amount of the

language need be hand-coded. The rest can be coded using the TIL itself.

About 2 K bytes of code are usually sufficient to allow this self-generation

capability.

HOW A TIL WORKS 9

2 I How a TIL Works

A fundamental difficulty in explaining how a threaded in¬
terpreter works is the interdependence of the various
language elements. If there is a single unifying explanation,
it has escaped me. My approach is simply to draw sabers
and charge — not elegant, but usually effective.

2.1 Operators View

The system operator has a rather myopic view of the inner workings of any

program, but the operator has the only seat in the house for interacting with

the system. All of the operator's input to the system consists of input lines,

generally composed of as many characters as the display will support on a

single display line. In the input submode, the system will indicate the input

point on the video display by a cursor symbol. I often use a blinking

underscore (an ASCII "_" alternating with a ■) as a cursor. Since my editor

insists that the typesetter does not have a blinking character font, I will ignore

the input point and only consider entire lines of input in the text. Any subse¬

quent system response will be underlined.

The input submode is called a submode because the system is devoting its

full resources to filling an input buffer. The system mode may be in either the

execute or compile mode during the input submode. Until the carriage return

key is pressed, the system will stay in the input submode. The system will

recognize three distinct commands in the input submode:

Backspace — This command will enter a space (■) at the cursor point and

move the cursor left one character position. If the cursor is at the first

character position of the line it will remain at the first position and not move.

Line Delete — This command will enter a line delete symbol at the current cur¬

sor point, output a carriage return and line feed, and leave the cursor at the

first position of the next line.

10 THREADED INTERPRETIVE LANGUAGES

Carriage Return — This command causes the system to enter a space at the

cursor point, move the cursor right one character, and exit the input submode.

Any other character entered by the operator is simply displayed on the

video display at the current cursor location and the cursor is moved right one

character place. Concurrently, the character is moved to the line buffer which

is a one-for-one duplication of the display line (with one exception) up to the

point where the carriage return key is pressed. The exception is, of course, the

lowercase alphabet. Lowercase alphabetic entries are displayed as lowercase

but stored in the line buffer as uppercase. As previously mentioned, this allows

separation of commands from any later system response which will always be

in uppercase.

One other point is worth mentioning. When the last available character

place of the display line is entered, the input submode remains in effect. The

next entry will simply replace the last character on the line. The cursor will not

advance. Only a carriage return terminates the input submode.

Although this line buffer and display line scheme may seem complex, it is

well worth the trouble. It allows easy editing of the line. The line delete func¬

tion, for example, eliminates the need to enter multiple backspaces to reach the

left end of a line in which there is an input error when the current entry point is

on the right end. It is easier to start over. My first microcomputer had a read¬

only memory monitor without a line delete, backspace, or carriage return. The

last character in a command caused immediate execution of the command.

This crazy scheme required pressing the system master reset button to recover

from input errors and almost destroyed my index finger. Worse still, I occa¬

sionally hit the power button instead of master reset, totally destroying the

resident programs. Be advised!

Consider that the execute mode and input submode are in effect, and the

cursor is at the first character position of a display line. The carriage return

key is pressed. The system will respond:

■OK

The cursor will then advance to the first entry position of the next line.

The line buffer is cleared (filled with blanks) until a keyboard printing

character key is depressed. In the example, depressing the carriage return key

causes the system to enter the execution mode. The system then scans the input

buffer from left to right looking for a token: a sequence of ASCII characters

terminated by a space. Finding nothing in the buffer in the example, it displays

a message to the operator indicating successful completion of all requested ac¬

tions and returns to the input mode for the next command. Any time you see

■ OK. you know the line buffer is empty.

Now consider the following input and response:

IB. MlfiBOK

HOW A TIL WORKS 11

In this case, the system will first find the token "1" in the buffer. Its first
response is to presume the token is a keyword. It searches the dictionary look¬
ing for the keyword named 1. It finds such a keyword (since regardless of the
number base a 1 is a 1). The keyword 1 is a primitive which pushes a 1 to the
data stack. Since the system is in the execution mode the system executes the
keyword to affect its action, tests for stack errors, finds none, and returns to
scan the next token. The next token it finds is the This token is a second¬
ary keyword which pops the top data stack, converts it to a string of ASCII
characters that represent the number in the current system number base, and
echo displays these characters followed by a space to the operator. The system
executes the keyword, which results in the IB action. Again, no errors
are detected, so the system returns to scan the next token. Finding nothing fur¬
ther in the line buffer, it displays BOK and returns to the input mode.

In the following sequence a slightly more complex action occurs:

DECIMAL ■ 10 ■ HEX ■. BAB BOK

The keyword DECIMAL is the keyword which sets the system number base to
the decimal (or base 10) mode. This token is scanned and executed. The token
"10" ASCII will not be found in the dictionary. Since it is not a dictionary
keyword, the system will attempt to convert it to a number. Because all
characters in the token are in the valid decimal character set (0 thru 9) and the
execution mode is in effect, the system will convert the input from ASCII to a
string of binary numbers equivalent to the values of each character and then
convert this string to a single binary number using the current system number
base. The result is pushed to the stack. The system returns to scan the token
HEX. The keyword HEX sets the system number base to the hexadecimal or
base 16 mode. The token is scanned, located, and executed. The "." token,
when executed, uses the hexadecimal number base to convert the top stack
value resulting in AB . The character A in hexadecimal is exactly equal to
the character 10 in decimal.

If the system detects a stack error, it will advance one display line and echo
some message, such as BSPBERROR (or BSTK , or whatever you like)
instead of BOK . It will then proceed to reset the stack pointer and system
variables to evoke the execute mode under operator control (ie: it enters the in¬
put submode, where the operator must respond).

If the operator enters a keyword which is neither an existing keyword nor a
valid number in the current number base, the system will advance one display
line, echo the token followed by "7" and revert to the input submode. Any er¬

ror of this type detected in the compile mode will result in the partially com¬
piled keyword being deleted from the dictionary. The upshot of this is that for¬
ward references are not allowed. A keyword cannot be referenced before it is
defined.

Obviously there is more to the operator's interface than has been illustrated
to this point. All of the essential features of the interface have been described.
What is lacking is a complete syntactic and semantic description of the
language. This is the subject of Chapter 4, 'The Tower of Babel Revisited." At

12 THREADED INTERPRETIVE LANGUAGES

this point, I will pursue the subject of how the TIL works, not what it does.

2.2 Dictionary Format -

Since approximately 90% of a threaded interpretive language consists of

dictionary entries, an explanation of their general form is in order. Most dic¬

tionary entries consist of a header and a body located in consecutive memory.

The header is optional. The header is used by a search algorithm to locate the

address of the first word in the body of a specific keyword. This address

(where the keyword is located) is called the word address of the keyword. The

headers form a linear linked list to facilitate location of the word address in a

reasonable length of time.

Several alternate header formats can be realized. The form I use for a

microcomputer consists of 6 bytes: the number of characters in the keyword

name (1 byte), the ASCII code for the first three characters in the keyword

name (3 bytes), and a pointer to the first header location of the preceding dic¬

tionary entry (2 bytes). The pointer is called the link address or link. A typical

dictionary organization for this type of implementation is shown in figure 2.1.

Note that 3 bytes are always allocated in this format for keyword names. If

there are fewer than three characters in the keyword name — < R, for example

— the unused characters can be anything since the search algorithm will be

designed to test only the length plus the number of characters specified by the

length up to a maximum of three. If there are more than three characters in the

keyword name, those characters in excess of three are not used to identify the

keyword. Thus DROP and DROX identify the same keyword but DROP and

DROPIT identify different keywords because their lengths are different.

The link address allows the search algorithm to step to the preceding header

if the current header does not match the token scanned from the input buffer.

The link address of the last dictionary entry has a value of zero. This is an easy

value to test for and indicates that the search has terminated unsuccessfully.

The zero value is unlikely to prove restrictive.

Some dictionary entries do not have headers. A typical example of this type

of entry is the literal handler for numbers. The system knows the word ad¬

dress, but the operator does not. If a number is input to a keyword being de¬

fined in the compile mode, the system will automatically load the word ad¬

dress of the number literal handler to the threaded-code listing and then the

number. The operator has no reason to know the word address of the literal

handler. Header bytes are superfluous in this case.

Clearly, alternate header formats are possible. A common extension is to

allocate storage for up to five characters of the keyword name. This increases

the header requirements from 6 to 8 bytes. Although this does not appear to

cost much in terms of memory, it does. A 4 K- byte TIL usually contains about

150 keywords with headers. At 2 bytes extra per header, a 300-byte memory

penalty occurs. (For the more mathematically inclined, the answer is

HOW A TIL WORKS 13

END OF THE LIST

START OF THE LIST

I
I
I
I

I
I

7
E
X
E
0 000

4
D
R
0
LINK

R

LINK

3
D
U
P
LINK

HEADER FOR EXECUTE

WORD ADDRESS OF EXECUTE

HEADER FOR DROP

WORD ADDRESS OF DROP

HEADER FOR <R

WORD ADDRESS OF <R

HEADER FOR DUP

WORD ADDRESS OF DUP

Figure 2.1: Typical dictionary organization.

4 K-bytes/150 keywords = 27 bytes/keyword. Few keywords exceed 20 bytes

in length, including the header bytes. The less than 30-byte average keyword

length is correct. The difference is due to a few long routines used to mechanize

the outer interpreter and the headerless routines.)

The 2-byte link is standard as is the single token-length byte. Since the

keyword names are rarely over ten characters long, one bit of the length

character can be used to identify immediate keywords (keywords that are ex¬

ecuted in the compile mode). I will expand my comments on this when

vocabularies are discussed.

The body of the dictionary entry contains the implementation details of the

keyword. The body may be active or passive. An active body produces an ac-

14 THREADED INTERPRETIVE LANGUAGES

tion and is associated with operands, directives, programs, and similar func¬

tions. A passive body contains data of some type. The first word (16 bits) of

the code body (ie: the contents of the word address) implicitly specifies the

code body type. This word is called the code address of the keyword, and it

always points to executable machine code. This routine either initiates the ac¬

tion of an active body or manipulates the data of a passive body.

Active keywords (primitives or secondaries) have a body which consists of a

code address, a code body, and a return address. The code body of a primitive

always consists of machine code. The code body of a secondary always con¬

sists of a list of word addresses of previously defined primitive or secondary
keywords. Embedded in this list may be literal handler word addresses fol¬

lowed by literal data, or program-control directive-word addresses followed

by relative jump constants. Literals may be numbers or lists of ASCII data.

The relative jump constants allow the program sequence to be modified so that

loop and branch constructs can be mechanized.

The code address and return address of the code bodies control the tree-

structured nature of the language via the inner interpreter. The controlling

program or executive for the threaded interpretive language or program must

be a secondary. The code address of a primitive points to the first byte of the

code body of the primitive. The return address of the primitive transfers con¬

trol to an inner interpreter routine which extracts the next word address of the

current secondary.

The consequence of this sequence is that a primitive is analogous to a

subroutine with a return terminating the machine code that implements the

keyword action. The code address of a secondary points to an inner interpreter

routine which saves the address of the next word address of the current sec¬

ondary on the return stack and makes the first word address of the new sec¬

ondary current. In effect, this is nesting down one level: looking for a primi¬

tive in the new secondary to execute. The return address of a secondary points

to an inner interpreter routine which retrieves the word address on the return

stack and makes it current. This is in effect de-nesting one level: returning to

the next word address of the secondary that called the terminating secondary.

If all of this sounds confusing, don't panic — it is. Actually, it will all be

discussed again in this chapter when the inner interpreter is investigated and

when an implementation scheme is considered. To add a sense of mystery, the

passive code body discussion will be delayed until later.

2.3 Outer Interpreter

If the inner interpreter is the heart of a threaded interpretive language, the

outer interpreter is its soul. The outer interpreter establishes the man-machine

interface. All of the external attributes of the language are affected by the

design of this routine. The outer interpreter is written in TIL. A simple flow

HOW A TIL WORKS 15

diagram of the outer interpreter will suffice at this stage.

Figure 2.2 is one possible realization of an outer interpreter. The routines

perform the following tasks:

START/RESTART — Initializes the stack pointers and system variables to

establish the execution mode under operator control. It is entered on start-up

or in the event a system-detected error occurs.

INLINE — This routine fills and displays the input line buffer via the input

keyboard. It recognizes backspace, the line delete command and terminates on

carriage return.

MASS — Fills the input line buffer from a mass storage device. A virtual

memory mechanization is usually used.

TOKEN — Scans the next token from the input line buffer and moves it to the

end of the dictionary space (the place where new routines will be added) in ex¬

tended header form. (It must include all token characters in case it is a number

or cannot be recognized.)

OK — If the line buffer is empty and the terminal is the input device, a suc¬

cessful end-of-line message is displayed to the operator.

SEARCH — Searches the dictionary looking for a keyword header that

matches the token. Returns the word address of the token, if it is located, by

pushing it to the stack. Always returns a flag on the stack indicating success or

failure.

7EXECUTE — If the system is in the execute mode, the keyword is executed.

Note that both active and passive keywords have code addresses that point to

routines which perform some action. Control normally returns to 7EXECUTE

unless an unconditional jump to the START/RESTART routine or system

monitor is executed or unless the keyword itself contains an endless loop. If the

system is in the compile mode, two events are possible. If the keyword is an

immediate keyword, it is executed. Immediate keywords are either compiler

directives which implement literals and program control directives or a com¬

pile mode termination directive. If the keyword is not immediate, its word ad¬

dress is added to the threaded list of the new keyword being compiled. 7EX-

ECUTE tests for stack underflow or overflow errors before exiting.

7STACK — If a stack error is detected following execution, an error message is

displayed and control is passed back to the operator via the

START/RESTART routine. If the error is detected while the compile mode is

in effect, the partially completed keyword defintion being compiled is deleted.

NUMBER — If the token is neither a carriage return nor a keyword, this

routine attempts to convert the token to a binary number using the current

system number base. (Number bases are in the set 2 thru 9, A thru Z with A =

10, B = 11, etc.) If a successful conversion occurs, one of two events can

result: if the compile mode is in effect, a literal handler followed by the number

is added to the keyword threaded list being compiled. If the execution mode is

in effect, the number is pushed to the stack.

QUESTION — If the token is not a carriage return, an existing keyword, or a

number, somebody goofed. The offending token is echo displayed to the

il

HOW A TIL WORKS 17

It is obvious from the description of the routines that two separate system

modes exist, a compile mode and an execution mode. In the execution mode,

each token scanned from the input line is tested as follows:

• If the line buffer is empty and the operator mode is in effect, an OK is

printed. Control is returned to get the next input line.

• If it is a keyword, it is executed.

• If it is a valid number, it is pushed onto the stack.

• If it is not recognized, it is echoed to the operator followed by "?".

During the compile mode a slightly more complex scheme is used. The compile

mode is building a new dictionary entry which may have branches or literal

data embedded in the threaded code. Two classes of keywords are important.

Immediate keywords are executed when encountered to allow the system to

generate appropriate sequences of threaded code to append to the keyword be¬

ing defined or to terminate the compiler mode. That is, when an immediate

keyword is encountered in the compile mode, it is executed immediately. All

keywords which are not immediate are not executed. Their word addresses are

simply added to the definition being compiled. In the compile mode, each

token scanned from the input line is tested as follows:

• If the line buffer is empty and the operator mode is in effect, an OK is

printed. Control is returned to get the next input line.

• If it is located and is an immediate keyword, it is executed.

• If it is found and it is not an immediate keyword, its word address is

added to the threaded list of the keyword being defined.

• If it is a valid number, the number literal is added to the threaded list of

the word being defined followed by the number.

• If it is not recognized, it is echoed to the operator followed by "?" and the

partially completed keyword being defined is deleted.

Clearly, the method of re-establishing the execution mode is through the use of

an immediate keyword which terminates the definition.

The dictionary space for the system must be in programmable memory as

must be the input line buffers and the stack areas. The inner and outer inter¬

preter and the core language may be in read-only memory, but normally they

are also in programmable memory. One possible system configuration is

shown in figure 2.3. The dictionary pointer points to the next available

memory area where language extensions can be added. As definitions are

added, the language grows upward in memory.

As each token is scanned from the input buffer, its length plus all of its

characters are moved to the dictionary space. This is a convenient place to

hold temporary data. The use of an extended dictionary format to hold tokens

is designed to allow easy enclosure of the characters to form a dictionary

header, but all characters must be moved in case it is a number or cannot be

located.

The data stack area builds downward and the language builds upward in the

18 THREADED INTERPRETIVE LANGUAGES

free memory area. When the two meet, the ball game is over. Stack overflows

are fatal since they inevitably overwrite the language. Not much can be done

about this situation since a runaway stack will eventually overwrite the pro¬

gram no matter where you initially hide the stack pointer.

SYSTEM MONITOR READ-ONLY MEMORY

SYSTEM MONITOR RANDOM-ACCESS MEMORY

> UNUSED ADDRESS SPACE

T DATA STACK POINTER

> FREE DICTIONARY SPACE

1 DICTIONARY POINTER

THREADED INTERPRETER LANGUAGE

DICTIONARY AREA

INTERRUPT VECTOR AREA

Figure 2.3: Typical memory configuration.

2.4 Inner Interpreter

The crux of a threaded interpreter is the inner interpreter. The inner inter¬

preter controls the order of execution of the machine code which mechanizes

HOW A TIL WORKS 19

the language. It is composed of three short, fast routines, one of which has

three entrances as shown in figure 2.4. The layout of the bodies of dictionary

entries is predicated on the inner interpreter routines. The dictionary bodies of

a primitive and a secondary are shown in figure 2.5 for a byte-addressed com¬

puter.

All secondaries except the secondary which forms the outer loop of the

threaded program have a code address and a return address. The outer loop of

the program is a loop. The last word address of the outer loop causes a jump

back to the first word address of the loop. In the threaded interpreter being

discussed, this outer loop is the outer interpreter. A glance back to figure 2.2

will verify this endless loop aspect of the outer interpreter. This outer loop is

the executive for the program.

COLON

SEMI

NEXT

RUN

EXECUTE

WORD ADD.

COLON IS A PRIMITIVE WITHOUT A CODE

ADDRESS WHICH EXITS TO NEXT

SEMI IS A PRIMITIVE WHICH EVOKES SEMI,
NEXT AND RUN

1 NEXT CAUSES NEXT AND RUN TO EXECUTE

RUN EVOKES ONLY RUN

EXECUTE IS A PRIMITIVE WITH A HEADER

WHICH EXITS TO RUN

Figure 2.4: Inner interpreter routines.

The code body of the outer loop is a list of the word addresses of previously

defined keywords. The inner interpreter maintains a register called the instruc¬

tion register. It contains the address of the next secondary instruction to be ex¬
ecuted. Since the outer loop is a secondary, there will always be a next second¬

ary address to be executed. The inner interpreter routine which will execute

the next secondary instruction is called NEXT.

The routine NEXT extracts the word address of the next instruction pointed

to by the instruction register, places it in a word address register and in¬

crements the instruction register by two. In figure 2.5 if the instruction register

contained WA + 2, the routine NEXT would extract WA#1 and leave the in¬

struction register containing WA + 4. It is desired to run the routine WA#1

20 THREADED INTERPRETIVE LANGUAGES

which is now the current instruction. WA#1 is the word address of the routine

to be executed. WA#1 may point to either a primitive or a secondary.

PRIMITIVE SECONDARY

- CODE ADDRESS

= CODE BODY

=RETURN ADDRESS

Figure 2.5: Code body descriptions.

WA WA+2 = CODE ADDRESS WA COLON

WA+2 M WA+2 WA# 1

A WA + 4 WA# 2

C WA + 6 WA #3

H
I

•

N

E
= CODE BODY

•

•

C

0

D

E

WA + N NEXT - RETURN ADDRESS WA +2n SEMI

When NEXT completes, it falls through to the routine called RUN to run the

routine. The routine RUN extracts the code address pointed to by the word-

address register (WA#1 in our example), increments the word-address register

by two, and loads the code address to the program counter in the central pro¬

cessing unit. The next machine code instruction to be executed will be the con¬

tents of the word address of routine WA#1, ie: its code address. The code ad¬

dress of both primitives and secondaries must point to executable machine

code.

If the word address was that of a primitive, the code address extracted by

RUN points to the first instruction in the code body of the primitive. Thus, the

primitive's machine code will be executed. The return address of the primitive

is an instruction which jumps back to the routine NEXT. In the example, if

WA#1 was the word address of a primitive, it will return to NEXT after the

primitive executes. The instruction register now contains WA + 4 so that the

next secondary instruction to be run will be WA|2.

If the word address was that of a secondary, the code address extracted by

RUN points to the inner interpreter routine COLON. Note that the RUN

routine incremented the word address by two so that it points to WA#l+2.

The routine COLON pushes the instruction register contents onto the return

stack and moves the word address register to the instruction register. In our ex¬

ample, WA + 4 would be placed on the return stack and WA#l+2 would be

placed in the instruction register. COLON then jumps to NEXT. The address

WA#l+2 is the first secondary instruction address in the now-current

keyword WA#1. COLON effectively nests down one level to begin execution

of the lower-level routine WA#1.
The return address of a secondary is a primitive called SEMI. SEMI simply

HOW A TIL WORKS 21

pops the top address from the return stack and loads the address to the instruc¬

tion register. In our example, it would pop the address WA + 4 and load it to

the instruction register. SEMI exits to NEXT so that in the example, WA#2 will

be the next secondary instruction. SEMI de-nests one level to begin execution

of the next instruction of the higher-level routine (WA#2 in the example).

In all of the above, the only machine codes actually executed are primitives

and inner interpreter routines. Secondaries may call secondaries that call

secondaries, but the bottom of the chain is always a primitive which actually

executes program machine code. Structurally the procedure forms a tree, the

end nodes (end branches) of which are always primitives.

All of this is well and good, but how does the outer interpreter ever execute

a keyword? Actually it is simple. The search algorithm in the outer interpreter

locates the word address of a valid keyword and pushes it to the data stack. If

the routine is to be executed, the routine 7EXECUTE calls the primitive called

EXECUTE. EXECUTE pops the word address from the data stack, loads it to

the word address register and jumps to RUN. Note that the instruction register

contains the address of the instruction following EXECUTE in the 7EXECUTE

routine so that after the execution of the token, control reverts to the outer in¬

terpreter.

EXECUTE is the only inner interpreter routine with a header. The word ad¬

dresses of SEMI and code address COLON are known by other routines within

the language, as are the entrances for NEXT and RUN. The routines SEMI,

NEXT and RUN are generally a single routine with three entrances while EX¬

ECUTE and COLON exist as separate entities.

Several points are important. The instruction register is the effective pro¬

gram counter for the interpreter. It must be carefully preserved by primitive

machine-code routines. Similar caution must be exercised with regard to the

return stack. When SEMI pops the top entry from the return stack, it had best

be a valid word address and not some temporary value inadvertently left on

the return stack. Finally, note that the word address register always points to

the first location of the code body when RUN has been completed. This is not

only important in the routine COLON but also will be important when passive

code bodies are considered.

If this is confusing, do not despair. It will be considered in great detail in

Chapter 3, "Hup, Two, Three, Four."

2.5 Defining Words and the Compile Mode

Writing a threaded interpretive program consists of defining new keywords.

These definitions may be coded in machine code, assembly language, or com¬

piled using previously defined keywords to create more complex keywords.

The final program is simply another keyword.

The language contains a number of predefined defining words. Defining

22 THREADED INTERPRETIVE LANGUAGES

words always create a dictionary header. All defining words are evoked in the

execution mode. The keyword that initiates the compiler mode (ASCII :) is a

defining word (ie: it is evoked in the execution mode and creates a dictionary

entry). All defining words except return the system to the execution mode

on completion. The compile mode is established by the keyword and ter¬

minated by the keyword or ;CODE, both of which re-establish the execu¬

tion mode among other things. These latter two keywords are immediate

keywords and are executed only in the compile mode.

All defining words create a dictionary header from the token following the

defining word in the input buffer. (Note that the defining words must be

defined themselves before they can be evoked. Predefinitions of some routines

are necessary.)

The simplest defining word is CREATE. For example:

CREATE ■ GODZILLA ■■OK

This sequence will create a primitive header for a keyword named GOD¬

ZILLA. The keyword CREATE first parses the token GODZILLA from the in¬

put buffer and moves it to the dictionary space as 8GODZILLA. Next, it ad¬

vances the dictionary pointer contents (a system variable called DP) by four to

enclose 8GOD in the dictionary. It extracts the address of the last keyword

header from the current vocabulary, encloses it in the dictionary as the link ad¬

dress, and then replaces the current vocabulary address with the address of the

8 in the 8GODZILLA header. Finally, CREATE encloses the address of DP+ 2

(the code address) at the DP address location (the word address).

CREATE simply creates a primitive dictionary header but does not reserve

any bytes in the code body of the word being defined. Creating GODZILLA is

far simpler than foreign film makers could possibly imagine. Basically, all

defining words evoke CREATE to form the dictionary header and then replace

the code address as appropriate. The compiler word calls CREATE and

then replaces the code address with the address of the inner interpreter CO¬

LON routine. Now you see why that funny name was selected for this inner in¬

terpreter routine.

Although CREATE appears to be useless by itself, this is not true. For exam¬

ple, a word could be defined to drop the top value from the data stack using

the sequence:

HEX ■ CREATE ■ DROP ■ El ■ C, ■ NEXT BBOK

First HEX establishes the system number base as hexadecimal. CREATE

creates a primitive keyword named DROP. The El is a valid hexadecimal

number and is pushed to the data stack since the execution mode is in effect.

The C, pops the data stack and encloses the low-order byte in the dictionary

(the El). Finally, NEXT encloses the jump to the inner interpreter NEXT

routine in the dictionary. When DROP is evoked, the machine instruction El

is executed, which pops the top of the data stack to the HL register pair and

then executes a jump to NEXT. The value popped to the HL register pair is

HOW A TIL WORKS 23

never used. The value is simply dropped from the data stack.This is a simple

example of extending the language using machine code to create a new

primitive keyword.

An example of a compiling word is:

: ■ 2DUP ■ DUP ■ DUP ■; ■■OK

Here a keyword DUP has already been defined. This keyword duplicates the

top stack value leaving two copies of the value on the stack. The keyword

2DUP is designed to leave three copies of the previous top stack value on the

stack by calling DUP twice. Here creates a 2DUP keyword dictionary entry

with the COLON routine code address in its word address (ie: it creates a

secondary dictionary header and then sets the system mode to the compile

mode). The next token scanned is DUP. The search routine will locate its word

address since it is already defined. The outer interpreter routine 7EXECUTE

will enclose the word address of DUP in the dictionary since the compile

mode, not the execute mode, is in effect. This will occur again when the second

DUP in the input buffer is scanned. The keyword is an immediate keyword

which will be executed in the compile mode. It encloses the word address of the

inner interpreter primitive routine SEMI in the dictionary and sets the system

mode to the execute mode. Here the language extension is a new secondary

keyword created from existing keywords via the compile mode.

A typical defining word is CONSTANT. CONSTANT defines a passive

keyword which, when evoked, will push a constant value to the data stack.

An example of its use is:

DECIMAL ■288 ■ CONSTANT ■ 2GROSS

Here the keyword DECIMAL sets the system number base to the decimal (10)

base, the 288 is pushed to the stack as a binary number and CONSTANT

creates the dictionary entry for the keyword 2GROSS with a code body whose

contents are 0120, the hexadecimal equivalent of 288 decimal. When 2GROSS

is evoked it will always push hexadecimal 0120 to the data stack.

Obviously a definition of CONSTANT is required before 2GROSS can be

defined. A formal definition of CONSTANT is:

HEX ■: ■ CONSTANT ■ CREATE ■, ■; CODE ■....

Here "..." indicates machine code that will be entered following ;CODE. First

the creates a secondary dictionary header for CONSTANT and sets the

compile mode. The CREATE and word addresses are then placed in the

code body of CONSTANT. The ;CODE keyword is an immediate keyword

which places the word address of a routine called SCODE in the code body of

CONSTANT and sets the system mode to the execute mode. The machine

code that follows ;CODE in the definition is machine-specific, but the action it

is to implement is universal. The code will extract the word pointed to by the

word-address register and push it to the data stack and then jump to the inner

24 THREADED INTERPRETIVE LANGUAGES

interpreter routine NEXT. Note that this code is not executed when CON¬
STANT is defined, but is added to the dictionary definition of CONSTANT.

There are three levels of action: one when CONSTANT is defined, one
when 2GROSS is defined, and one when 2GROSS is evoked. When 2GROSS
is defined, the keyword CONSTANT is called. CONSTANT first creates a
primitive header called 2GROSS by the call to CREATE. The keyword in
CONSTANT will pop the data stack and enclose the value in the dictionary.
In the example, it pops the hexadecimal 0120 (288 decimal) from the stack and
places it in the body of 2GROSS. The keyword SCODE in CONSTANT
replaces the code address of the word being defined by the address of the word
following its location and then returns to the inner interpreter routine NEXT.
The result is diagrammed in figure 2.6.

CONSTANT

LINK

COLON

CREATE

NEXT

2 GROSS

LINK

CA

0120

Figure 2.6: 2GROSS defined as a constant.

When 2GROSS is evoked, its code address points to the machine code
following the SCODE in CONSTANT. This code will be executed. However,
the inner interpreter routine RUN will leave the word-address register contents
at the address of the 0120 following the code address of 2GROSS. The machine
code, as explained, will extract the word located at the word-address register
location and push it to the stack (ie: it pushes hexadecimal 0120 to the stack).
All constants defined using CONSTANT have code addresses which point to
the machine code in CONSTANT.

The keyword ;CODE is the critical factor in defining generic data types. It
allows the specification of actions (machine code) that allow the creation of
data types. The machine code that follows ;CODE is a generic primitive con¬
sisting of a body and a return. The address for this primitive is always stored
in the word-address location of the word being defined.

So far, examples of defining new keywords directly in machine code by

HOW A TIL WORKS 25

compiling new definitions and using defining words have been presented. Even

more examples will be given in Chapter 4, 'The Tower of Babel Revisited."

2.6 Vocabularies

Although it has been mentioned that the dictionary is segmented into

vocabularies, no rationale for this has been presented. There are several

reasons for this segmentation. Fundamentally it presents a functional separa¬

tion of the language. A full-blown text editor may be desirable sometimes, but

a modest editor may be resident in the core language. By vocabulary control,

keyword names that could be in contention are resolved. Another reason for

different vocabularies is that certain keywords can be hidden. Compiler direc¬

tives, for example, are only used in the compile mode. If the operator called

these directives in the execution mode, stack errors would result and it is possi¬

ble for the program to consume itself.

The basic vocabulary structure is a tree with the core language as the trunk.

Each vocabulary is named and its location exists in a passive keyword in the

core. This is illustrated in figure 2.7. Note that some vocabularies are normally

hidden but may be linked to the core in special circumstances. Others may be

lost by the simple expedient of not including headers.

ASSEMBLER

The vocabulary search order determines how keywords are located. Each

vocabulary is a linear-linked list by virtue of its header format. Two keywords

can have precisely the same identifying name. The first one located will ter¬

minate the search. It is this keyword that will be used by the outer interpreter.

New definitions are always linked to the top of an existing vocabulary.

Redefining an existing keyword will cause any subsequent reference to use the

new definition. Any preexisting routine which calls the old definition will

continue to use the old definition. This results from the fact that the word ad¬

dress of the old definition is extant in all preexisting routines. It has been com¬

piled and will not change.

26 THREADED INTERPRETIVE LANGUAGES

A dictionary search begins at the address contained in the variable CON¬

TEXT. This variable is set when the name of a vocabulary is used. For exam¬

ple, the keyword CORE is the core language vocabulary name and its use sets

CONTEXT to point to CORE which contains the address of the first dictionary

header in the core language. New keyword definitions are linked to the

vocabulary specified by the variable CURRENT. The keyword DEFINITIONS

sets CURRENT to CONTEXT. Some defining words also affect CONTEXT.

The keyword which establishes the compiling mode, sets CONTEXT to

CURRENT while the defining word CODE, which evokes the assembler

vocabulary, sets CONTEXT to ASSEMBLER.

Keywords from different vocabularies can be interlaced in memory; they

need not be contiguous. New definitions are always added to the top of the

language. They build up in memory space and are linked to the CURRENT

vocabulary. A keyword FORGET will cause removal of dictionary entries in a

spatial sense. If the keyword name following FORGET is in the CURRENT

vocabulary, the keyword and all subsequent keywords will be forgotten.

FORGET sets CONTEXT to CURRENT, locates the keyword, resets CUR¬

RENT to the link address of the located keyword and resets the dictionary

pointer DP to the first header byte of the located keyword. Care is advised in

the use of FORGET. It is possible to forget the entire language.

The use of the keyword IMMEDIATE causes the top entry of the CURRENT

vocabulary to be made an immediate keyword (ie: can be executed only in the

compile mode).

Some comments are needed concerning immediate words, dictionary

headers, and lost vocabulary words. A standard technique for defining an im¬

mediate keyword is to set a precedence bit somewhere in the header (generally

the length-parameter, high-order bit). If this bit is set, the keyword is executed

regardless of the mode. I do not like this technique. I usually establish a

separate compiler vocabulary for immediate words. This vocabulary is

searched only if the compile mode is in effect. This prevents compiler direc¬

tives from being executed in the execute mode. The compiler directives load

the word addresses of program-control directives to the dictionary and muck

around with the stacks. There is never a reason for executing a compiler direc¬

tive in the execution mode. The program control directives do not have

headers and thus cannot be located by the search algorithm. The compiler

directives know the word addresses of their associated program control direc¬

tives. No other keyword needs this information. The operator does not need to

know this information either.

2.7 Synthesis

Synthesizing this chapter is essential to understanding the threaded inter¬

pretive language concept. All of the elements are interdependent. The die-

HOW A TIL WORKS 27

tionary formats, the interpreters, the stacks, the defining words, the compiling

mode, and the vocabularies are all predicated on the form and function of each

other. If you do not feel comfortable with some element, try rereading it. If

this does not work, continue to the end. You may find the answer to what's

bugging you.

28 THREADED INTERPRETIVE LANGUAGES

3 | HUP, Two, Three, Four

Some people have been audacious enough to claim that I

march to a different tune. Regardless of the validity of that,

I tell the truth when I claim that your TIL had best march

quickly through your code. And tirelessly too!

3.1 An Inner Interpreter For A Generic Computer-

To fully illustrate the actions of an inner interpreter. I'm going to resort to

the old generic computer trick. The generic computer I will construct is not

very sophisticated: the inner interpreter code will be written, a primitive and a

secondary will be written, and then we will execute some code — at least on

paper.

The computer to be built will have several registers. Registers are not all that

important, but the principles are easier to understand this way. The same end

results can be achieved using memory locations in machines with fewer

registers. The registers are all 16-bit registers as follows:

Register Description
1 Instruction register. Contains the address of the next

instruction in the threaded list of the current secon¬
dary.

WA Word Address register. Contains the word address
of the current keyword or the address of the first
code body location of the current keyword.

CA Code Address register.
RS Return Stack register.
SP Stack Pointer register.
PC Processor Program Counter register.

HUP, TWO, THREE, FOUR 29

The instruction set necessary to illustrate the inner interpreter is fairly sim¬

ple. A byte-oriented addressing scheme is presumed (ie: I + 2 is the next word

in memory following memory word location I). All instructions are presumed

to be one word in length. The following instruction set is assumed:

Instruction
@A—B

A =A + n

POP S—A

PSH A—S

A—PC

JMP XX

Description
The contents of the memory location word whose
address is in register A are loaded into register B
(a 16-bit indirect fetch from A to B).
The contents of register A are incremented by the
constant n.
The S push down stack top entry is loaded to
register A and the stack pointer is adjusted.
The A register contents are loaded to the S push
down stack and the stack pointer is adjusted.
The contents of the A register are loaded into the PC.
The processor will fetch its next instruction from this
location.
Unconditional jump to the address contained in the
word following the jump instruction.

Note: — A and B are any of I, WA, or CA.
— S is either RS or SP.

The inner interpreter can be written as in listing 3.1.

Location Mnemonic Instruction Comment

0140 COLON PSH 1 — RS
0142 WA—1
0144
0146

JMP)
0104 J

Jump to NEXT

0100 SEMI 0102 Code address of SEMI
0102 POP RS—1
0104 NEXT @I-WA
0106 1=1 + 2
0108 RUN (3>WA—CA
01OA WA = WA + 2
010C CA-PC

0050
7E) Dictionary

0052 XE > header
0054 LA J for EXECUTE
0056 EXECUTE 0058 Code address of

EXECUTE

30 THREADED INTERPRETIVE LANGUAGES

0058
005A
005C

POP SP-WA
JMP
0108

Jump to RUN

Listing 3.1: Pseudo-code implementation of inner interpreter.

That's it! The entire inner interpreter is just 36 bytes long.

All of this may appear hopelessly complex or ridiculously simple. Unless the

details and beauty of the inner interpreter are appreciated, it is impossible to

fully understand a threaded interpretive language.

Some points about this inner interpreter implementation:

• The I register is effectively the program counter for the threaded inter¬

pretive language. It must be preserved by all primitive machine code.

• Only the inner interpreter machine code and primitive machine code are

ever executed.

• When the routine RUN completes, the WA register points to the address

of the code body of the keyword. This fact is important in passive

keyword definitions and in the COLON routine.

• The word address of SEMI, the value that terminates all secondaries,

contains a word address value equal to the address of SEMI. Thus SEMI

is a primitive.

• SEMI always executes NEXT and RUN; NEXT always executes RUN.

• The word address of all secondaries contains the address of the COLON

routine. When the PSH I —RS instruction is executed, it saves the word

address of the next instruction of the current secondary on the return

stack. The instruction WA^I actually loads the word address of the first

instruction of the new secondary into the instruction register (see third

remark above).

• The routine EXECUTE is used by the outer interpreter to execute a

keyword. The search algorithm returns the word address of a located

keyword on the stack. EXECUTE pops this word address into WA and

jumps to RUN. This causes the keyword to be executed but control

returns to the outer interpreter at completion since the I register contains

the word address of the keyword following the outer interpreter EX¬

ECUTE location.

A modestly complex but fundamentally simple scenario will be developed to

illustrate several aspects of the inner interpreter. Assume that a constant with

value 288 has been defined as 2GROSS. A primitive routine called DUP that

duplicates the top stack exists. A secondary that duplicates the top stack value

twice is desired. It is defined as:

: ■ 2DUP ■ DUP ■ DUP ■; ■■OK

HUP, TWO, THREE, FOUR 31

A routine named FUNNY is needed that leaves three values of 288 on the stack
for some funny reason. It is defined as:

: ■ FUNNY ■ 2GROSS ■ 2DUP ■; ■■OK

Finally FUNNY will be executed as:

FUNNY ■■OK

The resulting memory contents after this sequence will be presumed to be as

shown in listing 3.2.

Location Contents Comments

1000 0056 EXECUTE location in
1002 XXXX outer interpreter

3D \ Dictionary header
UP > for the
LA J primitive DUP
2008 DUP's word address
POP SP—CA Code that duplicates
PSH CA—SP the stack
PSH CA—SP

1 Jump to NEXT
0104) K

2100 8C Dictionary header
2102 ON for the secondary
2104 LA defining keyword CONSTANT
2106 0140 COLON Address
2108 CREATE) Actually addresses but
210A not important for
21OC SCODE J the example
21OE @WA —CA Code to extract a
2110 PSH CA-SP constant and push it
2112
2114

JMP)
0104 I

Jump to NEXT

2050 62) Dictionary header
2052 GR > for the constant
2054 LA) 2GROSS
2056 210E Pointer to CONSTANT code
2058 0120 Decimal 288 in hexadecimal

2200 42) Dictionary header for
2202 DU > the secondary
2204 LA) 2DUP

2000
2002
2004
2006
2008
200A
200C
200E
2010

32 THREADED INTERPRETIVE LANGUAGES

2206 0140
2208 2006
220A 2006
220C 0100

220E 5F
2210 UN
2212 2200
2214 0140
2216 2056
2218 2206
221A 0100

COLON Address
DUP Address
DUP Address
SEMI Address

Dictionary header for
the secondary FUNNY
linked to 2DUP
COLON Address
2GROSS Address
2DUP Address
SEMI Address

Listing 3.2: Memory contents after routine FUNNY has been compiled.

In the dictionary header for FUNNY, the link address points to 2DUP since

consecutive definitions were entered by the operator.

The scenario will begin with the word address of FUNNY (2214) on the stack

and the outer interpreter just about to execute the EXECUTE word address (I
contains 1000). The step-by-step march of the processor through the code is

given in table 3.1.

While a careful examination of the code illustrates the principles, the exam¬

ple is not exactly tiptoeing through the tulips. Stomping, maybe, but tiptoeing

— no. This is partially due to some not-too-neat scenario definitions. For in¬

stance, the definition of 2DUP as a primitive requires one more instruction

than a DUP, or two more instructions than the 2DUP secondary form. If this

were done, a NEXT-RUN-COLON, NEXT-RUN-DUP and NEXT-RUN-SEMI

set of instructions would be replaced by the extra PSA CA—A instruction

needed to implement a primitive 2DUP keyword. FUNNY is a funny definition

simply because it is incomplete and does not do very much. If it were really re¬

quired, a primitive machine-code keyword routine could be defined to both

generate the hexadecimal 0120 and push it to the stack three times. This is far

more efficient than the scenario definitions.

The code illustrated here uses post-indexing of the word and instruction

registers. In processors with pre-indexing indirect memory fetches, or in most

microcomputers, the indexing increments can occur before the fetches. This

will affect the inner interpreter code and other routines which access the word

and instruction registers.

3.2 An Inner Interpreter For the Z80

In implementing any inner interpreter, careful consideration should be given

HUP, TWO, THREE, FOUR 33

ROUTINE PC INSTRUCTION 1 WA CA RS SP

NEXT 0104 @I-WA 1000 0056 2214
0106 1=1+2 1002 0056 - - 2214

RUN 0108 @WA-CA 1002 0056 0058 - 2214
01 0A WA = WA + 2 1002 0058 0058 - 2214
010C CA-PC 1002 0058 0058 - 2214

EXECUTE 0058 POP SP-WA 1002 2214 0058 -)
005A JMP 0108 1002 2214 0058 -)

RUN 0108 @WA-CA 1002 2214 0140 - — \
01 0A WA = WA + 2 1002 2216 0140 - \
010C CA-PC 1002 2216 0140 - s

COLON 0140 PSH l-RS 1002 2216 0140 1002)
0142 WA — 1 2216 2216 0140 1002 s
0144 JMP 0104 2216 2216 0140 1002 s

NEXT 0104 (S)l —WA 2216 2056 0140 1002 - \
0106 1=1+2 2218 2056 0140 1002)

RUN 0108 (SJWA-CA 2218 2056 21 0E 1002
01 0A WA = WA + 2 2218 2058 21 0E 1002 l
010C CA-PC 2218 2058 21 0E 1002

CONSTANT 21OE (SJWA-CA 2218 2058 0120 1002
/

2100 PSH CA-SP 2218 2058 0120 1002 0120 i
2112 JMP 0104 2218 2058 0120 1002 0120 S

NEXT 0104 (S)l —WA 2218 2206 0120 1002 0120 \
0106 1=1+2 221 A 2206 0120 1002 0120 1

RUN 0108 (SJWA-CA 221 A 2206 0140 1002 0120 >
01 0A WA = WA + 2 221 A 2208 0140 1002 0120 |
010C CA-PC 221 A 2208 0140 1002 0120 /

COLON 0140 PSH l-RS 221 A 2208 0140 221 A, 1002 0120)
0142 WA— 1 2208 2208 1040 221 A, 1002 0120 }
0144 JMP 0104 2208 2208 0140 221 A, 1002 0120)

NEXT 0104 (SJI-WA 2208 2006 0140 221 A, 1002 0120 \
0106 1=1+2 220A 2006 0140 221 A, 1002 0120 1

RUN 0108 (SJWA-CA 220A 2006 2008 221 A, 1002 0120 \
01 0A WA = WA + 2 220A 2008 2008 221 A, 1002 0120 i
010C CA-PC 220A 2008 2008 221 A, 1002 0120 J

DUP 2008 POP SP-CA 220A 2008 0120 221 A, 1002 \
200A PSH CA-SP 220A 2008 0120 221 A, 1002 0120 1
200C PSH CA-SP 220A 2008 0102 221 A, 1002 0120,0120 ?
200E JMP 0104 220A 2008 0120 221 A, 1002 0120,0120 J

NEXT 0104 (SJI-WA 220A 2006 0120 221 A, 1002 0120,0120 \
0106 1=1+2 220C 2006 0120 221 A, 1002 0120,0120 1

RUN 0108 (SJWA-CA 220C 2006 2008 221 A, 1002 0120,0120 \
01 0A WA = WA + 2 220C 2008 2008 221 A, 1002 0120,0120 1

010C CA-PC 220C 2008 2008 22 1 A, 1002 0120,0120 /
DUP 2008 POP SP-CA 220C 2008 0120 221 A, 1002 0120

200A PSH CA-SP 220C 2008 0120 221 A, 1002 0120,0120

200C PSH CA-SP 220C 2008 0120 22 1 A, 1002 0120,0120,0120

200E JMP 0104 220C 2008 0120 221 A, 1002 0120,0120,0120

NEXT 0104 (SJI-WA 220C 0100 0120 221 A, 1002 0120,0120,0120

0106 1=1+2 220E 0100 0120 221 A, 1002 0120,0120,0120

RUN 0108 (SJWA-CA 220E 0100 0102 221 A, 1002 0120,0120,0120

01 0A WA = WA + 2 220E 0102 0102 221 A, 1002 0120,1020,0120

010C CA-PC 220E 0102 0102 221 A, 1002 0120,0120,0120

SEMI 0102 POP RS-I 221 A 0102 0102 1002 0120,0120,0120

NEXT 0104 (SJI-WA 221A 0100 0102 1002 0120,0120,0120

0106 1=1+2 221 C 0100 0102 1002 0120,0120,0120

RUN 0108 (SJWA-CA 221 C 0100 0102 1002 0120,0120,0120

01 0A WA = WA + 2 221 C 0102 0102 1002 0120,0120,0120

01 0C CA-PC 221 C 0102 0102 1002 0120,0120,0120

SEMI 0102 POP RS-I 1002 0102 0102 - 0120,0120,0120

NEXT 0104 (SJI-WA 1002 XXXX 0102 - 0120,0120,0120

Table 3.1: Stepping through the pseudo-code for routine FUNNY.

Set up to

run EXECUTE

Run EXECUTE

Set up to run
FUNNY

Nest down

one

level

Set to
run 2GROSS

Run CONSTANT

code to get
the value

Set up to
run

2 DUP

Nest
down

one level

Set up to

run the

first DUP

Run the

first
DUP

Set up to
run the

second

DUP

Run the

second

DUP

Set up to

run SEMI

in 2DUP

Denest 1 level

Set up to

run SEMI

in FUNNY

Denest 1 level

Set up to run

outer interpreter

routine following

EXECUTE

to maximizing the efficiency of the code in terms of execution speed. The faster

the routines, the more efficient the TIL. The Z80 is not an ideal microcomputer

for implementing a TIL. Fundamentally it does not have a high-speed, 16-bit,

indirect memory-addressing mode. It does have an 8-bit, implied memory¬

addressing mode which can be used with a slight degree of difficulty to imple¬

ment the inner interpreter.

34 THREADED INTERPRETIVE LANGUAGES

To mechanize the inner interpreter, the Z80 registers are assigned as in table

3.2.

Register Pair Usage

AF 8-bit accumulator and program status word
BC Instruction register
DE Word address register and

scratch register
HL Scratch register
IX Return stack pointer
IY Address of NEXT
SP Data stack pointer
AF' x
BC' f
DE' (

Scratch

hl' y

Table 3.2: Z80 register assignment.

The HL register pair is also used as a 16-bit accumulator. The use of IY to con¬

tain the address of NEXT provides a quick way to perform a 2-byte jump to an

absolute memory location (NEXT) via a JP (IY) instruction: an implied jump to

the address contained in IY.

The particular method of arranging the data and return stacks affects the

code used to implement the inner interpreter. The top 4 K bytes of my Z80

system are arranged as shown in figure 3.1. The system monitor uses the

system 1 K bytes of programmable memory for stacks and variable storage.

The threaded interpreter also uses this same area for its stacks.

VIDEO REFRESH MEMORY AREA (IK)

IK SYSTEM RAM (USER MEMORY) AREA

2 K EPROM SYSTEM MONITOR

Figure 3.1: Memory

map of top 4 K bytes
on typical Z80 system.

The system programmable memory map is shown in figure 3.2. The first 128

bytes are reserved for input line buffers. The area immediately above the buf¬

fer area is reserved for the system monitor and TIL system variables. The data

stack pointer is initialized to the top of this memory area and the return stack

HUP, TWO, THREE, FOUR 35

pointer to the middle of the memory. This implementation allocates 512 bytes

to the data stack and about 300 bytes to the return stack with both stacks

building downward in memory. Actually, I am cheating. The system monitor

is a threaded interpreter which explains why the TIL system variables are

located here in my system. It is more typical to locate the TIL system variables

with the TIL code. The stack areas are more than adequate for any problem I

have ever encountered, even though only 1 K was allocated. The data stack is

used for temporary parameter storage. If great numbers of user variables are

required, the top of the low-order memory should be partitioned into blocks

for this data storage. (A TIL will not "create" memory. A 4 K-byte TIL and a

4 K-byte BASIC leave the same free memory space — in any given system —

for programs and variables. TIL programs tend to use less memory, leaving

more room for variables.)

FC00

FB00

F A 00

F 900

F 800

DATA STACK POINTER

I
Figure 3.2: System Memory map.

RETURN STACK POINTER

1

SYSTEM VARIABLES

-128 BYTE LINE BUFFER PLUS TERMINATORS

Assume the inner interpreter is to be located in low memory. One

mechanization of the inner interpreter is given in table 3.3. Several interesting

features can be learned from this specific mechanization as opposed to the

generic computer inner interpreter.

The Z80, as many other microcomputers, accesses the low-order byte in the

first memory location and the high-order byte as the second location when an

address (word) is accessed from memory. This order is maintained when the

return stack is accessed. This is obvious in both the SEMI and COLON

routine, as in table 3.3. It is clear from these routines that the implied, 8-bit ad¬

dress scheme requires at least twice the number of instructions as the generic

computer with its single, indirect, 16-bit addressing instruction. Furthermore,

the use of the IX register for implied addressing is substantially slower than us¬

ing the main Z80 registers as may be noted from the "T" state or timing states

associated with each instruction.

The time efficiency of a TIL keyword can be computed from knowledge of

the inner interpreter timing and the keyword timing. Stepping from primitive

36 THREADED INTERPRETIVE LANGUAGES

LOCATION CONTENTS ASSEMBLY CODE "T" STATES

0100 0201 SEMI: * +2
0102 DD4E00 LD C,{IX+0} 19
0105 DD23 INC IX 10
0107 DD4600 LD B,{IX+0} 19
01 0A DD23 INC IX

0
0

L

D

II

o

010C 0A NEXT: LD A, {BC} 7
01 0D 6F LD L,A 4
01 0E 03 INC BC 6
01 OF 0A LD A, {BC} 7
0110 67 LD H,A 4
01 1 1 03 INC BC

0
0

ll

C
D

0112 5E RUN: LD E,{HL} 7
0113 23 INC HL 6
0114 56 LD D# {H L} 7
0115 23 INC HL 6
0116 EB EX DE,HL 4
0117 E9 JP {HL} 4 = 34

0118 DD28 COLON: DEC IX 10
01 1 A DD7000 LD {IX + 0},B 19
01 ID DD2B DEC IX 10
01 IF DD7100 LD {IX+0},C 19
0122 4B LD C,E 4
0123 42 LD B,D 4
0124 FDE9 JP {IY} 8 = 74

0126 07455845 DATA 7,E,X,E
012A 0000 DATA 00
012C 2E01 EXECUTE: * + 2 * +2
012E El POP HL
012F 1 8E1 JR RUN

Table 3.3: A Z80 inner interpreter.

to primitive within a secondary always requires an execution of NEXT, RUN,

the primitive code body, and the return to NEXT for each step. A primitive

always terminates with a JP (IY) instruction as its return. Thus, for the Z80 in¬

ner interpreter:

"T" Primitive = NEXT + RUN + body + JP (IY)

= 34 + 34 + body + 8

= 76-1- body

Primitive primitives are extremely inefficient. The primitive DROP requires

HUP, TWO, THREE, FOUR 37

a single POP HL instruction in its code body with a "T" state requirement of

ten states. If the primitive code was simply strung together (that is, truly com¬

piled), this keyword would require ten states rather than the eighty-six states

required of the TIL definition. The "inefficiency" of the TIL is then:

% Inefficiency = tQta^ kody x 100
body

DROP is thus 760% inefficient relative to compiled code. The arithmetic
multiply routine requires 384 to 464 T states to complete. Thus has an

inefficiency of 16 to 20% relative to compiled code.

The timing inefficiency of secondaries is more difficult to assess. It is clear,

however, that each call to a secondary requires a NEXT-RUN-COLON and a

NEXT-RUN-SEMI on entrance and exit. If we return to the 2DUP example of

table 3.3, a DUP keyword costs thirty-two T states and a primitive 2DUP costs

forty-three T states. Thus for 2DUP:

Secondary = NEXT + RUN + COLON + NEXT + RUN + DUP

+ RET + NEXT + RUN + DUP + RET + NEXT

+ RUN + SEMI
= 34 + 34 + 74 + 34 + 34 + 32 + 8 + 34 + 34

+ 32 + 8 + 34 + 34 + 58

= 420 + 64 = 484

Primitive = NEXT + RUN + 2DUP + RET

= 34 + 34 + 43 +8

= 76 + 43 = 119

The secondary form of 2DUP requires about four times as long to execute as

does the primitive form. The inefficiency of the 2DUP forms are:

AQA — AT.

Secondary = - = 1026%
43

Primitive = 77 =177%
43

This explains why I prefer all operator-available keywords to be primitives.

The nice feature about a TIL is that the primitives can be as complex as

desired. In a truly time-critical application, it is possible to resort to machine

code. In applications that are not time-critical, the ease of defining keywords

as secondaries is available. The speed of the outer interpreter is never a prob¬

lem. Believe me, it is much quicker than the operator.
As should be clear from the Z80 inner interpreter example, care must be ex¬

ercised in designing an inner interpreter. Not only must the register allocation

be optimized for inner interpreter speed, but the stack location and mechaniza¬

tion must also be considered.

38 THREADED INTERPRETIVE LANGUAGES

3.3 Double Time

Almost inevitably, the first thought that enters a programmers mind about

any program is: "How can I speed it up?" There are several ways to speed up a

TIL. Most fundamental is to select a processor with an optimal set of address¬

ing modes. For instance, compare my Z80 with an indirect, 16-bit, addressing

machine. Naturally it helps to operate the chip at its maximum possible speed.

(I run a Z80A processor at 2.5 MHz rather than its 4 MHz limit to insure

reliability.) Almost all attempts to "speed up" a given processor and program

combination result in the "times 2" phenomenon — careful "tuning" may in¬

crease the speed of an average routine by two. There are limits to how much is

gained by optimization.

The next question almost always involves microcoding a particular machine

to optimize its execution relative to a particular language. Microcode has

nothing to do with microcomputer code — it is a means of implementing a

usable processing instruction set through the use of a faster and more primitive

internal processor. This internal processor executes microcode to implement

the functions necessary to emulate the instruction set. The instruction set

which the processor executes can be changed by changing the microcode.

If this approach is used to mechanize the instructions required to implement

the inner interpreter, a faster TIL could result, one possibly twice as fast as the

same processor without the specialized instructions. Taking things one step

further, the inner interpreter and the primitives necessary to create all other

keywords (say forty to sixty primitives) could be microcoded. The inflexibility

of the instruction set is the disadvantage of this approach. Speed is gained in

the primitives themselves, but there is no option to use "machine code" since

the only "machine codes" are the primitives.

Among the 8-bit microcomputer chips available today, the Signetics 2650

probably has the best instruction set for TIL implementation. The RCA 1802 is

also reasonable. The more popular Z80, 8080, 6502 and 6800 are not the best

but they are viable. Integer TILs based on these microcomputers are only three

to four times as fast as integer BASICs. The expected upgrades to the 8-bit

microcomputers such as the 6809 should cure the speed problem. Most

minicomputers are fundamentally 16-bit machines and usually have more ad¬

dressing modes than microcomputers. Minicomputers are generally far more

efficient than microcomputers in a threaded interpreter environment.

THE TOWER OF BABEL REVISITED 39

4 | The Tower of Babel
Revisited

A plethora of keyword actions is possible. I shall explore

a subset of the more common actions. Like a menu in a

Chinese restaurant, you have a choice from column A, col¬

umn B, etc. Tea and fortune cookies will not be provided.

The typesetter does not have those fonts either.

4.1 Naming Conventions

Keyword names in this text were selected arbitrarily and capriciously, and

sometimes simply plagiarized from existing language standards. The main pur¬

pose of the keyword names is to provide a degree of cohesiveness to the text.

Feel free to create your own language by creating your own names.

The action produced by the keyword name is the important point, not the

name itself. One, "uno," and "ber" (Turkish) are all cognates. Some

mathematical terms such as + and — are more widely used but are still not

universal. The fundamentally English keyword names I use are designed to

trigger a personal internal recognition of the associated action. A French-,

German-, or Turkish-based TIL is just as viable and just as easy to generate.

After all, isn't that what Babel was about?

Several relatively simple standards are used in my names for keywords. For

example, all of the keywords associated with bytes (as opposed to words)

prefix the equivalent word length keyword with the letter "C". This C is bor¬

rowed from FORTH, not C. (FORTH? SiI)

Keywords that always occur in pairs in a fixed order and may have other

keywords between their occurrence generally start with < if they are the left

keyword and end with > if they are the right keyword. I also use < if

something is entering the stack. This just keeps the water muddy.

A routine that has no dictionary headers but whose word address is known

by another keyword generally starts with *. The remaining characters are the

same as the calling keyword. Thus, IF knows the word address of the "lost"

keyword *1F.

40 THREADED INTERPRETIVE LANGUAGES

Finally, subroutines used by several keywords start with a $. Some of these

subroutines, such as the I/O (input/output) routines, are presumed to exist in

your system's software.

4.2 Data Types

In the following paragraphs, an integer language will serve as the baseline.
This is not to imply that floating-point threaded interpreters are not viable —
they are. An integer baseline language is easier to explain and implement on a
microprocessor that does not have floating-point hardware. Integer versions
take maximum advantage of the inherently limited computational capabilities
of a microprocessor.

4.2.1 Numbers -

There are innumerable ways to handle numbers in a threaded interpreter.

The method I shall propose is a very flexible, general method. Simpler schemes

are possible.

All number tokens in the input buffer are converted to binary integers for in¬

ternal usage. This conversion takes place in the outer interpreter routine

NUMBER. Internally the integers may be 8 or 16 bits wide (byte or word) and

occasionally 24 bits wide, except when they are on the data stack. All data

stack numbers are 16 bits wide.

Numbers are converted to binary form from their input form using a system

variable called BASE. The number base must be in the set 2 thru 9, A thru Z,

with A = 10, etc. (BASE controls both input and output.) Keywords named

BINARY, OCTAL, DECIMAL, and HEX preset the variable BASE to 2, 8,10,

and 16, respectively, since they are the most commonly used bases. Note that a

leading " —" may be the first character in a number token but all other

characters must be in the set {0, ..., BASE —1}, ie: decimal numbers or base 10

numbers are in the set {0, ..., 9}. The numbers 0, —1, and 1 are usually de¬

fined as constants with keyword names 0, —1, and 1, respectively, since they

exist in all allowable number bases.

The internal forms of the binary number are first generated as 16-bit integers

by the outer loop routine NUMBER. The integers may be signed or unsigned,

depending on the application. Signed integers have the range:

-32768<n< 32767

Unsigned integers have the range:

0<n< 65535

THE TOWER OF BABEL REVISITED 41

A leading minus sign causes the two's complement of the number to be taken

after conversion to the internal binary form. A leading plus sign is not allowed

in a number.

When stored in memory as constants, variables, etc, or when stored in a

definition as a number literal (preceded by the number literal handler), the full

16-bit range capability is not always required. Signed and unsigned numbers in

the ranges:

— 128<n< 127

0 < n < 256

only require 8 bits. Memory utilization is minimized by storing these numbers

as bytes rather than words. This does require that the routines which place

these numbers on the stack have a predefined technique for expanding 8-bit

numbers to 16-bit numbers. The routines that do this expansion are established

by defining byte constants, byte variables, etc, and a byte-number literal

handler.

There are two ways to handle the predefinition. One is to treat numbers in

the range 0 to 256 as bytes and treat all negative numbers as word length in¬

tegers. This is consistent with allowing only positive byte constants, etc.

Although I have occasionally implemented this technique, an alternate form is

also available. By defining byte numbers as having the range —128 to 127, all

byte forms can be defined consistently. When byte forms are pushed to the

stack, all bits of the most significant byte are set equal to the MSB (most

significant bit) of the number byte. This is the standard two's complement con¬

vention.

Care must be exercised when using byte numbers. It is possible to leave a

number on the stack that exceeds the predefined range. These numbers cannot

be correctly stored into a byte variable. System error messages are generally

not included for this type of error since the tests to discover them adversely af¬

fect execution speed. The burden is on the user to insure numeric correctness.

All of the attributes of the input number conversion are controlled by the

outer loop routine NUMBER. Caution must be used in naming tokens to insure

that this routine can be executed. It is possible on number entry to name a

keyword "2". Any attempt to input the number two would result in the search

algorithm finding the keyword "2" and performing the indicated action. As

long as "2" is defined as the constant two, the system is safe. Any other defini¬

tion would effectively eliminate all number bases other than binary. The

number conversion routine is never reached if an existing keyword name pre¬

empts a number. For this reason it is wise to include a character not in the set

{0 thru 9, A thru Z} in all keyword names of length two or less and to include

high-end alphabetic characters in keyword names of length three. This allows

large number bases before a collision occurs between a keyword and a poten¬

tial number.

The outer loop NUMBER routine either pushes the converted binary

number to the stack if the execute mode is in effect, or adds a literal handler

word address and the number to the dictionary if the compile mode is in effect.

42 THREADED INTERPRETIVE LANGUAGES

The literal-handler word address may specify either a byte number (*C#) or a

word number (*#). All of this is transparent to the programmer.

When the number literal handler *C# or *# is executed, the instruction

register points to the location of either the byte or the first byte of the word

where the number is stored (ie: its address in the list of "instructions"). The

literal handler extracts the number from the instruction list, pushes the number

to the stack, and increments the instruction register to the instruction

following the number in the threaded list.

Using the literal format, byte-length numbers require 3 bytes and word-

length numbers require 4 bytes within the keyword being defined. The selec¬

tion of the format needed is done by the system, based on the actual number

entered in the definition.

In purely integer TILs, an extension to this baseline can be included to fake

out the populace. Periods (decimal points) can be allowed in the input number.

The number conversion routine must be designed to ignore periods but this

allows "real" numbers.

4.2.2 Logical Flags

A logical flag is a parameter with two possible states. True or False. A com¬

puter cannot directly recognize these states, so the standard convention is to

define True as 1 (non-zero) and False as 0 (zero). Certain relational testing

keywords return logical flags which are always a zero or a 1. A constant or a

variable may sometimes be treated as a logical flag. In this event any non-zero

number is by definition True. Care must be used in designing keywords that

expect a logical flag as an input parameter. Any non-zero number should be

treated as True, so that all bits of a flag must be examined, not just the LSB

(least significant bit). Flags are defined and stored in memory as variables.

4.2.3 Strings and Things

All systems that display data to the operator must have at least a rudimen¬

tary form for handling strings of ASCII data. Displaying messages to the

operator implies some method of outputting an ASCII string. Displaying

numbers implies converting the numbers to a sequence of positional numbers,

converting these numbers to their equivalent ASCII number code, and display¬

ing the resulting string.
In our threaded interpretive language, the tokens are ASCII strings. When

the outer interpreter moves a token to the dictionary space, it appends the

token length to the string as the first character of the string. This particular

string foinnat is convenient for dictionary header formation as well as for input

THE TOWER OF BABEL REVISITED 43

number conversion. If the system does not recognize the token, an error

message is created from the data located at the DP (dictionary pointer) con¬

tents (the location of the unknown token in extended header format). This
string format has a lead number equal to the number of characters in the

string, and it is followed by the string itself.

When an output number conversion is requested, an alternate method of

string handling is used. In this circumstance, the unused high-order bit (except

for parity in some input/output transfers) of the ASCII code format is

employed to mark the last character in the string. This bit is one set in the last

character of the string. For number output, the terminating character is always

a space with the higher-order bit 1 set, which is pushed onto the stack.

Numeric data is always converted by pushing successive ASCII numbers

characters to the stack. During number output, the string values are displayed

a character at a time as popped off the stack until the character with the high-

order bit set is output.
Strings of ASCII data may be embedded within a word being compiled as a

literal. The system keyword that performs this action is the immediate

keyword "[".

[— This keyword adds the ASCII literal handler word address to the dic¬

tionary and encloses it in the definition being compiled. It changes the token

separator to "]" from the normal ■ and scans the next token from the input

buffer. Finally it encloses the scanned token in the word being defined.

This procedure encloses the ASCII literal handler, the length of the string, and

all characters (starting with the character following the ■ separator for "[")

until the occurrence of "]" in the word being defined. This format is very

similar to the first format introduced. When the literal handler is executed, the

instruction register points to the length of the string. The literal handler will

echo-display the string, leaving the instruction register pointing to the next in¬

struction in the threaded code.

Obviously the "[" keyword is very convenient for defining labels and

operator messages. Other string variables and operators are not part of the

core language. You can add strings and string operators if you need them for

your application.

4.2.4 Constants

Constants are named passive keywords that push the integer value of the

constant to the stack when evoked. Constant values may be internally stored

as bytes or words. Constants are defined in the execute mode using defining

words as follows:

44 THREADED INTERPRETIVE LANGUAGES

n ■ CONSTANT ■ name

m ■ CCONST ANT ■ name

where:

-32768 < n < 32767

-128 < m < 127
} = the value

and where name is any valid token. CONSTANTS require 10 bytes of storage

and CCONSTANTs require 9 bytes of storage including the header (see figure
2.6). The numbers n and m are converted using the BASE in effect when they

are defined.

Constants may be compiled into other keyword definitions using one of two

techniques. For example, the sequence:

DECIMAL ■288 ■ CONSTANT ■ 2GROSS ■■OK

:■.■2Grossb.m-mmoK

or:

DECIMAL ■: ■ B288 ■ ■; ■■OK

are two techniques for compiling a keyword that contains an instruction to

push the integer 288 to the stack. In the first case a CONSTANT is defined

which requires 10 bytes for the dictionary entry and 2 bytes for each usage in

any subsequently defined keyword that includes the constant keyword. In the

second case the occurrence of a 288 in the input buffer causes the constant

literal handler (2 bytes) and the number (2 bytes) to be added to the threaded

code list of the word being defined rather than the word address of a constant

(2 bytes).

At first it would appear that a constant which is used less than five times

within a program need not be defined as a CONSTANT. For example, using

2GROSS four times in subsequent definitions costs 18 bytes total, but using

288 four times only requires 16 bytes total. There is, however, a subtle dif¬

ference. The constant definition can be changed at one place (the word

following its word address) and it will change the value pushed to the stack in

all occurrences of its invocation. The literal handler method requires that each

occurrence of the constant be located within each threaded code definition and

changed. This latter procedure is much more difficult than the former. The

constant forms are ideal for usage where occasional value changes are desired

or where the same constant is used five or more times within a program. The

values 0,1, and —1 are actually defined as CCONSTANTs since they occur so

often.

THE TOWER OF BABEL REVISITED 45

4.2.5 Variables

Variables are named passive keywords that push the address of the variable

to the stack when evoked. Variables may be internally stored as bytes or

words. Variables are defined in-line in the execute mode using defining words

as follows:

n ■ VARIABLE ■ name

m ■ C VARIABLE ■ name

where:

-32768 <n < 32767

-128 <m < 127) the initial value

and where name is any valid token. VARIABLES require 10 bytes of storage

and CVARIABLES require 9 bytes of storage including the header. The

variable dictionary entries are similar to the constant forms. The initial values

n and m are converted using the BASE in effect when they are defined.

4.2.6 Arrays

Arrays are named passive keywords that allocate blocks of dictionary

memory for data types following a dictionary header. Arrays are actually

application-specific but are based on variables since variables return the ad¬

dress of the first location in the array. For example, the sequence:

DECIMALB0BCVARIABLEBnameB99BDPB + IBBOK

will reserve 100 bytes of storage under the keyword name. In the example, the

sequence through "name" simply creates a CVARIABLE keyword and ini¬

tializes the first byte to zero. The sequence 99BDPB + ! advances the dic¬

tionary pointer by 99 so that 100 bytes following the header are reserved. Only

the first byte is initialized. The other 99 bytes contain garbage.

If the problem under consideration requires arrays, then create the arrays.

Operators to manipulate the arrays can also be defined to produce a language

specifically tuned to the array problem. In general, specific entries in arrays

are accessed by addressing them relative to the first address in the array. This

first address is the address pushed to the stack when the array keyword is

evoked.

46 THREADED INTERPRETIVE LANGUAGES

4.2.7 User Parameters

If a program is to be placed in read-only memory, a section of program¬

mable memory must be available for user parameter storage. The variable

defining words cannot be used in the generation of parameters within the pro¬

gram definition. The variable defining words compile the definition in-line.

This would intermix code and variables. After the program is placed in read¬

only memory, the variable could not be changed. It would always return the

value contained in the read-only memory (ie: the "variable" would become a

virtual constant).

The above problem of in-line variables could be circumvented by always

referencing the programmable memory address of the parameter in the

keyword definitions of the program. This generally requires 4 bytes per

reference: 2 bytes for the number literal handler plus 2 bytes for the variable

address, unless the variable area is within the first 256 bytes of memory. An

alternate approach is to define an immediate keyword called USERS. This im¬

mediate keyword expects a number in the range 0 < n < 255 as the next token

in the input buffer following its invocation. USERS encloses the user literal

handler in the definition, extracts the next token, converts it to an unsigned

byte constant, and encloses the number in the definition.

When executed, the user literal handler forms the address of the variable by

adding the number to the base address of the users parameter area in program¬

mable memory. This resulting address is pushed to the stack. This is usually

the method used to access system variables.

In effect, the keyword USERS allows relative addressing within a 256-byte,

users-memory parameter block. The block can be anywhere in the address

space and still be accessed by a 3-byte reference. This is obviously not as effi¬

cient as a 2-byte in-line variable (which won't work in read-only memory), but

is better than a 4-byte absolute reference. If more than the 256 bytes are needed

for user variable storage, simply define 1USER, 2USER, etc. Each form has

its individual base address allowing multiples of 256-byte blocks.

4.2.8 System Parameters

There are a number of parameters that the system must have available to

operate. These contain the critical system data. Depending on the central pro¬

cessing unit architecture, certain of these parameters may be stored in pro¬

cessor registers. Those system parameters not stored in registers are stored in

programmable memory as variables. An area of programmable memory must

be allocated for these variables.

For the interactive terminal-directed TIL being considered, the following

system parameters are used:

THE TOWER OF BABEL REVISITED 47

IR — The Instruction Register contains the word address of the next keyword

(instruction) in the current secondary keyword that the inner interpreter will

execute. It is the effective program counter for the TIL machine.

WA — The Word Address variable contains the word address of the current

keyword to be executed before the keyword code address is extracted by the

inner interpreter. It contains the address of the keyword code body just after

this event. This variable is important only for a short time following code ad¬

dress extraction. If the code called via the code address does not need the ad¬

dress of the code body, the WA variable can be overwritten. WA is most often

contained in a processor register.

SP — Data Stack Pointer.

RSP — Return Stack Pointer.

MODE — The system parameter MODE is a logical flag with False (0) equal to

the execute mode and True (1) equal to the compile mode. MODE is True set

by the keyword and False set on start/restart or by the keyword or

;CODE.

STATE — The system parameter STATE is a logical flag used to control ex¬

ecution of immediate keywords. In the compile mode (MODE=True), the

compiler vocabulary is searched and STATE is set True if the keyword is

found in this vocabulary. Keywords are executed by the outer interpreter

routine 7EXECUTE if, and only if, MODE equals STATE. 7EXECUTE always

sets STATE false before it completes.

DP — The Dictionary Pointer is a variable containing the address of the next

free location in the dictionary space.

CONTEXT — The variable CONTEXT contains the address of the vocabulary

which will be searched to locate keyword word addresses.

CURRENT — The variable CURRENT contains the address of the vocabulary

to which new keyword definitions will be linked.

START — The variable START contains a flag which is True if the TIL is

being entered for the first time and False otherwise. It is used to distinguish a

start from a restart.

LBP — The Line Buffer Pointer is a variable containing the address where

token scans will begin. When the input submode completes, LBP will point to

the first location of the line buffer. As each token is scanned, LBP is reset to

point to the location following the token separator of the token scanned.

BASE — The variable BASE contains the current number base for input from

the keyboard and output to the display.

There are several other system parameters that may be contained within the

system. These are associated with virtual memory mechanizations. The

parameters will be introduced in Chapter 7 where extensions to the basic

mechanization will be considered.

The system MODE and STATE parameters have the following states:

48 THREADED INTERPRETIVE LANGUAGES

Mode

0
0
1
1

State Action

0 Execute keyword

1 Not allowed

0 Compile keyword

1 Execute immediate keyword

The MODE parameter is also used by the outer loop number routine to decide

whether to compile a number or push it to the stack.

Accessing system parameters will be considered in later sections.

4.3 Operator Keywords

The operators are active keywords selected for inclusion in the threaded in¬

terpretive language. The actual list depends on what you want to do with the

language. It is not smart to include operators to manipulate data types that are

not used. I will present a fairly hefty cross-section of operator types. No

presumptions will be made about their utility. After all, I am not the designer

of your language — you are.

4.3.1 Stack Operators

The stack operator keywords are among the more important in a stack-

oriented language such as our TIL. Their usage is so pervasive that these

operators are almost always coded as primitives.

The stack operators always manipulate stack words. The operators imple¬

ment the following actions:

DROP — Pops the top stack entry and discards it.

DUP — Duplicates the top stack entry and pushes it to the stack.

2DUP — Duplicates the top stack entry and pushes it to the stack twice.

SWAP — Interchanges the order of the top two stack entries.

OVER — Duplicates the second stack entry and pushes it to the stack (copies it

over the top stack element).

RROT — Rotates the top three stack elements to the right. In infix notation

A B C — C A B.

LROT — Rotates the top three stack elements to the left. In infix notation

A B C — B C A.

20VER — Duplicates the third stack entry and pushes it to the stack.

2SWAP — Interchanges the order of the first and third stack entries.

CSPLIT — Pops the top stack word and creates two 16-bit numbers from the 2

bytes which compose the word. The high-order byte is expanded to 16 bits and

stored as the second stack entry. The low-order byte is the top stack entry.

THE TOWER OF BABEL REVISITED 49

CJOIN — Pops the top two stack entries and forms a 16-bit word. The high-

order byte of the new words is the low-order byte of the second entry, and the

low-order byte is the low-order byte of the top entry. The resulting word is

pushed back on the stack.

As may be imagined, stack operators are useful in a variety of applications.

The effects of some can be produced by a sequence of other operators. The

ones you include in your language depend on the utility derived by their inclu¬

sion.

4.3.2 Memory-Reference Operators

The memory-reference operator keywords always presume that the address

of a parameter is the top stack entry. As a general rule, the parameters must be

in programmable memory since most of the operators specifically change the

numerical value of the parameter. As with stack operators these operators are

usually primitives.

The memory reference operators are as follows:

! — Stores the second stack word at the address specified by the top stack en¬

try. Removes both entries from the stack.

C! — Stores the low-order byte of the second stack word at the address

specified by the top stack entry. Removes both entries from the stack.

+! — Adds the word stored at the second stack entry to the word whose ad¬

dress is the top stack entry. Removes both entries from the stack.

C+! — Adds the low-order byte of the second stack entry to the byte whose

address is the top stack entry. Removes both entries from the stack.

OSET — Sets the word whose address is the top stack entry to zero (False).
Removes the top entry.

1SET — Sets the word whose address is the top stack entry to one (True).

Removes the top entry.

COSET — Sets the byte whose address is the top stack entry to zero (False).

Removes the top entry.

ClSET — Sets the byte whose address is the top stack entry to one (True).

Removes the top entry.

@ — Replaces the address at the top stack entry by the word stored at that ad¬

dress.

C@ — Replaces the address at the top stack entry by the byte stored at that

address but expanded to 16 bits.

All of the keywords except @ and C@ are applicable only to programmable

memory. These two keywords can be used to access any type of memory ex¬

cept write-only memory — unoccupied address space. Even this works,
although the results are uninteresting.

50 THREADED INTERPRETIVE LANGUAGES

4.3.3 Interstack Operators

The data stack is usually used to store parameters. The return stack is usual¬

ly used to store return addresses. The return stack is also used by the system to

store loop parameters (which I will explore in Section 4.4.4) and may be used

by the programmer for temporary data storage (carefully). Any data stored on

the return stack must be removed in the same keyword definition. Primary

and secondary calls can occur between the storage and removal, but there

must be a net change of zero in the return stack pointer before the definition

ends. If there is a net change in the return stack pointer within a definition, the

inner interpreter SEMI routine (which terminates the definition) will not ex¬

tract the valid return address. This can lead to the self-consuming program

phenomenon mentioned earlier in which the program counter gets loaded with

fluff.

With these cautions in mind, the following primitive interstack operators

are suggested for careful usage:

< R — Pops the top data stack word and pushes it to the return stack (a 16-bit

push).

R> — Pops the top return stack word and pushes it to the data stack.

C < R — Pops the top data stack word and pushes the low-order byte to the

return stack (an 8-bit push).

CR> — Pops the top return stack byte, expands it to 16 bits and pushes the

word to the data stack.

The keywords I>, CI>, J>, CJ>, K>, and CK> duplicate loop indices

from the return stack and push the index numbers to the data stack. These

words will be considered in Section 4.4.

It should be pointed out that the interstack operators should not be used

within a loop construct that stores indices on the return stack. This can lead to

the infamous, inadvertent DO...FOREVER loop.

4.3.4 Arithmetic Operators

The arithmetic operators include some fairly common types and some rather

unusual types. The core language does not contain a great number of

arithmetic operators. There is sufficient power in the core language set to work

the more commonly encountered problems. Your ingenuity is required to add

additional operators for your specific problem.

All the numbers on the stack are presumed to be 16 bits wide, two's comple¬
ment numbers. All byte-length numbers are presumed to be expanded to this

form. Some functions use intermediate values or generate values that are 24

bits wide. The multiply and divide operators evoke signed operations.

THE TOWER OF BABEL REVISITED 51

Divisors are restricted to the set |n| <127. The numbers themselves may thus

have 16, 8, or 7 significant bits. All arithmetic operators are coded as

primitives.

Because of the unusual operator designs, the explanations of the operator

functions will be fairly detailed. The arithmetic keywords are as follows:

ABS —A unary operator which leaves the absolute value (a positive integer)

of the top stack value on the stack. That is, in infix, |N|. It is applicable to

signed numbers.

MINUS — A unary operator which leaves the two's complement of the top

stack entry on the stack: in infix notation, — N. It is applicable to signed

numbers.

+ — A binary operator which replaces the top two stack entries by their two's

complement sum. Neither overflow nor carry are tested. Here N2(16)-I-Nl(16)

= Nl(16).

— — A binary operator which replaces the top two stack entries by their two's

complement differences. Neither overflow nor carry are tested. Here N2(16) —

Nl(16) = Nl(16).

S* — A binary operator which multiplies the low-order bytes of the top two

stack entries and leaves a 16-bit product as the top stack entry. It is equivalent

to N2(8)*Nl(8) = Nl(16). The high-order bytes of the original stack entries

are not tested to insure that valid 8-bit numbers are on the stack prior to execu¬

tion.

* — A binary operator which multiplies the second stack entry word by the

low-order byte of the top stack entry and returns a 16-bit product as the top

stack entry. It is equivalent to N2(16)*Nl(8) = Nl(16). No validity test is

made on the high-order byte of the original top stack entry and no test is made

on the result to verify 16 bits or less in the product.

D* — A binary operator that multiplies the second stack entry word by the

low-order byte of the top stack entry and returns a 24-bit product. The least

significant 16 bits are returned as the second stack entry and the 8 most signifi¬

cant bits are expanded to a 16-bit word and returned as the top stack entry. D*

is equivalent to N2(16)*Nl(8) = N2,l(24). No validity test is made on the

high-order byte of the original top stack entry.

/MOD — A binary operator which divides the second stack entry word by the

low-order byte of the top entry. It returns the 8-bit quotient expanded to 16

bits as the second stack entry and the positive remainder expanded to 16 bits as

the top entry. The low-order byte of the original top stack entry must be in the

range — 128<n<127. /MOD is equivalent to N2(16)/N2(7) = N2(8) and

N2(16)mod ati[7] = Nl(8). No test is made to insure that an 8-bit quotient will

result from this operation.

MODU/ — Exactly the same operation as /MOD except the return order of

the top two stack elements is reversed. The quotient is the top stack entry and

the remainder is the second entry.

MOD — Exactly the same operation as /MOD except only the remainder is

returned as the top stack entry.

D/ — Presumes a 24-bit number for the second and third stack entries with the

52 THREADED INTERPRETIVE LANGUAGES

most significant 8 bits as the second entry word. It divides this number by the

low-order byte of the top entry (—128<n<127). C/ returns a 16-bit quo¬

tient as the second stack entry and an 8-bit positive remainder expanded to 16

bits as the top entry. It is equivalent to N3,2(24)/N1(7) = N2(16) and

N3/2(24)modati[7] =Nl(8). No validity tests are made on the original stack en¬

tries to insure a valid 16-bit quotient.

/ — Exactly the same routine as D/ except only a 16-bit number as the second

stack element and an 8-bit (— 128<b<127) top entry are presumed. The 8

most significant bits of the dividend are zero set and only the 16-bit quotient is

returned. It is equivalent to N2(16)/Nl(7) = Nl(16). All other constraints are

the same as with D/.

* /MOD — Multiplies the third stack entry word by the low-order byte of the

second stack entry yielding a 24-bit intermediate product (exactly as with D*).

It divides the 24-bit intermediate product by the low-order byte (—128 <n

<127) of the top stack entry (exactly as with D/). */MOD returns the 8-bit

positive remainder expanded to 16 bits as the second stack entry and the 16-bit

quotient as the top entry. It is equivalent to (N3(16)*N2(8))/Nl(7) = N2(16)

and (N3(16)*N2(8))mod nw] = Nl(8). The constraints of D* and D/ apply.

*/ — The same operation as */MOD except only the 16-bit quotient is re¬

turned.

MAX — A binary operator that leaves the larger of the two top stack entries

on the stack. It assumes signed integers on the stack.
MIN — A binary operator that leaves the smaller of the two top stack entries

on the stack. It assumes signed integers on the stack.

2* — A fast multiply by two unary operators. It is actually a 1-bit left shift of

the top stack value. Carry and overflow are not tested.

2/ — A fast divide by two unary operators. Effectively a 1-bit right arithmetic

shift of the top stack value.

1 + — Increments the top stack entry by one.

2+ — Increments the top stack entry by two.

1 — — Decrements the top stack entry by one.

2— — Decrements the top stack entry by two.

The arithmetic operators are strange in a wonderful way. Operations such

as V are extremely useful. With the 24-bit intermediate product, loss of preci¬

sion from truncation errors can be prevented in many operations. For exam¬

ple, 7r * 245/78 so that:

DECIMAL ■ 10000 ■245 ■ 78 ■ * / ■. ■ 31410BBQK

If a multiply by 7r is common, define a new keyword as:

DECIMAL ■: ■ * PI ■245 ■ 78 ■ V: ■ ■ OK

If the numerical accuracy is insufficient, a more complex algorithm can be

designed to achieve even more accurate results.

Those of you who are familiar with higher-order languages may sneer at the

THE TOWER OF BABEL REVISITED 53

unsophistication of a language without a full-blown, floating-point arithmetic

set. In response let me point out that data input to the system by most interface

equipment is almost never in floating point. The time penalty in converting

inputs to floating point format is sometimes as costly as doing the entire prob¬

lem in scaled, fixed binary arithmetic. Finally, may I point out that for years

most of our sophisticated military systems (including the present ICBM fleet)

used scaled, binary fixed-integer arithmetic in their computer programs. High¬

speed, floating-point hardware exists only in modem medium-to-large size

computers. Low-speed, floating point hardware is equivalent to software

emulation in microcomputers. The only advantage to floating point is pro¬

gramming ease (and ridiculous superiority claims). After all, you are not

afraid of fixed point — are you?

4.3.5 Logical Operators

The logical operators are simple. All except NOT presume two 16-bit words
on the stack (the operands) and replace these words by a single word at the top
of the stack. The keywords are:

AND — Logically ANDs the operands on a bit-for-bit basis, ie:
0 and 0 = 0
0 and 1=0
1 and 0 = 0
1 and 1 = 1

OR — Logically ORs the operands on a bit-for-bit basis, ie:
0 or 0 = 0
0 or 1 = 1
1 or 0 = 1
1 or 1 = 1

XOR — Logically Exclusive ORs the operands on a bit-for-bit basis, ie:

0 xor 0 = 0

0 xor 1 = 1

1 xor 0 = 1

1 xor 1 = 0

NOT — Inverts the logical state of the flag at the top of the stack.

The logical operator can be used to operate on flag data types as well as any

logical data types defined for a specific application.

4.3.6 Relational Operators

The relational operators are unary or binary operators which return a flag.

54 THREADED INTERPRETIVE LANGUAGES

where True is a 16-bit word with an integer value of 1 and False is a 16-bit

word with an integer value of 0. The operators follow:

= — Pops the top two stack entries and pushes a True if the entries are equal.

It otherwise pushes a False.

> — Pops the top two stack values and pushes a True if the second stack entry

is greater than the top entry. It otherwise pushes a False. It assumes signed

integers on the stack.

< — Pops the top two stack values and pushes a True if the second stack entry

is less than the top entry. It otherwise pushes a False. It assumes signed in¬

tegers on the stack.

0= — Pops the top stack value and returns a True if the top stack entry is
zero. It otherwise pushes a False.

0< — Pops the top stack value and returns a True if the top stack entry is a
negative two's complement number. It otherwise pushes a zero.

A comment is in order about the use of = as a relational operator only.

Some languages use = as both a relational operator and an equivalence (or

replacement) operator. The use of RPN (reverse Polish notation) eliminates the

use of = in arithmetic operations. The replacement operator becomes the "!"

(store) operator and its usage is only required to free stack space or simplify

stack management.

4.3.7 Input/Output Operators

The I/O operators considered here will be the most basic I/O operations.

Fundamentally, the TIL can be interfaced to the keyboard and video display

via the system-monitor utility subroutines or separate drivers can be included

in the TIL. It is very dependent on the type of operating system your particular

machine has. Systems that have disks and stand-alone serial terminals are dif¬

ferent from systems that use cassette mass storage and memory-mapped video

refresh.

I have probably vacillated more over I/O routines than any other aspect of

program design. This is one area I would most like to ignore. Unfortunately, it

is not an area that can be easily ignored in the hope that it will disappear.

Thus, the following operators are presented:

KEY — This keyword will push to the stack the next character entered from

the keyboard. In my current system this keyword routine contains the soft¬

ware timing loop that controls the blinking underscore cursor. It also

recognizes a non-ASCII keyboard-generated code that causes the system

monitor to be entered, thus exiting any program currently in control. In any

routine of this type, the keyboard should be reset on entry and before exit.

ECHO — This keyword pops the top stack entry and outputs the low-order

THE TOWER OF BABEL REVISITED 55

byte to the display driver. This displays a printing character at the cursor point

and moves the cursor right one character position.

CLEAR — This keyword outputs the control code to the video display that

will clear the display screen and leave the cursor at the upper left (home the

cursor).

CRET — This keyword outputs the carriage return-line feed code sequence to

the video display. This holdover from the teletypewriter convention simply

leaves the cursor at the start of the next display line (which is blank).

SPACE — This keyword outputs an ASCII space code to the display screen.

TYPE — This keyword expects an address at the top of the stack that points to

a memory location. This location will contain a byte count and is followed by

a list of ASCII code characters of this length in the following memory loca¬

tions. The keyword pops this address, extracts the count, and outputs that

many characters to the display from the subsequent memory locations.

DISPLAY — This keyword expects a sequence of ASCII code characters on the

stack in the low-order byte positions. The last character in the sequence will

have the high-order bit in the code set to one. This keyword will pop suc¬

cessive entries from the stack, output the low-order byte, and repeat until the

character with the high-order bit set has been output.

< # — This keyword prepares the stack for number conversion by pushing to

the stack an ASCII space code with the high-order bit set (AO hex) in the low-

order byte of the word. It also copies the top stack entry to the return stack.

(Note that both <# and #> must occur within a single definition.)

— This keyword pops the top stack entry, divides the unsigned number by

the system variable BASE, converts the residual to an equivalent ASCII code

in the set (0 thru 9, A thru Z), pushes the result to the stack, and then pushes

the quotient to the stack.

#S — This keyword executes successive # routines until a zero is at the top

stack entry. It always executes at least one # routine.

SIGN — The keyword pushes an ASCII minus sign to the stack if the top

return stack entry is negative.

> — This keyword pops the top return stack entry, discards it, and displays

the character string on the stack using the DISPLAY format. (Note that both

<# and #> must occur within a single definition.)

ASCII — The keyword expects a positive binary integer between zero and 36

as the top stack entry. The number is converted to the equivalent ASCII

number code 0 thru 9, A thru Z, and left in the low-order byte position of the

top stack entry.

. — This keyword pops the top stack entry, converts the signed value to a se¬

quence of ASCII characters representing the number, and displays the result to

the operator followed by a space.

.R — This keyword expects a print field width as the top stack entry and a

signed number as the second entry. It converts the number just as with the

keyword, but if fewer characters than are in the top stack entry number result

(including the terminating space), additional ASCII spaces are output before

the converted number is displayed.

? — (C?) — This keyword pops the top stack entry, extracts the word (byte)

56 THREADED INTERPRETIVE LANGUAGES

addressed by this entry, and displays the value to the operator using the

keyword sequence.

4.3.8 System Operators

There is a class of operators which have a more system-oriented flavor.

Some of the operators are used to implement the outer interpreter, the defining

words, and the compiling words. However, they are so useful and necessary

that they are directly available to the operator. Others are simply required for

system operation.

The system keywords include the following:

, — Pops the top stack entry word and stores it at the DP (dictionary pointer)

address. It then increments DP by two (ie: encloses the top stack entry word in

the dictionary).

C, — Pops the top stack entry word and stores the low-order byte at the DP

address. It then increments DP by 1 (ie: encloses the top stack entry byte in the

dictionary).

HERE — This keyword pushes the address stored at the system variable DP to

the stack. This is the address of the next available location in the free dic¬

tionary space.

?SP — This keyword pushes to the stack the address which was the top stack

entry address prior to its execution. A test for stack underflow is made and the

stack is reinitialized before the address is pushed if an underflow condition ex¬

ists.

?RS — This keyword pushes the address of the return stack to the stack. No

validity test is made on the return stack address since the system usually goes

bananas when the return stack is blown.

TOKEN — TOKEN pops the top stack entry byte as the separator and moves

the next token in the line buffer to the free dictionary space in extended header

format (length plus all characters). It does not enclose the token in the dic¬

tionary.

' — The tick keyword scans the next token in the input buffer following its oc¬

curence and searches the CONTEXT and CURRENT vocabularies for the

keyword corresponding to the token. If the keyword is found, the word ad¬

dress of the keyword is pushed to the stack. If it is not found, the token is

echoed to the operator followed by ■?.

ABORT — This keyword causes an unconditional jump to the

START/RESTART routine, which reinitializes the system, displays the restart

message, and reverts to the operator in the input submode.

ASP ACE — This keyword pushes an ASCII space code to the stack. It is usual¬

ly used to set the separator for a TOKEN call.

ENTRY — ENTRY pushes to the stack the address of the first byte in the

header of the latest keyword defined in the CURRENT vocabulary. This will

THE TOWER OF BABEL REVISITED 57

usually become the link address of a keyword being defined.

CA! — This keyword pops an address from the stack and stores it at the word

address of the latest keyword in the CURRENT vocabulary. It is used by de¬

fining words to change the code address of a keyword to the address necessary

to implement the new defining action.

SINGLE — If the top stack entry number is a valid byte-length number, this

keyword will push a False flag to the stack. Otherwise, it will push a True flag

to the stack.

SEARCH — This keyword expects the address of a given vocabulary on the

stack (a pointer to the first keyword header location of the vocabulary). The

vocabulary is searched in an attempt to match a keyword with the length and

characters of the token which is located in the free dictionary space. If found,

the word address of the keyword is returned as the second stack entry and a

False flag is returned as the top entry. Otherwise, a single True flag is returned

on the stack.

4.3.9 Utility Operators

There exists a class of operators with great utility and no real home among

the previous groups. These orphans are collected together here as follows:

FILL — This keyword expects three keywords on the stack. The second stack

entry is a starting address, the top stack entry is an ending address, and the

low-order byte of the third entry is the entry number. The routine fills all

memory between the address boundaries with the entry number. It removes all

three entries from the stack.

ERASE — Similar to FILL except only the memory boundaries are on the

stack. The entry number is an ASCII space (20 hexadecimal).

DUMP — This keyword expects two numbers on the stack. The second stack

entry is a starting address and the top entry is the ending address of a memory

area. The contents of this block of memory are displayed in hexadecimal. The

format is: an address as four hexadecimal characters; a sequence of spaces plus

two hexadecimal characters for the proceeding eight memory locations, a

space, a sequence of spaces, plus two hexadecimal characters for the next eight

memory locations. Thus an address plus up to sixteen memory location con¬

tents are displayed per line with an extra space between the first and last eight

memory location contents. DUMP removes the two numbers from the stack.

ADUMP — Similar to DUMP but the characters are displayed as the ASCII

equivalent character corresponding to the lower 7 bits of each location rather

than as two hexadecimal characters. To prevent collisions between the

memory contents and display control characters, there are several alter¬

natives. Offhand, I can think of at least three.

WAIT — WAIT is an operative keyword that expects nothing on the stack.

On evocation, WAIT scans the keyboard to see if any key has been depressed.

58 THREADED INTERPRETIVE LANGUAGES

If it has, the keyboard port is reset and the system enters a loop that scans the

keyboard for its next entry. If the next entry from the keyboard is an escape

code (either an existing non-ASCII key or a control-[, the ASCII escape code)

the system enters the START/RESTART sequence to return to operator con¬

trol. If the next entry is not the escape code, or if a key was not depressed,

WAIT simply terminates. WAIT is used, for example, after every DUMP or

ADUMP line is output to allow the operator to stop and examine the display

by pressing any key blindly. I usually need the blindly part as what I am

looking for goes zipping past.

MOVE — This keyword presumes three addresses on the stack. The third and

second stack entries are the starting and ending addresses of a block of

memory. The top address is the starting address of a second block of memory.

The first memory block is moved to the second memory block. There are no

restrictions on block overlaps.

4.4 Loop and Branch Keywords

The loop and branch keywords are system directives that are applicable on¬

ly in the compile mode. These keywords are all immediate keywords that exist

in the COMPILER vocabulary. Most of the keywords load the word addresses

of program control directives and relative branch constant to the threaded list

of instruction being compiled.

The loop and branch keywords are designed to yield a fully-structured

language. There are no constructs such as the BASIC command GOTO XX

where XX is some program line number. The threaded interpretive language

does not support this type of construct. I have used a command of this type in

a TIL system monitor but it simply transfers control out of the TIL. That's

right folks, I actually run BASIC using a TIL-based system monitor with

subroutined utility programs.

All of the loop and branch program control directive are primitives to insure

fast execution. All of the loop and branch keywords are secondaries for com¬

pactness. (The actual compilation process is so fast that the operator is rarely

conscious of the delay between entering and the occurrence of the BOK

response.)

4.4.1 BEGIN . . . END

The simplest and most primitive loop construct is the BEGIN . . . END loop.

It is also usually the fastest loop. The syntax for the construct is:

THE TOWER OF BABEL REVISITED 59

False True

i i n
:■—■ BEGIN ■—■ flag ■ END ■—■:BBOK

The keyword BEGIN marks the beginning of the loop and END marks the loop

end. The flag just before END is an indication that a test value (a flag) must be

on the stack. All code between BEGIN and END will be repeated until the flag

goes True (^0) during execution. Endless loops are created by a OB END

variation.

There are two levels to consider: the actions that occur when the loop is

compiled and the actions that occur when the definition is evoked. First con¬

sider the actions during the compile mode.

BEGIN — This immediate keyword pushes the address of the next free dic¬

tionary location to the stack. This is the address where the word address of the

next token that follows BEGIN in the definition will be stored in the dic¬

tionary.

END — This immediate keyword adds the word address of the program con¬

trol directive *END to the threaded list and encloses it in the dictionary. It then

pops the top stack entry (the address stored by BEGIN), subtracts it from the

current address of the next free dictionary location and encloses the low-order

byte of the result in the dictionary as the relative jump constant.

Note that any immediate keywords between BEGIN and END must not leave

values on the stack or END will not compute a valid relative jump constant.

The relative jump constant is an unsigned byte constant with a range of 2 < n

< 256.

When the definition which contains the BEGIN . . . END loop is executed,

the threaded code will be executed until the *END word address is en¬

countered. When *END is executed, it pops the top stack value (the flag) and

tests it for zero. If the flag is zero, the routine extracts the byte at the address

contained in the instruction register (the relative jump byte), subtracts it from

the instruction register and exits to the inner interpreter routine NEXT. The in¬

struction register will then contain the address of the word address of the token

that followed BEGIN in the original definition. This is the next instruction that

will be executed. This sequence will be repeated until *END encounters a non¬

zero flag. In this case, it increments the instruction register by one and exits to

NEXT. The instruction register then contains the 'address of the word address

of the token following END in the original definition. This terminates the loop.

BEGIN . . . END loops can occur within BEGIN . . . END loops several

levels deep. The only restriction is the 256-byte relative jump limit in the outer¬

most loop. Caution is advised in stack management using loops. If n items plus

the flag are placed on the stack within the loop and the loop is repeated m

times, a stack depth of n*m items results. The stack space had best be capable

of handling the data.

The routine *END is an example of a dictionary entry with no header. The

routine END must know the word address of *END, but the operator cares

60 THREADED INTERPRETIVE LANGUAGES

less. The loop is available to the operator through the BEGIN and END

keywords (but only in the compile mode).

The keyword BEGIN requires no bytes within the definition. The keyword

END requires 3 bytes within the definition compiled, 2 for the word address of

*END and 1 for the relative jump constant.

4.4.2 IF . . . ELSE . . . THEN

The IF . . . ELSE . . . THEN constructs provide for conditional execution of

code. The syntax for the constructs are:

False

l J
: ■—■ flag ■ IF ■—■THEN OK

Li i_r
True Unconditional

True Unconditional

I flag! IF IELSEI
1

ITHENB—

I_t
IOK

False Unconditional

The flag just before IF indicates that a test value must be left on the stack (by

the code preceding IF) during execution. If the flag is True (= 0), the code

following the IF will be executed. This code may end with either an ELSE or a

THEN. In either event an unconditional transfer to the code following the con¬

struct occurs. If the flag is False (=0), the code following the termination

keyword for the true code (an ELSE or THEN) will be executed.

During compilation, the following actions occur:

IF — This immediate keyword adds the word address of the program control

directive *IF to the threaded code list being defined and encloses it in the dic¬

tionary. It then pushes the address of the next free dictionary location to the

stack and advances the address by one to reserve 1 byte in the dictionary for a

relative jump constant. This constant will be filled in by either the ELSE or the

THEN keyword.

ELSE — This immediate keyword adds the word address of the program con¬

trol directive *ELSE to the threaded code list being defined and encloses it in

the dictionary. Then, it pushes the address of the next free dictionary location

to the stack and advances the pointer by one to reserve 1 byte in the dic¬

tionary for a relative jump constant. Finally, it pops the top two stack entries,

pushes the top entry back on the stack, subtracts the previous second entry

from the address of the next free dictionary location and stores the low-order

byte of the result at the address of the previous second entry. This rather com-

THE TOWER OF BABEL REVISITED 61

plex procedure leaves the address of the reserved byte following *ELSE on the
stack and fills the reserved byte following *IF with the relative jump value
necessary to reach the address following the *ELSE reserved byte. This is the
address of the word address of the token following ELSE in the definition. The
relative jump may be up to 255 bytes.
THEN — This immediate keyword will load the relative jump byte reserved by
either an IF or an ELSE. It pops the address at the top of the stack, subtracts
this address from the address of the next free dictionary location and stores the
low-order byte of the result at the address of the previous top stack entry. This
relative jump may be up to 256 bytes.

During execution of a definition containing the IF . . . ELSE . . . THEN con¬
struct, consider that *IF is to be executed next. The *IF routine pops the flag
from the stack. If the flag is true, the routine increments the instruction
register, which initially points to the relative jump byte following *IF and
returns to the inner interpreter routine NEXT. The increment causes the in¬
struction register to point to the address of the word address of the token
following IF in the original definition. If the flag is false, *IF jumps to the code
body of *ELSE. The routine *ELSE is always entered with the instruction
register pointing to a relative branch constant. *ELSE extracts this constant,
adds its value to the instruction register and exits to NEXT. This causes a for¬
ward jump to the code following THEN in the original definition.

Both IF and ELSE take 3 bytes in the definition being compiled. THEN re¬
quires no bytes in the definition.

4.4.3 WHILE

The basic loop and branch constructs may be combined using the operator
keyword WHILE. The syntax for these constructs are:

Unconditional

I—■ BEGIN I

True

n IflagBIFB-- I WHILE I IOK

False

I—■ BEGIN I

True

ri
Unconditional

I
--- B flag B IF B—B ELSE B-
T I-1

False

—BWHILEI IOK

Unconditional

62 THREADED INTERPRETIVE LANGUAGES

The only new keyword in these constructs is WHILE. All of the other

keywords are exactly as previously explained.

During compilation, the action of WHILE is:

WHILE — This immediate keyword expects two addresses on the stack. First

the word address of the program control directive *WHILE is added to the

threaded list being compiled and enclosed in the dictionary. The second stack

entry (the address stored by BEGIN) is removed from the stack, the value is

subtracted from the address of the next free dictionary location and the low-

order byte is enclosed in the dictionary. This is the relative jump byte required

to jump back to the word address of the token following BEGIN. It next

removes the top entry, subtracts the address of the next free dictionary loca¬

tion from this value and stores the low-order byte at the address which

previously was the top entry. This is the relative jump byte required by either

an IF or an ELSE to jump forward to the word address of the token following

WHILE.

During execution of a definition that contains this construct, the *WHILE

routine is entered with an instruction register content that points to the

relative branch constant. *WHILE extracts this constant, subtracts this value

from the instruction register and exits to the inner interpreter routine NEXT.

This causes a backward jump to the code following BEGIN in the original

definition.

WHILE takes 3 bytes in the definition being compiled.

4.4.4 DO . . . LOOP

The DO . . . LOOP construct allows a code sequence to be executed a

specific number of times. This type of loop can be implemented using the basic

BEGIN . . . END loop but it is not as efficient as using the DO . . . LOOP form.

There are four basic DO . . . LOOP constructs as follows:

Count >0

i-1
: ■—■ end ■ start ■ DO ■ — ■ LOOP ■■ OK

1_J

Count <0

Count >0

I-1
: ■—■ end ■ star t ■ CDO ■■ CLOOP OK

I_t
Count < 0

THE TOWER OF BABEL REVISITED 63

Count >0

: ■—■ end ■ start ■ DO ■- ~ ■ inc ■ + LOOP ■--- ■; ■ ■ OK
i_J
Count <0

Count >0

;-1
: ■—■ end ■ start ■ CDO ■—■ inc ■ C + LOOP ■—■; ■ ■ OK

I_J

Count <0

The only difference between DO and CDO forms is that the latter forms use

byte-length indices rather than word-length indices.

The end and start preceding the DO indicates that DO expects two values on

the stack at execution time: the ending argument and the starting index argu¬

ment for the loop. Each execution of the loop causes the index argument to be

incremented by one after the loop code is executed. The loop code will be ex¬

ecuted as long as the difference between the ending argument and the index

argument (the count) is greater than zero. The +LOOP forms are very similar

except they expect an increment on the stack to be used to increment the index.

The compilation events are as follows:

DO — (CDO) — This immediate keyword causes the word address of the pro¬

gram control directive *DO (*CDO) to be added to the threaded list being

compiled and enclosed in the dictionary. The address of the next free dic¬

tionary location is then pushed to the stack.

LOOP — (CLOOP) — (+LOOP) — (C + LOOP) — This immediate keyword

causes the word address of the program control directive *LOOP (*CLOOP,

* + LOOP, *C + LOOP) to be added to the threaded list being defined and

enclosed in the dictionary. The top stack value is popped, subtracted from the

address of the next free dictionary location and the low-order byte of the result

enclosed in the dictionary. This is the relative jump constant back to the token

following DO (CDO) in the original definition.

When executed, the *DO (*CDO) routine expects two 16-bit words on the

stack. The top two stack entries are moved to the return stack as 16-(8) bit

numbers with the second entry as the second return stack entry. The top return

stack entry is the index value which initially is the start value. The *LOOP

(*CLOOP) routine increments the loop index value by one. The *+LOOP

(*C + LOOP) routine expects a value on the stack and pops this value to incre¬

ment the index. The index (the top return stack value) is subtracted from the

end argument (the second return stack entry). If this count value is greater

than zero, the relative jump value pointed to by the instruction register is

added to the instruction register and the routine exits to the inner interpreter

routine NEXT. This causes the word address of the token following DO

(CDO) in the original definition to be executed next. If the count value is less

64 THREADED INTERPRETIVE LANGUAGES

than or equal to zero, the instruction register is incremented by one, the top

two return stack entries are popped and an exit to NEXT occurs. This causes

the code following *LOOP (*CLOOP,* -I-LOOP,*C + LOOP) to be executed.

The rather strange ordering of the loop arguments is purposeful. In variable

length loops, it is more common to want to change the ending argument than

the starting value. This ordering allows for definition of keywords that contain

a starting argument plus the loop construct. The variable ending argument is

then pushed to the stack before this keyword is evoked.

The index is incremented in these constructs before being compared to the

ending argument, thus:

: ■ 2FOURS ■ 3 ■ 1 ■ DO ■ 4 ■. ■ LOOP ■: ■ ■ OK

2FOURS ■4B4BBOK

Only two fours are printed, not three. Further, the loop test occurs after the

loop code so that the loop code must be executed at least once. The main pur¬

pose for providing the byte forms of the loop constructs is execution speed. If

the loop arguments are in the range —128<n<127, the byte forms can be

used to achieve a faster loop.

If the basic loop formats disturb you, redesign them. The order of the inputs

can be reversed, the test can be done before the code rather than after, or the

end value may be incremented once by the DO construct to yield a more

familiar loop. The choice is yours.

The DO . . . LOOP constructs may be nested many levels deep. The con¬

straints are the 256-byte relative jump limitation in the outermost loop and

sufficient return stack depth to hold the loop arguments.

Several other words are available within the loop constructs. The keyword

I > (Cl >) pushes the loop index of the innermost loop to the data stack. The

keyword J > (CJ >) pushes the loop index of the second level loop and K >

(CK>) the third level. These constructs do not change the return stack but

they presume only loop arguments of the same type are on the stack.

Sometimes it would be nice to be able to leave a loop prematurely if some

specific event occurs. A keyword is provided to do this in a controlled manner.

LEAVE — (CLEAVE) — This immediate keyword causes the word address of

the program control directive *LEAVE (*CLEAVE) to be added to the threaded

list being compiled and encloses it in the dictionary.

When *LEAVE (*CLEAVE) is executed, it changes the innermost loop index

value to the end argument value. This will cause the loop to terminate on the

next argument test. The keyword LEAVE (CLEAVE) is generally used within

an IF construct to be conditionally executed if some specific event occurs

within the loop.

THE TOWER OF BABEL REVISITED 65

4.4.5 Case Constructs

There is no directly available ON . . . GOSUB construct in the TIL language

as there exists in BASIC. The language will allow this type of alternate action

to be defined for some specific application. It is best illustrated by example.

Suppose that a function index (an integer) between zero and three is on the

stack as the result of a computation, an operator input, or from some

peripheral device. Depending on the value of the integer, one of four distinct

functions (subprograms) is to be executed. The four functions are first defined

as keywords: say, OCASE, 1CASE, 2CASE and 3CASE. A table (array) named

NCASE of the word addresses of these functions is first generated as follows:

' ■ OCASE ■ VARIABLE ■ NC ASE ■' ■ 1C ASE ■, ■' ■
2C ASE ■■■ 3C ASE ■, ■ MOK

Each " ' " keyword returns the word address of token following its occurrence,

so that an array of the word addresses has been compiled as the variable array

keyword NCASE. A keyword CASE is then defined as:

:BCASEB2* ■NCASE ■ + ■ @ ■ EXECUTE ■; ■ MOK

The keyword CASE expects an integer between zero and three on the stack

when it is evoked. It first doubles this value to achieve a word (2-byte) offset

pointer. This pointer is added to the base address retrieved by NCASE and the

contents of this address are fetched using @. This leaves the word address of

the function corresponding to the integer on the stack. EXECUTE simply ex¬

ecutes this function, achieving the desired goal.

The vectored case construct is easy to define and very flexible. It also con¬

tains the seeds of disaster. In our example, an integer not in the set (zero thru

three) can be executed by CASE, leading to unknown results. Protective code

is advised.

4.5 Compiling and Defining Keywords

Compiling new operators and defining new parameters is central to the

threaded language concept of extensibility. Even more important is the ability

to define new defining keywords. This is a feature that lends more utility to a

TIL. A detailed look at the compiling and defining keywords should fill in the

details of the process.

66 THREADED INTERPRETIVE LANGUAGES

4.5.1 CREATE

This keyword is central to all defining words: words that create dictionary

headers for both active and passive keywords. All defining words use

CREATE either directly or indirectly to form the dictionary header. CREATE

forms the dictionary header and puts the address of the first byte of the code

body in the word address location. This forms the header and code address for

a primitive.

CREATE — This keyword scans the token following the CREATE location in

the input buffer and moves the next token length plus all of the token

characters to the free dictionary space. It extracts the address of the last dic¬

tionary header in the CURRENT vocabulary and pushes it to the stack. It then

replaces this address with the address of the next free dictionary location

(which points to the length parameter of the header being formed). It advances

the dictionary pointer by four to enclose the length plus the next three

characters in the dictionary space in the dictionary. (If the header has less than

three characters, the unused places can contain anything.) The top stack entry

is popped and enclosed in the dictionary as the link address. Finally, the ad¬

dress of the next free dictionary location is accessed, incremented by two and

enclosed in the dictionary at the next free dictionary location address. (This

places a primitive code address in the word address.)

4.5.2 Compiling Directives

The compiling directives are central to the extensibility theme. The direc¬

tives are as follows:

: — This defining keyword first sets the CONTEXT vocabulary to the CUR¬

RENT vocabulary. This allows new definitions added to the CURRENT

vocabulary to be found during keyword searches. The token following in

the input buffer is scanned and a primitive dictionary header is formed using

CREATE. The code address of this keyword is then changed to form a second¬

ary keyword by placing the address of the inner interpreter COLON routine

at the word address. Finally, the system MODE variable is set to True to

establish the compile mode.

; — This immediate keyword encloses the word address of the inner interpreter

routine SEMI in the dictionary. It then sets the system MODE variable to False

to establish the execution mode.

;CODE — This immediate keyword encloses the word address of the SCODE

routine in the dictionary. It then sets the system MODE variable to False to

establish the execution mode.

THE TOWER OF BABEL REVISITED 67

The difference between and ;CODE is important. The ;CODE ending is

used in compiling new defining words and is always followed by machine code

which specifies the generic action of the defining word.

4.5.3 Parameter Defining Words

The parameter defining words always create named parameters of a par¬

ticular data type. Three distinct levels must be considered: one when the de¬

fining word is compiled (defined), one when the defining word is evoked, and

one when the parameter name is evoked.

When a defining word is defined, the sequence is always of the form:

:■ defining name ■ defining code ■;CODE ■ generic code

The defining name is the name of the keyword that will evoke creation of a

particular data type. The defining code will always contain CREATE, either

directly or indirectly, to create a dictionary header when the defining name is

evoked, and to create optional code to initialize the code body of this passive

keyword. The keyword ;CODE is executed, which stores SCODE in the defini¬

tion and establishes the execute mode. The generic code is then entered into the

dictionary directly in machine code (using a sequence of numbers and or

C,) or in assembly language (by evoking an assembler). The generic code is not

executed; it is added to the dictionary. The generic code always ends with a

call to the inner interpreter routine NEXT.

When used to define a parameter of type defining name, the sequence is:

data ■ defining name ■ parameter name

This sequence is always evoked in the execute mode. The data is optional but

is always stored on the stack. The defining name evokes the defining code,

which creates the dictionary header for parameter name and initializes the

code body with the data as appropriate. All data is removed from the stack.

The secondary keyword SCODE is then evoked. This keyword pops the return

stack and replaces the code address of the passive keyword being defined with

this address. Since the return address of a secondary always points to the in¬

struction following its call in the threaded list of code, this address is the ad¬

dress of the generic code following SCODE in the definition of the parameter

type. When SCODE completes, its original return address is no longer there.

What is there is the return address stored when the secondary defining name

was executed by the outer interpreter. Thus, when SCODE completes, return

to the outer interpreter occurs. The generic code is not executed.

When parameter name is evoked, its word address contains the code address

stored by SCODE. This causes the generic code to be executed to manipulate

the data contained in the code body of the passive keyword as appropriate to

the data type.

68 THREADED INTERPRETIVE LANGUAGES

The defining word CONSTANT is thus defined as:

:■ CONST ANT ■ CRE ATE ■ ,■; CODE ■ constant generic code

When evoked to define the constant name the sequence is:

n ■ CONSTANT ■ name

This creates a constant called name with a value of n. When name is evoked,

the constant n will be pushed to the stack by the constant machine code. An

equivalent byte form exists as CCONSTANT.

Since a variable places an initial value in its code body, the defining word

VARIABLE is defined as:

: ■ VARIABLE ■ CON ST ANT ■; CODE ■ variable generic code

This sequence actually results in the creation of the dictionary header first as a

primitive, then as a replacement of its code address by that of a constant, and

then as a second replacement of its code address by that of a variable, the ad¬

dress of the variable code.

When evoked to define the variable name the sequence is:

n ■ VARIABLE ■ name

This creates a variable called name with an initial value of n. When name is

evoked, the address of the variable is pushed to the stack. An equivalent byte

form is available as CVARIABLE.

4.5.4 Defining USER Blocks

The USER block defining word is more literal-like than defining-like. Fun¬

damentally, the procedure leads to almost an indexed variable form except

that blocks are available in 256-byte blocks and any byte within the block is

available. The basic concept is relatively simple.

USER — An immediate keyword that first adds the word address of the

primitive *USER literal handler to the threaded list being compiled and

encloses it in the dictionary. The next token following USER is scanned from

the input buffer and converted to a number using the system base valid at the

time it is executed. If valid, the low-order byte of the number is enclosed in the

dictionary as the offset. If invalid, the definition being compiled is terminated.

When *USER is evoked, the contents addressed by the instruction register are

accessed (the offset) and added to a fixed number established when *USER was

THE TOWER OF BABEL REVISITED 69

defined. The result is pushed to the stack. The instruction register is then

incremented by one. It exits to the inner interpreter NEXT routine.

The base of the USER block is established by the *USER definition. The off¬

set is fixed at compile time and is cast in concrete. It does not matter what the

system number base is when *USER is executed, only what the number base is

when USER is executed.

By adroit use of the definition of USER and *USER, a more index-like

variable scheme is possible. For example, if data is known to exist as 4-byte

units, USER can be defined to include a multiply by four following number ex¬

traction and before offset enclosure. The allowable offset numbers in a defini¬

tion are then 0 thru 63 and the system automatically computes the address

of the first byte of each block of data. (Forcing the multiply at compile time is

more time efficient than doing it at execution time in *USER.)

Another method leads to an almost BASIC-like variable structure. In this

scheme, *USER does not use a fixed number as the base, but uses a number

stored in some variable, say *U. Keywords can be defined to set the *U

variable when they are evoked. This is the old base address plus offset trick.

Remember there are no fixed rules about "rightness" in a TIL. The right

definition of the names of keywords and the right definition of their action is

strictly applications and/or personal preference dependent. A TIL will support

your idiosyncrasies, whereas most other languages demand that you support

theirs.

4.5.5 High-Level Defining Words

The defining words considered to this point create single definitions of

keywords. Generic classes of defining words can also be built with a TIL. Since

the concept is more than passingly complex, a careful look at the details will be

undertaken.

Suppose I have decided to add an assembler to the basic TIL. I know there is

a group of 1-byte machine code instructions that exists for my central process¬

ing unit, all of which have no parameters. There are fourteen or so of these in¬

structions for the Z80. I could straightforwardly define each of these instruc¬

tions as:

HEX ■: ■ name ■ number ■ C, ■; ■ BOK

Here name is the assembler mnemonic, number is the machine code instruction

in hexadecimal, and C, stores the number in the dictionary. This requires 6

bytes for the header, 2 for COLON, 3 or 4 for the literal handler and the

number, and 2 each for C, and SEMI. At best this requires 15 bytes per defini¬

tion. A primitive definition requires even more memory per keyword.

Two keywords, < BUILDS and DOES >, allow a more memory-conserva¬

tive approach to the problem by allowing definition of a generic defining

70 THREADED INTERPRETIVE LANGUAGES

keyword which can be used to define the 1-byte assembler mnemonics. First a

keyword 1BYTE will be defined as:

: BlBYTEB < BUILDS■ DOES> BC@ BC, ■; ■ BOK

Each mnemonic is then defined using:

HEX ■ IB YTE ■ name ■ number ■ C, ■ BOK

Note that name was not compiled. The keyword 1BYTE is a defining word

that creates a header named name. As with all defining words (except the

execution mode is in effect. Obviously, the BnumberBC,B sequence stored

the number in the code body of the keyword called name.

In fact, the code body of the keyword contains the address of the C@

keyword in the 1BYTE definition followed by the single number stored when

name was defined. This definition form requires a 6-byte header for each

mnemonic, a 2-byte code address and a 3-byte code body, or a total of 11

bytes per mnemonic. The definition of 1BYTE requires 18 bytes. Since the

1BYTE form gains at the rate of 4 bytes per mnemonic, the break-even point in

terms of memory usage is 5 mnemonics.

All of this sounds neat, but you ask "How does it work?" Carefully! When

the assembler mnemonic is evoked, the code address of the keyword points to

code which will first push the instruction register to the return stack. This is

similar to the start of the COLON nesting operation. The word address

register points to the code body of the keyword where the address of the C@

following DOES> is stored. This address is placed in the instruction register.

The word address register is then incremented twice so that it points to the

third byte in the code body of the mnemonic, and then it is pushed to the

stack. This is the address of the instruction hexadecimal code in our mnemonic

definition. The code ends with a jump to the inner interpreter NEXT routine.

Since the instruction register contains the address of the C@ following

DOES> , this is the next instruction that will be executed. The C@ instruction

replaces the address at the top of the stack with the contents of the address as

the lower 8 bits of the top stack entry. The C, pops the stack and encloses the

low-order byte in the dictionary. The SEMI routine stored by then de-nests

one level to get the next instruction following the occurrence of the mnemonic.

If this still does not satisfy you. I'll tell you how the mnemonic keyword was

built. The keyword < BUILDS, when evoked, scans the next token from the

input buffer, creates a dictionary header, reserves a code address and 2 bytes

in the code body of the keyword, and completes. Note that < BUILDS is

evoked when 1BYTE is executed so that it builds a keyword using the

mnemonic name. The secondary DOES> pops the return stack or the address

of the word following DOES > and stores it in the code body of the keyword

in the location reserved by < BUILDS. It then executes a SCODE, which

replaces the code address of the word being defined just as explained previous¬

ly. Since the SCODE has popped the return stack, the return address points to

the outer interpreter return. The C@ and C, following DOES> is not executed

when 1BYTE is evoked.

THE TOWER OF BABEL REVISITED 71

Formal definitions of < BUILDS and DOES> are:

: ■ < BUILDS BOB CONSTANT ■; BOK

: B DOES > B R > B ENTRY B 8 B + B! B; B —

Here the "—" is machine code entered in the dictionary when DOES> is de¬

fined. It is this code that is executed to do the nesting operation when the

mnemonic is evoked. For the Z80 the code for a return from a subroutine is

hexadecimal C9. Thus:

HEX B1BYTE B RET B C9 B C, B BOK

A memory map of the results of this definition is given in figure 4.1.

RET DOES >

3
R
E
T

LA

CA

CODE

C9

Figure 4.1: High-level definition example. The machine

code pushes the instruction register to the return stack,
performs an indirect fetch from the word address regis¬

ter, places the address in the instruction register and

pushes the doubly incremented word address register to
the stack.

1BYTE

COLON

<BUILDS

DOES >

C@

C,

SEMI

The general form of these high-level defining words is:

:B defining name B < BUILDS B defining time codeB

DOES> Brun time secondary codeB;B BOK

Here defining time code is executed at definition time of the defining name.

The run-time code is executed when a keyword defined using the defining

word is evoked. When this code is executed, the stack contains the address of

the third byte of the code body of the keyword on the first byte available for

data storage.

72 THREADED INTERPRETIVE LANGUAGES

To illustrate the defining time code utility, an alternate definition of 1BYTE

is:

: ■ IB YTE ■ < BUILDS ■ C, ■ DOES >BC@BC,B;B BOK

With this definition, RET is then defined as:

HEX ■ C9 ■ IB YTE ■ RET ■ BOK

After < BUILDS constructs the constant header RET, the C, between

< BUILDS and DOES > adds the C9 hex number to the dictionary following

the 2 bytes reserved by the constant header form: that is, the third byte in the

code of RET. DOES> then does its thing.

4.5.6 Vocabulary Defining Word

The vocabulary defining word is an example of a defining word that uses a

high-level definition. The definition of VOCABULARY is:

: B VOCABULARY B < BUILDS B ENTRY B, B DOES > B
CONTEXT B! B; B BOK

A new vocabulary called name is created by:

VOCABULARY B name B BOK

This evokes < BUILDS to create the dictionary entry for name and link it to

the current vocabulary. The ENTRYB, actually retrieves the address of the

first header byte of name aird enters this address as the third and fourth byte of

the code body of name. DOES> then does its thing.

When name is evoked the address of the third and fourth byte is stored in

CONTEXT as the pointer to the last header in vocabulary name. Note that the

keyword name exists in the vocabulary that was current when name is defined

and the vocabulary name is linked where it is defined. Any extensions added

to this vocabulary after name is defined are not linked to (included in) name.

4.6 Vocabulary Keywords

The vocabulary keywords are the system directives that allow management

(or mismanagement) of the vocabularies defined in your TIL. Most of the

keywords have been mentioned at one point or another. Just for drill, they will

be repeated here.

THE TOWER OF BABEL REVISITED 73

VOCABULARY — A defining keyword used to define new vocabularies. See

Section 4.5.6.

IMMEDIATE — This keyword delinks the latest keyword entered in the CUR¬

RENT vocabulary from the CURRENT vocabulary and links it to the COM¬

PILER vocabulary. What was previously the second entry in the CURRENT

vocabulary becomes the latest entry.

DEFINITIONS — This keyword sets the system variable CURRENT to the

value at the system variable CONTEXT so that new definitions will enter the

correct vocabulary.

FORGET — This keyword sets CONTEXT to CURRENT and searches the

CONTEXT vocabulary for the token following FORGET in the input buffer. If

the keyword is located, the keyword is delinked from the CURRENT

vocabulary and the DP is reset to the first header byte of the located keyword.

If not found, the keyword is echoed to the operator followed by "?".

CORE — The core language vocabulary.

COMPILER — The compiler vocabulary.

4.7 Babblings

Not all of the language elements have been presented here. I promise to pull

some off-the-wall keywords out of my magic hat at some unexpected moments

during the course of the remaining text. There are two reasons for this: forget¬

fulness and a desire to see if anyone is paying attention. What good is a magic

hat if it can't be used occasionally?

74 THREADED INTERPRETIVE LANGUAGES

5 | Routines, Routines,
Routines

There are not a large number of routines needed to imple¬

ment a TIL. However, the number of routines that can be

created with a machine as simple as a computer is absolutely

amazing. There are routine routines, obscure routines,

clever routines, etc, etc, etc. I personally prefer lucid TIL

routines, but these are very rare creatures indeed.

5.1 Core TIL Design Notes

The core of any threaded interpretive language is that set of code and

routines necessary to achieve a self-generating language. Fundamental to

designing the core is assessing the resources available to generate and support

the proposed language. The available memory, peripherals and operating

system have a tremendous impact on the design process. Similarly, the

available support software can materially affect the generation process.

To bring the problem down to earth, a certain level of software must exist in

order to generate the TIL. A system monitor/software support system is

presumed and must support program generation, display, debug, execution

and storage on some mass media. It is impossible to bootstrap a language

without some resources. The more sophisticated the support system, the easier

the task.

The very first step in the design process is to segment the available memory.

Memory area is required for stacks, the input buffer, system variables and the

language itself. Remember that the system variables must be initialized, either

by loading them in conjunction with the TIL language load from the mass

media or by an initialization routine. The 1 K-byte stack and input buffer

area presented in figure 3.2 is more than generous. Actually, a 64-byte line

buffer, a variable area, and the stacks could all be contained in a 256-byte area

with few potential problems. But if you can afford the memory, use a

1 K-byte configuration.

The next step is to assess the I/O subroutines available in the system

monitor/software support system. Usually these routines can be "borrowed,"

ROUTINES, ROUTINES, ROUTINES 75

either by accessing them as subroutines or simply by relocating the routines to

the TIL area. Special care must be exercised to clearly identify the protocol

used to pass data to and receive data from the I/O.

The actual allocation of processor registers and the design of the inner inter¬

preter is the next step. This design must consider the interfacing of the

primitives and secondaries to the inner interpreter. I urge you to spend suffi¬

cient time on this design process to convince yourself that a more time efficient

design is not possible. Chapter 3 is the design guide for this activity.

The next step in the design process is consideration of a machine code

subroutine calling convention. Almost always there will be "functions" that

are called by several primitives and may be exactly the same function per¬

formed by a keyword. All subroutines must preserve all registers except those

used to return parameters and must always preserve the instruction register. A

subroutine may use the stack as a means of saving registers for restoration

when it completes. It may even return a value on the stack. The calling code

must always expect the parameter in a specific return location.

An example of a subroutine that may be called by a primitive and exists as a

keyword is the display carriage return-line feed sequence. Suppose a

subroutine called $CRLF that performs this function is written. This

subroutine may be directly called by primitive machine code. The keyword

CRET is then defined as a primitive which simply calls $CRLF and then returns

to the inner interpreter NEXT routine.

All subroutines are generally preceded by the symbol $ in this text. This is

simply a personal holdover from some forgotten project. Choose a convention

to suit yourself and then stick with it.

Given the inner interpreter design, the subroutine calling convention and the

register allocations, the input/output routines must be re-examined to verify

that conflicts do not exist vis-a-vis the instruction register. Conflicts are re¬

solved in favor of the inner interpreter. The minimum set of I/O routines that

must exist is:

$KEY — An input subroutine in machine code that first resets the keyboard

and then awaits the next keyboard input. The next input is returned in a

known register or address and the keyboard is reset again before exit. This

routine must preserve the instruction register. Additional possible functions

were discussed in Section 4.3.7.

$ECHO — An output subroutine in machine code that controls the display in¬

terface. The routine must recognize ASCII codes and implement display

routines for carriage return, line feed, and backspace, and a control code to

clear the screen and home the cursor. (Control of the cursor by this routine is

assumed.) Printing ASCII codes are displayed and the cursor is moved right

one character. This routine must preserve the instruction register.

There are other functions that $ECHO could perform. One that I highly

recommend is a variable, time delay loop following a carriage return. This

allows routines such as DUMP and ADUMP to be slowed down sufficiently to

allow leisurely viewing. Full cursor control (up, down, right, left, and home) is

76 THREADED INTERPRETIVE LANGUAGES

also useful as is a reverse video function. Note that a line feed results in the

next display line being cleared, whereas a cursor down command merely

moves the cursor down one line with automatic last-to-first line wraparound.

Since the display usually recognizes a subset of the control codes, protection

from a function such as ADUMP (which could output characters that are

within the display control set) is an excellent idea. One possible way to achieve

this end is to set the high-order bit in general display output bytes passed to the

$ECHO routine. Then $ECHO would automatically assume that any byte

with a high-order bit set is to be displayed and take appropriate action to

assure displayability. This latter function is display specific.

If the I/O routines exist as subroutines within the system software, the inter¬

face task is generally easy. If not, these routines must be written before the ac¬

tual TIL design can proceed. This is also true for any software needed to sup¬

port the development of the TIL code.

One note must be directed toward the line buffer, token separators, and the

carriage return function of the input submode. There are several ways to han¬

dle the problem of deciding when all the tokens in the line buffer have been ex¬

tracted and the line buffer is empty. Obviously one way to handle the problem

is to store a carriage return ASCII code in the line buffer at the point where it

occurs. There are several reasons why this is not a good idea.

Fundamentally, the token scan routine must be able to recognize any

character as a token separator, not just the ASCII space code. This allows

keywords such as the literal handler "[" to use characters other than the space

as a separator since the literal may contain embedded space codes. Secondly,

the token scan routine resets the line buffer pointer to point to the first

character past the separator after extracting the token. This allows changing

the separator for a single call but prevents the next call from returning the

previous calls separator as the next token. Finally, there must be a way to

recognize that the end of the line has been reached.

The easiest way to handle the problem is to place a termination sequence at

the end of the line buffer area. I usually use two terminator characters with

their high-order bits 1 set. This implies that they are two's complement

negative (easy to test) and not in the ASCII code set (no conflicts). Two

characters insure that failure to properly enter an expected separator will not

allow skipping over a single terminator.

The input submode always fills the line buffer with ASCII space codes when

it is entered. The carriage return simply outputs an ASCII space code to the

display to move the cursor right one place before terminating the input sub¬

mode.

The token scan routine TOKEN takes its separator from the stack. If it is the

ASCII space code, leading spaces are ignored in extracting a token. The last

character of any token is the character before either the separator or the ter¬

minator. In either case, the line buffer pointer is reset to point to the first

character past the terminator character before the routine completes.

The terminator character is not in the dictionary and cannot be a number.

The invalid keyword handling routine can easily distinguish between an in¬

valid keyword and the terminator. Remember, though, that the terminator

ROUTINES, ROUTINES, ROUTINES 77

characters must be set by the initializing sequence.

Alternates to this technique are possible. I have used different ones. This

particular approach, however, leaves the full display line available for input.

Once the preliminary designs and the design decisions have been made, the

task of actually designing the outer interpreter can proceed.

5.2 Outer Interpreter Design-

A standard approach I use to design a TIL program is the old, inscrutable,

top-down structured programming method. I don't know anything about it,

but I do like the divide and conquer words. After pursuing this attack to a cer¬

tain level, I then chuck the top-down and get on with the bottom-up coding.

When the top-down meets the bottom-up, I have a checked program.

To design the outer interpreter, I always start with a flow diagram. Figure

5.1 is the example we will pursue. Each subprogram block in the diagram ex¬

cept for START/RESTART and $PATCH will be a dictionary entry. The only

reason for this segmentation is that it allows easier checkout of the loop. Each

decision block in the diagram implies that the preceding subprogram block has

left a flag on the stack to allow the decision to be made.

The general specification of what each routine is to do is written down. This

includes a specification of its stack input and output along with its interaction

with and control over system variables. The type of routine will also be deter¬

mined — primitive or secondary.

A general specification for the START/RESTART routine is:

START/RESTART — A machine code routine that initializes the system. If

the system START flag is True, the address of the start message is placed in the

word address register, the system number BASE is set to hexadecimal, and the

START flag is set False. If the START flag is initially False, the restart message

address is placed in the word address register. (An unconditional jump from

the $PATCH routine or other error routines occurs to the code at this point

and the address of the error message is expected in the word address register.)

The data stack and return stack pointers are initialized and the word address

register is pushed to the data stack as the parameter for TYPE. The system

MODE and STATE flags are set False. The line buffer termination characters

are set as appropriate. Other system registers are initialized as appropriate
(design dependent), and a jump to the inner interpreter routine occurs to begin

execution of the outer interpreter.

Examples of the start and restart messages are:

78 THREADED INTERPRETIVE LANGUAGES

WXHELLO ■ I'M ■ A ■ TIL

The ASCII control code for the

clear screen-home the cursor

command.

_ The number of characters to be

output to the display (in hexa¬

decimal).

YZTILB RESTART

- The ASCII control code for the

carriage return-line feed com¬

mand.

- The number of characters to be

output to the display (in hexa¬

decimal).

Personalizing these messages is half the fun of the design of your own

language.

There are several methods to jump to the inner interpreter such that the

outer interpreter begins execution. They all depend on initializing the instruc¬

tion register to correctly point to the threaded code for the outer interpreter.

From the flow diagram the preliminary outer interpreter threaded code list is

designed. For the diagram of figure 5.1, the threaded code list for the outer in¬

terpreter is shown in figure 5.2. For this example, the address of TYPE in this

threaded list is put in the instruction register, and an unconditional jump to the

inner interpreter routine NEXT is executed.

The threaded code list of figure 5.2 was taken directly from the flow

diagram of figure 5.1. Each YES in figure 5.1 corresponds to a True (T) in the

control flow of figure 5.2; each NO to a False (F). The outer interpreter code

does not show the jumps out of inner interpreter control (the dashed lines of

figure 5.1). The keyword names are really the word address of the keywords

when the actual threaded list of the outer interpreter is coded.

ROUTINES, ROUTINES, ROUTINES 79

Figure 5.1: Outer interpreter flowchart.

The outer interpreter threaded code list is somewhat deceptive. Buried in

this list are several secondaries and large primitives needed to do the outer in¬

terpreter tasks. Few outer interpreter designs require very many bytes of code.

Fundamentally this is because using complex secondaries in the outer inter¬

preter seldom leads to observable time penalties. The outer interpreter is in¬

teracting with the operator, who is orders of magnitude slower than the outer

interpreter.

80 THREADED INTERPRETIVE LANGUAGES

KEYWORD CONTROL TYPE

TYPE-*- Primitive
INLINE Primitive
ASPACE *- Primitive
TOKEN Primitive
7SEARCH Secondary
*IF OB III Primitive
7NUMBER-*-p Secondary
*ENDF3 |]I Primitive
QUESTION * 1-1 Primitive
•WHILE EA U- — Primitive
7EXECUTE-*-—1 Secondary
‘WHILE E9 U- Primitive

Figure 5.2: Outer interpreter code design.

BYTES STACK

2
2
2
2
2
3
2
3
2
3
2

3
28

F,AD or T
AD or T
F,N or T or F
— or N

AD

TYPE — A primitive with a header. This routine pops the address of a message

in TYPE format on the stack (ie: a pointer to the message length followed by

that many ASCII characters) and outputs the message to the display. These

messages may contain embedded ASCII control codes to control the format of

the display. The start message should contain a control code to clear the screen

and home the cursor before the message. The restart message should contain

control code to issue a 'carriage-return line-feed" sequence to the display line.

The entrance from $EXECUTE via $PATCH will leave a stack pointer error

message address on the address. This message will also contain the "carriage

return-line feed" sequence. The entrance from QUESTION via $PATCH will

only leave the address of the ■ ? message on the stack. The "carriage return¬

line feed" sequence and unrecognized token must be issued by QUESTION

before the restart is executed. The direct QUESTION entrance will leave the

address of the BOK message on the stack. It does not contain any control

codes. TYPE does not alter any system variables or leave anything on the

stack.

INLINE — A primitive without a header that implements the input submode.

It expects no stack inputs and returns none. This routine first executes a "car¬

riage return-line feed" sequence to leave the cursor at the first character posi¬

tion of the next display line, and clears the line buffer. It recognizes a

ROUTINES, ROUTINES, ROUTINES 81

backspace command from the keyboard that outputs a space to the current

cursor location and moves the cursor left one place, unless the cursor is at the

first buffer position location. It recognizes a line-delete command from the

keyboard that outputs a line-delete character to the current cursor location

and then returns to the start of the INLINE routine. It recognizes a carriage

return key and outputs a space to the current cursor location, moves the cursor

right one place, sets the system line buffer pointer to the first address of the line

buffer and exits this routine via a jump to the inner interpreter. All other

keyboard input characters are echo displayed and moved to the line buffer

(unless the last buffer place has been filled) with lowercase alphabetic

characters changed to uppercase. When the last buffer location has been filled,

the cursor is no longer advanced. Further entries simply replace the last

character on the display line and in the line buffer.

ASP ACE — A CCONSTANT with value hexadecimal 20. This routine simply

pushes an ASCII space to the low-order byte of the stack. This is the token

separator for TOKEN'S use in scanning the input line. No system variables are

manipulated.

TOKEN — A primitive with a header. This routine expects a token separator

on the stack in the low-order byte location. It pops this terminator and also

retrieves the line buffer pointer from the system variable area. If the separator

is an ASCII space, all leading spaces are ignored (ie: the line buffer pointer is

advanced to point to the first non-space character). This pointer value is saved

and a b> count to the next occurrence of the separator or terminator is

generated. This count is placed in the first location of the free dictionary space

followed by all the token characters. The system dictionary pointer variable

points to the start of the free dictionary area but is not advanced by TOKEN.

The line buffer pointer is advanced to point to the character following the ter¬

minating separator. The routine leaves no parameters on the stack.

7SEARCH — A secondary with no header. This routine will first search the

context vocabulary — trying to locate a keyword whose header matches the

token length and descriptor characters of the string moved to the dictionary

space by TOKEN. The system variable CONTEXT contains the address of the

appropriate context vocabulary. If the search is successful, the keyword word

address is returned to the stack as the second stack entry, and a False flag is

returned as the top stack entry. If the context vocabulary search is unsuc¬

cessful, the system MODE flag is tested. If the MODE flag is False (execute

mode), a single True flag is returned at the top of the stack. If the MODE flag is

True (compile mode), the COMPILER vocabulary is searched. If the search is

successful, the word address of the located keyword is returned to the stack as

the second stack entry, a False flag is returned as the top stack entry and the

system flag STATE is set True. If the compiler vocabulary search is unsuc¬

cessful, a single True flag is returned as the top stack entry. The threaded code

for 7SEARCH is shown in figure 5.3. A flag is always the top stack entry when

7SEARCH completes. If this flag is False, the word address of a located

keyword is the second stack entry as a parameter for 7EXECUTE.

82 THREADED INTERPRETIVE LANGUAGES

KEYWORD CONTROL BYTES STACK

COLON
CONTEXT

@
<®

SEARCH

2
2 AD
2 AD
2 AD
2 F,AD or T
2 F,F,AD or T,T
3 F,AD or T
2 AD,T
2 T/F,T
3 T
2
2 AD
2 AD
2 F,AD or T
2 F,F,AD or T,T
3 F,AD or T
2 0,T
3 0,T
2 1 ,F,AD
2 AD,1 ,F,AD or AD,0,T
2 F,AD or T
2 F,AD or T

48

Figure 5.3: Code design for ?SEARCH.

7EXECUTE — A secondary with no header. This routine tests the states of the

system MODE flag and the system STATE flag. If the flag states are equal, the

word address of the top stack entry is executed. If not, the word address at the

top stack entry is enclosed in the dictionary. The system STATE flag is always

set False before the possible execution of a keyword can occur. After each

keyword execution, a test for stack underflow is made. If underflow occurs,

the address of the stack underflow message must be loaded into the word ad¬

dress register and an unconditional jump to the $PATCH routine occurs. The

threaded code for the 7EXECUTE routine is shown in figure 5.4.

ROUTINES, ROUTINES, ROUTINES 83

KEYWORD CONTROL BYTES STACK

COLON
STATE
C@
STATE
COSET
MODE
C@

*IF 08 {j_
EXECUTE •*—
•STACK
•ELSE 03 U |

SEMI*

2 AD
2 AD,AD
2 FG,AD
2 AD,FG,AD
2 FG,AD
2 AD,FG,AD
2 FG,FG,AD
2 T/F,AD
3 AD
2
2
3
2
2

30

Figure 5.4: Code design for 7EXECUTE.

7NUMBER — A secondary with no header. This routine attempts to convert

the token located at the free dictionary space to a binary number using the cur¬

rent system number base. If the conversion is unsuccessful, a True flag is

pushed to the stack. This will occur if the token is the terminator or if the

token is unidentifiable. If a successful conversion occurs, the system MODE

flag is checked. If the MODE flag is True, a literal handler plus a number must

be added to the dictionary. If the number is within the byte number range, the

word address of the byte number literal handler *C# is added to the dictionary

followed by the byte number. If the number is not within a byte range, the

word address of the word number literal handler *# is added to the dictionary

followed by the number. After the literal handler and number entry to the dic¬

tionary, a False flag is pushed to the stack. If the conversion is successful and if

the system MODE flag is False, the number is pushed to the stack and a False

flag is pushed to the stack. This can leave an excess number on the stack which

is exactly the right answer in the execute mode. The thread code design for

7NUMBER is shown in figure 5.5

84 THREADED INTERPRETIVE LANGUAGES

KEYWORD CONTROL BYTES STACK

COLON
NUMBER
*IF 25
MODE«-
C@
*IF 19
SINGLE*
*IF OC
##

•ELSE 09 U—|
-

-
‘ELSE 03 U—|
1«-

SEMH-

2
2 T,N or F
3 N or -
2 AD,N
2 T/F,N
3 N
2 T/F,N
3 N
4 AD,N
2 N
2
3
4 AD,N
2 N
2
2 F or F,N
3 F or F,N
2 T
2 T or F or F,N

47

Figure 5.5: Code design for 7NUMBER.

(A fundamentally circular definition is encountered in the design of

7NUMBER. It fields literals but contains the word number literal handler as a

literal number, which is itself the word address of the literal handler followed

by its own word address. Thus, if the literal handler word address were XXYY

hex, the *#*# of figure 5.5 is YYXX YYXX given the reversed address order of a

microcomputer.)

QUESTION — A primitive with a header. This routine tests the high-order bit

of the second byte in the free dictionary space. If this bit is 1 set, all of the input

buffer tokens have been scanned and a terminator is in the free dictionary

space. The address of the BOK message is pushed to the stack and exit occurs

to the inner interpreter NEXT routine. If the bit is zero set, an unidentifiable

token has been scanned. In this event, a carriage return-line feed is issued to

the display, the token in the free dictionary space is displayed, the address of

the ■? message is placed in the word address register and an unconditional

jump to the $PATCH routine occurs.

SPATCH — A machine code routine that patches several system variables in

the event a system error occurs during the compile mode. SPATCH resets the

dictionary pointer and the current vocabulary link to the values that existed

ROUTINES, ROUTINES, ROUTINES 85

prior to the attempt to compile the aborted definition. This also allows a con¬

venient way to abort a semi-completed definition. Simply entering a token

which you know the system won't recognize does the trick. I usually use a se¬

quence of Xs to accomplish an abort. A line delete will do the same unless the

definition extends over one line or has been partially entered via carriage

return. A definition may extend over as many input lines as your mind can

support, but remember that the TIL will do exactly what you ask. It doesn't

forget unless you type FORGET.

All of the outer interpreter secondaries have been detailed. They are com¬

posed of primitives only. The major reason for defining routines as headerless

secondaries is simply to make testing easier. The total code count for the outer

interpreter and all of its subroutine secondaries is:

Outer Interpreter 28
7SEARCH 48
7EXECUTE 30
7NUMBER 47

153 bytes

An 18-byte penalty is paid for defining the three headerless secondaries.

This is a price well worth paying at checkout time.

A complete list of the keywords needed to directly implement the outer in¬

terpreter is given in table 5.1. The rough size of each keyword (including

headers) is given in this list. A byte count to this point yields:

Inner Interpreter * 50
Start/Restart * 50
Secondaries * 150
Primitives * 825

1075

This list of code is still deceptively small. It does not consider the I/O

subroutines needed to support table 5.1 primitives, several system variables,

and the defining and compiling keywords required both in support of the table

5.1 keywords and in allowing a self-generating language. There are between

400 and 700 bytes involved in these routines.

86 THREADED INTERPRETIVE LANGUAGES

KEYWORD TYPE KEYWORD NAME « BYTES

OPERATORS TYPE 25
INLINE 95
SEARCH 70
TOKEN 60
NUMBER 90
@ 15
C<® 20
/ 20
c, 20
DUP 15
DROP 10
Cl SET 15
COSET 15
= 25
SINGLE 20
*STACK 20
QUESTION 35

CONSTANTS ASPACE 10
0 10
1 10

VARIABLES CONTEXT 15
COMPILER 15
STATE 15
MODE 15

PROGRAM CONTROL DIRECTIVES *IF 10
‘END 10
‘WHILE 10
‘ELSE 10

LITERAL HANDLERS *# 15
*C# 15

SUBROUTINES $PATCH 35
$CRLF 15

SYSTEM MESSAGES 40

Table 5.1: Outer interpreter keyword sizes.

At this point I will abandon the pursuit of the exact keywords needed to
complete the TIL design. After all, this is only one example of an outer inter¬
preter. There is no 'right" design and no "right" choice of a keyword as a
primitive or a secondary.

The design procedure to this point is really nothing more than identifying
the functions to be performed and associating a keyword name with the func¬
tion. I highly recommend "headerless" secondaries as a method of segmenting
larger code blocks as long as timing consideration allows. In the outer inter¬
preter for a terminal-directed TIL, the slower secondary nesting is acceptable.

ROUTINES, ROUTINES, ROUTINES 87

This slower approach may not be feasible in a high-speed widget sorting pro¬

gram.

5.3 Routine Routines

There are obviously a number of routines, both primitive and subroutine,

needed to mechanize the outer interpreter. These routines are really the heart

of the system design. To present the designs both flowcharts and Z80 specific

listings will be used.

5.3.1 START/RESTART

The start/restart routine really has two entrances: one that initializes the en¬

tire system and calls up either the start or restart message, and one that does a

partial system initialization and presumes an error message has already been

set up.

A listing of equivalent Z80 assembly code is given in listing 5.1. This par¬

ticular mechanization presumes that the system variables MODE and STATE

share adjacent memory cells, and the system variable BASE is initially stored

as zero during system loading. The variable BASE may thus be used to
distinguish a start from a restart. The abort entrance, like a restart, does not

change the system base but performs all other initializations.

START:

ABORT:

LD DE.RSTMSG
LD A, {BASE}
AND A
JR NZ,ABORT
LD A, 10
LD {BASE}, A
LD DE,SRTMSG
LD SP, STACK
PUSH DE
LD HL,0
LD {MODE},HL
LD IY,NEXT
LD IX,RETURN
LD HL,8080
LD {LBEND},HL
LD BC,OUTER
JP NEXT

RESTART MESSAGE ADDRESS TO WA
GET SYSTEM BASE
TEST IT FOR ZERO
IF IT'S ZERO, IT'S A START
ELSE GET HEX BASE
AND STORE IT AT BASE
START MESSAGE ADDRESS TO WA
SET SYSTEM DATA STACK
PUSH MESSAGE ADDRESS

SET MODE =0, STATE =0
SET I2 NEXT ADDRESS TO IY
SET RETURN STACK
GET TWO TERMINATORS
STORE TO END OF LINE BUFFER
START OF OUTER INTERPRETER
JUMP TO I2 NEXT CODE

Listing 5.1: Assembly code for START/RESTART. Note that OUTER is the address of

TYPE in the threaded list for the outer interpreter.

88 THREADED INTERPRETIVE LANGUAGES

5.3.2 INLINE -

The input submode is mechanized by the INLINE routine. Although INLINE

could be implemented as either a primitive or a secondary, a primitive form

will be presumed.

A flowchart of the INLINE function is shown in figure 5.6. One point is

worth stressing in this design. The routine controls the cursor location by

issuing carriage return, line feed and backspace commands to the display

device. The buffer pointer BP points to the line buffer position where the next

character will be stored. An equivalent Z80 assembly code listing is given in

listing 5.2.

Figure 5.6: INLINE flowchart.

ROUTINES, ROUTINES, ROUTINES 89

INLINE: * +2
PUSH BC

START: CALL $CRLF
LD HL,LBADD
LD {LBP},HL
LD B,LENGTH

CLEAR: LD {HL},20
INC HL
DJNZ CLEAR

ZERO: LD L,0
INKEY: CALL $KEY

CP "LD"
JR NZ,TSTBS
CALL $ECHO
JP START

TSTBS: CP "BS"
JR NZ,TSTCR
DEC L
JP M,ZERO
LD {HL},20

ISSUE: CALL $ECHO
JP INKEY

TSTCR: CP "CR"
JR Z,LAST1
BIT 7,L
JR NZ,END

SAVEIT: LD {HL},A
CP 61
JR C,NOTLC
CP 7B
JR NC,NOTLC
RES 5,{HL}

NOTLC: INC L

JR ISSUE
END: DEC L

LD C,A
LD A,"BS"
CALL $ECHO
LD A,C
JR SAVEIT

LAST1: LD A,20
CALL $ECHO
POP BC
JP {IY}

PRIMITIVE CODE ADDRESS
SAVE THE IR
ISSUE CR-LF
GET START OF LINE BUFFER
RESET LBP
SET BUFFER LENGTH
LOAD SPACE TO BUFFER
BUMP BUFFER POINTER
LOOP TO CLEAR BUFFER
BACK TO FIRST BUFFER LOCATION
INPUT A CHARACTER
IS IT A LINE DELETE?
IF NOT SKIP LD CODE
ELSE ISSUE LINE DELETE
AND START OVER
IS IT A BACK SPACE?
IF NOT SKIP BS CODE
DECREMENT BUFFER POINTER
RESET TO ZERO IF NEGATIVE
LOAD SPACE TO THE BUFFER
DISPLAY THE CHARACTER
AND RETURN FOR NEXT
IS IT A CARRIAGE RETURN ?
IF SO, GO TO EXIT INLINE
IF BIT SET, AT 1 29TH PLACE
DO BUFFER END TASK AT 1 29
SAVE CHARACTERS IN BUFFER
IS IT LESS THAN LC A?
IF SO, SKIP LC CODE
IS IT MORE THAN LC Z ?
IF SO, SKIP LC CODE
ELSE MAKE LC UC IN BUFFER
BUMP POINTER

GO ISSUE CHARACTER
BACK UP TO 1 28TH PLACE
SAVE THE INPUT CHARACTER
GET BACK SPACE CHARACTER
MOVE CURSOR LEFT
RESTORE ORIGINAL CHARACTER
GO PUT IT AT 1 28TH PLACE
REPLACE CR BY A SPACE
AND ISSUE IT
RESTORE IR
RETURN TO I2 NEXT ROUTINE

Listing 5.2: INLINE Z80 primitive. This routine presumes a 128 byte line buffer which

starts on a page boundary.

90 THREADED INTERPRETIVE LANGUAGES

5.3.3 Token Extracting

The token-extracting routine is mechanized as the keyword TOKEN in the

design presented. The TOKEN keyword can be either a primitive or a second¬

ary, although I usually design it as a primitive. This routine moves the next

token in the line buffer to the free dictionary space in extended header format.

A flowchart of the TOKEN routine is shown in figure 5.7. Note that LBP

Figure 5.7: TOKEN flowchart. PI points

to the line buffer; P2 points to the dic¬

tionary space; SEP is the separator.

ROUTINES, ROUTINES, ROUTINES 91

and DP are system variables whose contents point to the line buffer and dic¬

tionary free space respectively. The LBP variable will point to the start of the

line buffer the first time TOKEN is used to scan a token after a line entry.

TOKEN will reset LBP to point to the first line buffer address following the

token separator each time it is called. This particular design presumes that two

terminators are stored immediately following the line buffer. These ter¬

minators act as permanent separators. Two terminators are required to allow

the first to terminate the last token on the line and to insure that the next call to

TOKEN will return a terminator. A listing of the Z80 assembly code to imple¬

ment TOKEN is given in listing 5.3.

DATE #5,T,0,K
DATA "LINK”

TOKEN: *+2

EXX
LD HL,{LBP}
LD DE,{DP}
POP BC
LD A,20
CP C
JR NZ,T0K

IGNLB: CP {HL}
JR NZ,T0K
INC L
JR IGNLB

TOK: PUSH HL
COUNT: INC B

INC L
LD A,{HL}
CP C
JR Z,ENDT0K
RLA
JR NC,COUNT
DEC L

ENDTOK: INC L
LD {LBP},HL
LD A,B
LD {DE},A
INC DE
POP HL
LD C,B
LD B,0
LDIR
EXX
JP {IY}

TOKEN'S IDENTIFIER
LINK ADDRESS
PRIMITIVE CODE ADDRESS
SAVES IR
GET POINTER TO TOKEN
GET POINTER TO DICTIONARY
SEPARATOR IN C, B IS ZERO
SPACE CODE TO A REG
IS SEPARATOR A SPACE ?
IF NOT, TOKEN START
IS IT A SPACE ?
IF NOT, TOKEN START
BUMP THE POINTER
TRY NEXT CHARACTER
SAVE TOKEN START ADDRESS
INCREMENT COUNT
BUMP THE POINTER
GET THE NEXT CHARACTER
IS IT A SEPARATOR ?
IF SO, TOKEN END
BIT 7 TO CY
IF CY =0, NOT AT END
BACK UP 1 IF A TERMINATOR
STEP PAST SEPARATOR
UPDATE LBP FOR NEXT CALL
MOVE COUNT TO A REG
LENGTH TO DICTIONARY
BUMP DICTIONARY ADDRESS
GET TOKEN START ADDRESS
GET COUNT TO BC

Listing 5.3: TOKEN: Z80 primitive.

MOVE TOKEN TO DICTIONARY
RESTORE IR
RETURN TO I2 NEXT ROUTINE

92 THREADED INTERPRETIVE LANGUAGES

5.3.4. SEARCH

SEARCH is the routine within $SEARCH which actually searches the

vocabularies for a given keyword. It has a header since it will be compiled into

other keywords after a self-generating language is achieved. I generally code

this routine as a primitive to insure that keywords can be located as rapidly as

possible.

SEARCH is called with the address of the first keyword header in the linked

list to be searched as the top stack entry (ie: the address of the three in the DUP

header in the example of figure 2.1). The token being searched for is located in

the free dictionary space in extended header format. The search routine will

test the length and up to three characters of the keyword name. The first

detected mismatch causes the next header in the linked list to become the next

candidate for a match. This procedure will continue until either a match occurs

or the bottom of the list is reached (a zero link address). If a match occurs, the

word address of the located keyword is pushed to the stack followed by a False

flag. If the bottom of the list is reached, a True flag is pushed to the stack.

A flow diagram of the SEARCH routine is given in figure 5.8 and a Z80

assembly code listing is given in listing 5.4.

SEARCH:

TESTIT:

BEL04:
NXTCH:

DATA #6,S,E,A
DATA "LINK”
* +2
EXX
POP HL
PUSH HL
LD DE,{DP}
LD C,0
LD A,{DE}
CP {HL}
JR NZ,NXTHDR
CP 4
JR C,BEL04
LD A,3
LD B,A
INC HL
INC DE
LD A,{DE}
CP {HL}
JR NZ,NXTHDR
DJNZ NXTCH
POP HL
LD DE,6
ADD HL,DE
PUSH HL
JR FLAG

SEARCH'S IDENTIFIER
LINK ADDRESS
PRIMITIVE CODE ADDRESS
SAVES IR
GET 1ST HEADER ADDRESS
SAVE START OF HEADER
GET DICTIONARY POINTER
USED WITH B AS A FALSE FLAG
GET DICTIONARY TOKEN LENGTH
SAME AS KEYWORD LENGTH ?
IF NOT, GO TO NEXT HEADER
IS LENGTH OVER 3 ?
IF NOT, SKIP 3 SET CODE
SET LENGTH TO 3
SAVE LENGTH AS COUNT
BUMP HEADER POINTER
BUMP DICTIONARY POINTER
GET NEXT DICTIONARY CHARACTER
MATCH KEYWORD CHARACTER ?
IF NOT, GO TO NEXT HEADER
ELSE GO TEST NEXT CHARACTER
START OF FOUND HEADER
START OF HEADER PLUS 6
EQUALS WORD ADDRESS
PUSH WA; BC =0 FOR FLAG
DONE AND KEYWORD FOUND

ROUTINES, ROUTINES, ROUTINES 93

FLAG:

POP HL
LD DE,4
ADD HL,DE
LD E,{HL}
INC HL
LD D,{HL}
EX DE,HL
LD A,H
AND L
JR NZ.TESTIT
LD C,1
PUSH BC
EXX
JP {IY}

GET START OF CURRENT HEADER
PLUS 4 EQUALS LINK ADDRESS
TO NEXT KEYWORD
GET LINK ADDRESS OR THE
START OF THE NEXT
HEADER

TEST LINK ADDRESS FOR ZERO
OR LAST KEYWORD
IF NOT 0, TEST NEXT HEADER
FLAG = 1, IF NOT FOUND
PUSH FLAG
RESTORE IR
RETURN TO I2 NEXT ROUTINE

Listing 5.4: SEARCH: Z80 primitive.

Figure 5.8: SEARCH flowchart.

94 THREADED INTERPRETIVE LANGUAGES

5.3.5. NUMBER

The NUMBER routine is a headerless primitive called by 7NUMBER to con¬

vert tokens to binary numbers. It is the single most complex routine in the

design. On entrance there is a token, in extended header form at the free dic¬

tionary space, a length character followed by that number of ASCII

characters. NUMBER will convert this token to a binary number if it is a valid

number and push the number and a True flag to the stack. If NUMBER deter¬

mines that the token is not a valid number, it pushes only a False flag (zero) to

the stack.

The first character in a valid number token may be an ASCII minus sign

(hexadecimal 2D). With this exception, all token characters are first tested to

determine that they are in the set hexadecimal 30 thru 39 by subtracting hexa¬

decimal 30 from the character (remember that hexadecimal 30 is an ASCII 0

and hexadecimal 39 is an ASCII 9) and testing to see that the result is between 0

and 9. If the result is negative the character cannot be in the valid number set.

If the result is more than hexadecimal 9 but less than hexadecimal 11, it is not

in the valid character set since an ASCII A less hexadecimal 30 is 11 hexa¬

decimal. If the result is more than hexadecimal 10, an additional hexadecimal 7

is subtracted which converts ASCII A,B,...F,G,... to 0A, 0B,...,OF, 10,...

hexadecimals. The procedure to this point simply converts ASCII characters to
binary numbers. The number is then tested to verify that it is in the set {0 thru

(BASE —1)}. If all goes well the token is still in the acceptable number token

set.

The overall procedure is a sequential conversion process. The result is first

set to zero. The process then tests to see if a leading minus sign is present. A

flag is set to indicate this event. As each token character is scanned and con¬

verted to a number, the results are updated as:

Result = Result * BASE + Number

When all token characters have been input, the sign flag is tested. If the

original token had a leading minus sign, the two's complement of the number

is saved as the result.

The procedure is depicted in the flowchart of figure 5.9 and a Z80 listing is

given in listing 5.5.

ROUTINES, ROUTINES, ROUTINES 95

96 THREADED INTERPRETIVE LANGUAGES

NUMBER:

SKIPSAV:

NLOOP:

NUMB:

NOTNO:

ANUMB:

MLOOP:

SKPADD:

EXX
LD HL, {DP}
LD B,{HL}
INC HL
LD A,{HL}
CP 2D
LD A,0
JR NZ,SKPSAV
DEC A
DEC B
INC HL
EX AF,AF'
LD DE,0
PUSH DE
PUSH DE
LD A,{HL}
SUB 30
JR C,NOTNO
CP OA
JR C,NUMB
CP 11
JR C,NOTNO
SUB 7
LD E,A
LD A, {BASE}
DEC A
CP E
JR NC,ANUMB
POP HL
EXX
JP {IY}
EX {SP},HL
EX DE,HL
PUSH BC
PUSH HL
LD BC,0800
INC A
LD L,C
LD H,C
ADD HL,HL
ADC A
JR NC,SKPADD
ADD HL,DE
DJNZ MLOOP
POP DE
ADD HL,DE

NUMBER'S CODE ADDRESS
SAVES IR
GET POINTER TO DICTIONARY
GET LENGTH OF TOKEN {COUNT}
BUMP POINTER
GET FIRST CHARACTER
IS IT A MINUS SIGN ?
SET SIGN FLAG TO FALSE
IF POSITIVE, SKIP TO FLAG SAVE
MAKE SIGN FLAG TRUE
DECREASE COUNT BY 1
BUMP PAST MINUS SIGN
SAVE SIGN FLAG IN AF'
ZERO DE REG PAIR
SAVE AS FLAG
SAVE AS RESULT
GET NEXT CHARACTER
SUBTRACT NUMBERS BIAS
IF CY = 1, NOT A NUMBER {<0}
LESS THAN 10 {A DIGIT} ?
IF CY = 1, IT'S A DIGIT
IF A UC LETTER, IT'S OVER 1 7
ELSE IT'S NOT A NUMBER
SUBTRACT ADDITIONAL LETTERS BIAS
SAVE BINARY NUMBER IN E REG
GET SYSTEM NUMBER BASE
VALID SET IS {0,BASE - 1}
IS THE BINARY NUMBER VALID ?
CHEERS, IT'S A VALID NUMBER
POP RESULT, LEAVING FALSE ON
THE STACK; RESTORE IR
RETURN TO I2 NEXT ROUTINE
GET RESULT & SAVE POINTER
RESULT TO DE AS MULTIPLICAND
SAVE COUNT
SAVE NEW BINARY NUMBER
GET MULTIPLY COUNT
RESTORE BASE IN A REG {MULTIPLIER}
ZERO HL AS THE PRODUCT AREA

SHIFT PRODUCT AND MULTIPLIER
LEFT 1 BIT
IF CY =0,SKIP ADD
ELSE ADD MULTIPLICAND
LOOP TO COMPLETE MULTIPLY
GET BINARY NUMBER BACK
RESULT = PRODUCT + NUMBER

ROUTINES, ROUTINES, ROUTINES 97

POP BC
EX {SP},HL
INC HL
DJNZ NLOOP
POP DE
POP HL
EX AF,AF'
AND A
JR Z,DONE
SUB HL,DE
EX DE,HL

DONE PUSH DE
SCF
PUSH AF
EXX
JP {IY}

Listing 5.5: NUMBER: Z80 primitive.

;RESTORE COUNT
;GET POINTER & SAVE RESULT
;BUMP THE POINTER
;LOOP FOR ALL CHARACTERS
;GET FINAL RESULT
;THE FALSE FLAG {A ZERO}
;GET SIGN FLAG FROM AF'
;IS IT ZERO ? {ALSO CY=0}
;SKIP COMPLEMENT IF POSITIVE
;COMPLEMENT RESULT
;FINAL FINAL RESULT TO DE
;FINAL RESULT TO THE STACK
;MAKE AF TRUE {*0}
;PUSH TRUE FLAG
;RESTORE IR
;RETURN TO I2 NEXT ROUTINE

5.3.6 QUESTION -

The QUESTION keyword is a non-structured primitive. It has a single en¬

trance but may return to the inner interpreter or may exit to

START/RESTART via $PATCH. The first character in the token at the free

dictionary space determines which action will occur. If the high-order bit of

this character is set, the token is a terminator. This implies that all operator re¬

quested actions are complete and the line buffer is empty. In this event the ad¬

dress of the BOK message is pushed to the stack arid the routine exits to

NEXT. The outer interpreter will then jump to TYPE to display this message.

If the token is not a terminator, it must be an unknown token since it could

not be found in the dictionary or converted to a valid number. In this event, a

carriage return-line feed is issued to the display and the unknown token is echo

displayed to the operator. The address of the ■? message is then loaded to the

WA register and the routine exits to $PATCH. The $PATCH routine will

patch the system if the unknown token was discovered while the compile mode

was in effect.

A listing of the Z80 assembly code for this routine is given in listing 5.6. In

this listing, note that the primitive TYPE is called as an in-line subroutine by

changing the IY register to force a return to QUESTION.

QUESTION: * +2
LD HL, {DP}
INC HL

QUESTION'S CODE ADDRESS
GET POINTER TO DICTIONARY
STEP OVER TOKEN LENGTH

98 THREADED INTERPRETIVE LANGUAGES

ERROR:

RETURN:

BIT 7,{HL}
JR Z,ERROR
LD DE,OK
JP {IY}
CALL $CRLF
LD IY,RETURN
DEC HL
JP TYPE
LD DE,MSG?
JP $PATCH

IF BfT SET, A TERMINATOR
IF NOT SET, AN ERROR
PUT OK MESSAGE ADDRESS IN WA
RETURN TO I2 NEXT ROUTINE
ISSUE CR-LF BEFORE UNKNOWN TOKEN
SET IY TO RETURN TO THIS ROUTINE
BACK-UP TO TOKEN LENGTH
GO ECHO UNKNOWN TOKEN
? MESSAGE ADDRESS TO WA
GO PATCH SYSTEM BEFORE RESTART

Listing 5.6: QUESTION: Z80 primitive.

5.3.7 ‘STACK

The ‘STACK routine is a primitive without a header. Like QUESTION,

‘STACK is a nonstructured routine in that it has a single entrance but a dual

exit. ‘STACK tests for stack underflow. If an underflow condition does not

exist, a normal exit to NEXT occurs. If underflow is detected, the stack pointer

is reset to point to the correct top of stack address, the stack error message ad¬

dress is loaded to the WA register and a jump to $PATCH is executed. This

will patch the system and reinitialize the system before displaying the stack er¬

ror message and reverting to the input submode. A Z80 assembly code listing

for this routine is given in listing 5.7.

‘STACK: * + 2
LD
AND
SUB
JR
ADD
LD
LD
JP

OK: JP

;*STACK'S CODE ADDRESS
HL,STACK ;GET TOP OF STACK ADDRESS
A ;RESET THE CARRY FLAG
HL,SP SUBTRACT CURRENT SP
NC,OK ;IF CY =0, NO UNDERFLOW
HL,SP ;ELSE RESTORE TOP ADDRESS
SP,HL ;AND RESET STACK POINTER
DE,STKMSG ;STACK ERROR MESSAGE ADDRESS TO WA
$ PATCH ;GO PATCH SYSTEM BEFORE RESTART
{IY} ;RETURN TO I2 IF NO UNDERFLOW

Listing 5.7: *STACK: Z80 primitive.

5.3.8 SPATCH

The routine $PATCH is a machine language routine that is used to patch

system variables in the event a system-detected error occurs during the com-

ROUTINES, ROUTINES, ROUTINES 99

pile mode. Any system-detected error that could occur during the compile

mode should enter START/RESTART via $PATCH. System-detected errors

that can occur only in the execute mode may jump unconditionally to

START/RESTART.

$PATCH resets the dictionary pointer DP and the CURRENT vocabulary

link to the values that existed prior to the start of the aborted compile mode

definition. If the MODE of the system is the compile mode on entry, $PATCH

resets DP to the address that is the header address of the latest keyword in the

CURRENT vocabulary. The link address in this header is then stored as the

pointer to the latest entry in the CURRENT vocabulary. This delinks the par¬

tially entered keyword from the system and re-establishes the dictionary free

space to its previous value. A Z80 assembly code listing for this routine is

given as listing 5.8.

$PATCH: LD
AND
JP
PUSH
LD
LD
INC
LD
EX
LD
LD
ADD
LD
JR
INC

SKIP: LD
LD
DEC
DEC
LD
LD
POP
JP

A,{MODE}
A
Z,ABORT
DE
HL,{CURRENT}
E,{HL}
HL
D,{HL}
DE,HL
{DP},HL
A,5
L
L,A
NC,SKIP
H
A, {HL}
{DE},A
HL
DE
A, {HL}
{DE},A
DE
ABORT

GET MODE VARIABLE
IS IT ZERO {EXECUTE} ?
IF SO, GO TO RESTART
ELSE SAVE MESSAGE ADDRESS
GET VOCABULARY ADDRESS
IT POINTS TO THE LATEST
ENTRY,WHICH WAS ABORTED
THIS IS WHERE DP SHOULD
POINT
RESTORE DP
BUMP POINTER TO THE
LINK ADDRESS OF THE ABORTED
KEYWORD BY ADDING 5

MOVE LINK ADDRESS TO THE
CURRENT VOCABULARY AS
THE POINTER TO ITS
LATEST ENTRY

RESTORE MESSAGE ADDRESS
AND EXIT TO RESTART

Listing 5.8: SPATCH code.

5.4 Doing It

Given the design, the actual coding can begin. There are as many ways to

program a TIL as there are computer/software combinations. My favorite

100 THREADED INTERPRETIVE LANGUAGES

way involves hand-assembling and machine-coding the language until the self-

generating phase is reached, but there are other methods. Almost all coding

methods involve keeping track of the header addresses and word addresses of

the individual keywords as well as their vocabulary linkage. One assembly

listing of the entire TIL can be generated. This will keep track of all the ad¬

dresses using a symbol table.

One neat trick for testing a TIL involves a register trapping scheme. My

systems always support a trap routine that will display all registers and several

levels of the stack. Defining a primitive that calls this trap routine results in an

easy way to debug the TIL. I almost always start the TIL code by coding the
system variables and their access routines: the start/restart routine, the inner

interpreter, the system messages, and the TYPE keyword. The outer inter¬

preter is initially defined as just the TYPE word address followed by the trap

primitive word address. Within half an hour of starting the actual code genera¬

tion, the system is happily saying:

HELLO, I'M A TIL

followed by the trap register and stack display. The registers, the stack, and

the initialization of the systems variables can then be verified.

As each new keyword in the outer interpreter is coded, its word address is

added to the outer interpreter threaded list and the trap routine is moved to the

next following location (or the next relative jump location). When the first

secondary is called, it is first defined as just the trap primitive. The build and

test then follows down this secondary. As each new keyword is added, the

build and test extends, until a return to the outer interpreter occurs.

A gentle build process allows a fairly thorough testing of the routines as they

are added. A top-down testing approach has as many advantages as the top-

down design approach.

5.5 Arithmetic Subroutines

Most microcomputers are noted for their lack of arithmetic machine-code

instructions. Almost all have 8-bit addition and subtraction instructions; some

even have 16-bit addition and subtraction instructions, but few have multiply

and divide instructions. The multiply and divide keywords of Section 4.3.4

must be implemented using algorithms, based on the addition and subtraction

instructions. The keywords selected for inclusion in the TIL are based partially

on constraints arising from the need to emulate multiplication and division.

Multiplication of unsigned integers is fairly easy to emulate on most

microcomputers. Division is usually more difficult and slower. The multiply-

and divide-based keywords depend somewhat on how easy it is to define

reasonably efficient algorithms. Execution speed is the primary design goal.

ROUTINES, ROUTINES, ROUTINES 101

but memory utilization cannot be neglected. Depending on the instruction set

available to the designer, a subroutine approach is usually most efficient.

To emulate signed multiply and divide keywords, there are four steps (or

subroutines) that can be isolated. The input numbers from the stack are first

converted to positive integers after having computed and saved the sign of the

result. The multiply or divide of the positive integers is then done resulting in a

positive integer. The sign of the result is changed if the sign of the result com¬

puted during the input step calls for a negative result. Finally, the results are

formatted and returned to the stack. The subroutines associated with these

four steps need to be identified and designed.

Table 5.2 lists the keywords of interest and associates each keyword with

the appropriate root unsigned multiply and/or divide algorithm(s). The root

algorithms are subroutined as follows:

$US* — An 8 by 8 bit multiply with a 16-bit product.

$UD* — A 16 by 8 bit multiply with a 24-bit product.

$US/ — A 16 by 8 bit divide with a 8-bit quotient and 8-bit remainder.

$UD/ — A 24 by 8 bit divide with a 16-bit quotient and 8-bit remainder.

These subroutines expect positive input integers in pre-defined registers (or

memory locations) and return result in pre-defined locations.

INPUT KEYWORD OUTPUT SUBROUTINE

N1(8)*NO(8) S*
N1(16)*NO(8)
N1(16)*NO(8) D*
N1 (1 6)/NO(8) /MOD
N1 (1 6)/NO(8) /
N1 (1 6)/NO(8) MODU /
N1 (1 6)/NO(8) MOD
N2(16)1,N1(8)*/NO(8) D/MOD
N 2 (1 6)*N1 (8)/NO(8) */
N 2 (1 6)*N$(8)/NO(8) */MOD

NO(16) $US*
NO(16) $UD*
NO(8)*,N1(16)i$UD*
NO(8)r,N1 (8), $US/
NO(8), $US/
NO(8)„N1(8)r $US/
NO(8)r $US/
NO(8)r,N1 (1 6),$UD*
NO(16), $UD*,$UD/
NO(8)r/N1 (16),$UD*,$UD/

Table 5.2: Multiply and divide operations.

All of the keywords, except D/MOD, "*/" and */MOD, expect two stack
numbers on entry. Even in the case of an expected 8-bit number, the inputs are

on the stack as 16-bit signed numbers. Except for the three keywords noted, a

common routine can be defined to compute and save the sign of the result and

convert any negative input integer to positive. The products or quotients

returned are always pushed to the stack as signed 16-bit numbers except for the

results of D*. Note that remainders are always positive. A common routine

can be used to correct the results if they are negative for all of the keywords ex¬

cept D*. Two subroutines can then be defined as:

102 THREADED INTERPRETIVE LANGUAGES

$ISIGN— The signs of the input numbers are exclusive-OR'ed and the result is

saved as the result sign bit. Both input members are converted to positive in¬

tegers as required.

$OSIGN — Retrieves the result sign bit and two's complements the result if

the bit is 1 set.

It should be realized that $ISIGN also expects the input numbers in a known

location and not on the stack, otherwise the input numbers are below the

subroutine return which is pushed to the stack when $ISIGN is called.

These six subroutines are then used to implement the ten keywords

associated with the multiply and divide keywords. The decision to use

subroutines results in slower keywords than if in-line code routines had been

defined. However, subroutines are very memory-efficient and the speed

penalty is slight. The definition of the root algorithms as subroutines also

allows them to be used to define other keywords. For example, a 16 by 16-bit

multiply that returns a 32-bit product can be easily designed based on two calls

to $UD*. In point of fact this results in the fastest 16 by 16-bit multiply for the

Z80.

Exactly how you define your number crunching routines depends on your

application. The extremes run the gamut from a secondary definition to

multiply by successive addition (using add and loop primitives) to a straight

non-looping algorithm in machine code with in-line sign fielding. Number

crunching may not even be required for some applications and may be omitted

entirely. The subroutined approach given here along with fast looping root

algorithms is a compromise that achieves fair execution efficiency along with

reasonable memory needs.

WORDS, WORDS, AND MORE WORDS 103

6 | Words, Words, and
More Words

If you think that I'm merely going to bandy words with
you, you're right. Ignore walruses and other figments of
mathematical minds; the time is here and now. After all,
CABBAGES and KINGS are both viable TIL keyword
names.

6.1 The Word

Following a few, brief introductory remarks, here are page upon page of
keyword descriptions. With any sort of luck at all, they will be arranged in

ASCII alphabetic order. The composite collection is not quite a language

specification nor is it really intended to be. The code descriptions are Z80

specific in many cases, which limits their universal applicability. Most of the

descriptions are simple enough to allow recoding for an alternate central pro¬

cessing unit.

The general format of the descriptions is as follows:

Name — My arbitrary name for the keyword which may be changed to your

favorite flavor.

Class — A vague attempt to classify the keywords into groups of like usage.

Function — A description of what the keyword is to accomplish.

Usage — Given you have got it, why you want it.

Z80 Code — A semi Z80 assembly language description of the code body of

primitives, including explanatory comments. These listings do not include the

header or the code address, but include the return address if and only if a label

precedes the return.

Code — A list of the primitive and secondary keywords that constitute the

code body of a secondary. They include relative jump bytes in hexadecimal.

Sans headers, COLON addresses and SEMI addresses.

Bytes — The total byte count for the keyword including the header, the code

address and the return address where applicable. Specific to the Z80 for Z80

104 THREADED INTERPRETIVE LANGUAGES

code listings but generally indicative of keyword sizes.

Notes — A list of the funnies and restrictions associated with some keywords.

Formal Definition — The formal definition of the secondary keywords given

that the entire language existed. These keywords cannot usually be defined by

the formal definition. For example, the formal definition of presumes the

existence of

On with the show.

f

Class:

Function:

Input/Output:

Usage:

Z80 Code:

BYTES:

Memory Reference

Stores second stack entry at the address at the top stack en¬

try, removing both entries.

Two stack entries/None

Storage of word length data in programmable memory.

POP HL ;GET ADDRESS

POP DE ;GET DATA

LD {HL},E ;STORE BYTE

INC HL ;BUMP ADDRESS

LD {HL},D;STORE BYTE

15

Class:

Function:

Input/Output:

Usage:

Code:

BYTES:

Formal Definition:

I/O

Pops the top stack entry, computes the quotient and re¬

mainder relative to the system number base, converts the

remainder to an ASCII character (0 thru 9, A thru Z),

pushes the character, then pushes the quotient.

One stack entry/Two stack entries.

Does one conversion in the process of generating format¬

ted display outputs.

0 ;24 BIT NUMBER EXTENSION

BASE ;NUMBER BASE ADDRESS

C@ ;NUMBER BASE

D/MOD ;REMAINDER THEN QUOTIENT

ASCII ;REMAINDER TO ASCII CHARACTER

SWAP REMAINDER TO NUMBER STRING

22

:■#■()■ BASE ■ C@ ■ D /MOD ■ ASCII ■ SWAP ■;

WORDS, WORDS, AND MORE WORDS 105

#>

Class: I/O

Function: Pops the the sign byte left on the return stack by <#,

discards it and then displays the string on the stack using

the DISPLAY format convention.

Input/Output: One return stack entry and a variable length stack

string/None.

Display formatted strings built onto the stack.

INC IX ;DROP RETURN

JP DISPLAY ;GO ECHO STRING

13

This routine jumps to the code body of $DISPLAY and

thus has no return address.

#S

I/O

Converts the top stack entry to a sequence of ASCII

characters equivalent to the entry given the current system

number base. Sequentially pushes the number characters

with the most significant character to the top stack entry.

Input/Output: One stack entry/One to sixteen stack entries.

Usage: Converting numbers to a display string.

Code: # ; CONVERT 1 CHARACTER

DUP ;DUP QUOTIENT

0= ;IS IT ZERO?

*END F8 ;IF NOT LOOP

DROP ;DROP 0 QUOTIENT

Bytes: 21

Notes: Always does at least one conversion producing an ASCII 0

if the top entry was 0.

Formal Definition:

: ■ #S ■ BEGIN ■ # ■ DUP ■ 0 = ■ END ■ DROP ■;

Usage:

Z80 Code:

BYTES:

Notes:

Class:

Function:

$CRLF

Class: Subroutine

Function: Issue a carriage return-line feed sequence to the display to

scroll the display if required, clear the next display line and

leave the cursor at the left end of the blank line.

106 THREADED INTERPRETIVE LANGUAGES

Input/Output:
Usage:
Z80 Code:

Bytes:

Class:
Function:
Input/Output:
Usage:
Code:
Notes:

Class:
Function:

Input/Output:
Usage:
Z80 Code:

None/None.

Formatting the display.

LD A,0D ;GET A CR

CALL $ECHO ;ISSUE IT

LD A,0A ;GET A LF

CALL $ECHO ;ISSUE IT

RET ; RETURN

11

$ECHO

Subroutine

Interfaces the system to the display

None/None.

Available only to the system.

Not applicable.

Usually called via a transfer vector. $ECHO must interface

to existing system software or may be specifically written

to field the display function for the TIL.

SISIGN

Subroutine

Computes and saves the sign of an arithmetic result and

converts negative integers to positive integers.

None/None.

Available only to the system. See Section 5.5.

SISIGN: LD A,D ;SIGN OF 1ST

XOR B ;XOR SIGN OF 2ND

EX AF,AF' ; RESULT SIGN TO AF

LD A,D ;SIGN OF 1ST

AND A ;TEST SIGN, CY=0

JP P,TST2 ;IF + , IT'S OK

LD HL,0 ;ELSE GET ZERO

SBC HL,DE ;MAKE 1ST POSITIVE

EX DE,HL ;RESTORE 1ST

TST2: LD H,B ;MOVE 2ND HIGH BYTE

LD L,C ;MOVE 2ND LOW BYTE

LD A,B ;SIGN OF 2ND

AND A ;TEST SIGN, CY=0

RET P ;IF +, RETURN

LD HL,0 ;ELSE GET ZERO

SBC HL,BC ;MAKE 2ND POSITIVE

RET ;RETURN

WORDS, WORDS, AND MORE WORDS 107

Bytes: 25

Notes: Numbers in DE and BC on entrance and DE and HL on ex¬

it. Result sign in AF' on exit.

$KEY

Class:

Function:

Input/Output:

Usage:

Code:

Notes:

Subroutine

Interfaces the keyboard to the system.

None/None.

Available only to the system.

Not applicable.

Usually called via a transfer vector. $KEY must interface to

existing system software or may be specifically written to

field keyboard data for the TIL.

SOSIGN

Class:

Function:

Bytes:

Notes:

Subroutine

Negates a positive integer arithmetic result if the result sign

Input/Output:

Usage:

bit is 1 set.

None/None.

Available only to the system. See Section 5.5.

Z80 Code: SOSIGN: EX AF,AF ; RETRIEVE SIGN FLAGS

RET P ;IF +, SIGN IS OK

EX DE,HL ;ELSE, RESULT TO DE

LD HL,0 ;ZERO HL

SBC HL,DE ;MINUS RESULT TO HL

RET ; RETURN

Result in HL on entrance and exit. Result sign bit in AF' on

entrance.

$UD*

Class:

Function:

Input/Output:

Usage:

Subroutine

Multiplies a 16-bit unsigned integer by an 8-bit unsigned

integer and returns a 24-bit product.

None/None.

Available only to the system. See Section 5.5.

108 THREADED INTERPRETIVE LANGUAGES

Z80 Code:

Bytes:

Notes:

$UD*: LD A,L MULTIPLICAND TO A

LD BC,0800 ; COUNT=8, DUMMY = 0

LD H,C ;ZERO HIGH RESULT

LD L,C ;ZERO LOW RESULT

D*LOOP: ADD HL,HL ;SHIFT RESULT AND

ADC A MULTIPLICAND LEFT 1

JR NC, SKADD ;IF CY=0, SKIP ADD

ADD HL,DE ;ADD MULTIPLIER

ADC C ;PROPOGATE CARRY

SKADD: DJNZ D*LOOP ;LOOP 8 TIMES

LD C,A ;+ HIGH 8 BITS IN C

RET ;LOW 16 IN HL

16

On entrance, L contains an 8-bit multiplicand and DE con¬

tains a 16-bit multiplier. On exit BC contains the most

significant 8 bits and HL the 16 least significant bits. No

test is made to verify a valid 8-bit number in L on entrance.

$US*

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Notes:

Subroutine

Multiplies an 8-bit unsigned integer by an 8-bit unsigned

integer and returns a 16-bit product.

None/None.

Available only to the system. See Section 5.5.

$US: LD H,L MULTIPLICAND TO H

LD L,0 ;ZERO RESULT LOW

LD D,L MULTIPLIER HIGH=0

LD B,8 ;SET MULTIPLY COUNT

S*LOOP: ADD HL,HL ; SHIFT RESULT AND XCAND

JR NC,SKPAD ;IF CY=0, SKIP ADD

ADD HL,DE ;ADD MULTIPLIER

SKPAD: DJNZ S*LOOP ;LOOP 8 TIMES

RET ;RESULT IN HL

13

On entrance, L and E contain 8-bit unsigned integers and H

and D are presumed 0 (assumes valid 8-bit numbers). On

exit, HL contains the 16-bit product.

$UD/

Class: Subroutine

Function: Divides a positive 24-bit integer by a positive 8-bit integer

and returns a positive 8-bit remainder and 16-bit quotient.

WORDS, WORDS, AND MORE WORDS 109

Input/Output:

Usage:

Z80 Code:

Bytes:

Notes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Notes:

None/None.

Available only to the system. See Section 5.5.

$UD/: LD B,10

D/LOOP: ADD HL,HL

LD A,D

ADC D

LD D,A

SUB E

IP M,SKIP

INC L

LD D,A

SKIP: DJNZ D/LOOP

LD

RET

16

C,D

; DIVIDE COUNT = 16

; SHIFT LOW 16

;GET HIGH 8

; SHIFT HIGH 8

;RESTORE HIGH

; SUBTRACT DIVISOR

;TOO MUCH, IT'S OK

;SET RESULT LOW BIT = 1

;DECREASE DIVIDEND

;LOOP 16 TIMES

REMAINDER TO C

; QUOTIENT IN HL

On entrance, D,HL contains a 24-bit positive dividend and

E contains an 8-bit positive divisor. On exit, C contains an

8-bit remainder and HL contains a 16-bit quotient. No test

is made to verify a correct 16-bit quotient.

$US/

Subroutine

Divides a positive 16-bit dividend by a positive 8-bit

divisor and returns a positive 8-bit remainder and 8-bit

quotient.

None/None.

Available only to the system. See Section 5.5.

$US/: LD B,8 DIVIDE COUNT=8

S/LOOP: ADD HL,HL ; SHIFT DIVIDEND

LD A,H ;GET HIGH BYTE

SUB E ; SUBTRACT DIVISOR

JP M,SKP ;TOO MUCH, IT'S OK

INC L ;SET RESULT LOW BIT

LD H,A ; DECREASE DIVIDEND

SKP: DJNZ S/LOOP ;LOOP 8 TIMES

LD C,H REMAINDER IN C

LD H,B ; RESULT HIGH=0

RET ;RESULT IN HL

15

On entrance, HL contains a positive 16-bit dividend and E

contains a positive 8-bit divisor. On exit, C contains an

8-bit remainder and L contains an 8-bit quotient. No test is

made to verify a correct 8-bit quotient.

110 THREADED INTERPRETIVE LANGUAGES

' (tick)

Class: System

Function: Scans the token following the ' (tick) in the input buffer

and searches the CURRENT and CONTEXT vocabularies

Input/Output:

Usage:

Code:

for the keyword corresponding to the token. Returns the

word address of the keyboard as the top stack entry if it is

located. If not found, the token is echoed to the operator

and followed by a "?".

None/One stack entry or none.

Operator location of keywords.

ASPACE

TOKEN

CONTEXT

@

@
SEARCH

*IF 0A

ENTRY

SEARCH

*IF 03

QUESTION

SEMI

;GET THE SEPARATOR

;SCAN THE NEXT TOKEN

; CONTEXT ADDRESS

;CONTAINS VOCABULARY ADDRESS

;CONTAINS THE LATEST ENTRY

; SEARCH THE VOCABULARY

;IF FALSE, FOUND; OTHERWISE

;GET LATEST CURRENT

; SEARCH CURRENT

;IF FALSE, FOUND; OTHERWISE

;ECHO TOKEN AND ?

;WA ON THE STACK

Bytes: 34

Formal Definition:

: ■' ■ ASPACE ■ T OKEN ■ CONTEXT ■ @ @ ■ SEARCH ■ IF ■ ENTRY ■
SEARCH ■ IF ■ QUESTION ■ THEN ■ THEN ■ ;

* (asterisk)

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Notes:

Arithmetic

Does a signed multiply of the second stack word by the

low-order byte of the top stack entry and replaces both en¬

tries by the 16-bit (word) product.

Two stack entries/One stack entry.

Signed integer arithmetic.

EXX ;SAVE IR

POP BC ;GET FIRST

POP DE ;GET SECOND

CALL $ISIGN ; FIELD INPUT SIGNS

CALL $UD* ;MULTILY 16X8

CALL SOSIGN JUSTIFY RESULT

PUSH HL ; RESULT TO STACK

EXX ; RESTORE IR

24

Does not test the top stack entry to insure it is a valid 8-bit

number. No test is made to insure a valid 16-bit product.

WORDS, WORDS, AND MORE WORDS 111

Class:
Function:

Input/Output:
Usage:
Z80 Code:

Bytes:

Class:
Function:

Input/Output:
Usage:
Z80 Code:

Bytes:
Notes:

Class:
Function:

Input/Output:
Usage:

*#

Literal Handler (Headerless)
Pushes to the stack the word whose address is in the in¬
struction register and increments the instruction register
twice (past the word literal).
None/One stack entry.
Available only to the system.

LD A,{BC} ;GET BYTE AT IR
LD E,A ;MOVE IT TO DE
INC BC ;BUMP IR
ID A,{BC} ;GET BYTE AT IR
LD D,A ;MOVE IT TO DE
INC BC ;BUMP IR
PUSH DE ;PUSH WORD AT DE

11

* +LOOP

Program Control Directive (Headerless)
Gets the return stack pointer, pops the index byte from the
stack, and then transfers to the *LOOP code to mechanize
a non-unity indexed loop.
One stack entry/None.
Available only to the system.

PUSH IX ;GET RETURN STACK
POP HL ;TO THE REGISTERS
POP DE ;GET INC BYTE
LD A,E ;TO THE A REGISTER

JP SLOOP JUMP TO ‘LOOP CODE
10

* -I-LOOP has a code address but not a return address.
Increments must be in the set — 128<I<127.

V

Arithmetic
Does a signed multiply of the third stack word by the low-
order byte of the second stack word and a signed divide of
the 24-bit product by the low-order byte of the top stack
entry. Replaces the three entries with the 16-bit quotient.
Three stack entries/One stack entry.
Signed integer arithmetic.

112 THREADED INTERPRETIVE LANGUAGES

Z80 Code:

Bytes:

Notes:

LD

JP
RETTO: POP

LD

IY,RETTO ;CHANGE NEXT RETURN

$*/MOD ;DO */MOD CODE

HL ;DROP REMAINDER

IY,NEXT ;SET NEXT RETURN

22
This illustrates a sneaky way to use a primitive as a

subroutine. The */MOD code is executed as normal but

the JP {IY} return jumps back to the */ code rather than

NEXT. This code then restores the normal return to NEXT.

*/MOD

Class:

Function:

Input/Output:

Z80 Code:

Bytes:

Notes:

Arithmetic

Does a signed multiply of the third stack word by the low-

order byte of the second stack entry and a signed divide of

the 24-bit product by the low-order byte of the top stack

entry. Replaces the three entries with the 16-bit quotient as

the second and the 8-bit residual as the top stack entry.

Three stack entries/Two stack entries.

$*/MOD: POP HL

EXX

POP BC

POP DE

CALL SISIGN

CALL $UD*

EXX

EX AF,AF'

XOR L

EX AF,AF'

LD A,L

EXX

AND A

JP P, SKIPN

NEG

SKIPN: LD D,C

LD E,A

CALL $UD/

CALL $OSIGN

PUSH HL

PUSH BC

EXX

43

;DIVISOR TO L

;SAVE IR AND DIVISOR

MULTIPLICAND {8}

MULTIPLIER {16}

; FIELD * SIGN

;DO 16X8 MULTIPLY

;GET DIVISOR AND IR

;GET / SIGN FLAG

;XOR IN DIVISOR SIGN

;SAVE RESULT SIGN

;GET DIVISOR

;SAVE IR AGAIN

;TEST DIVISOR SIGN

;IF +, IT'S OK

MAKE DIVISOR +

MOVE HIGH 8 BITS OF 24

MOVE DIVISOR

;DO 24X8 DIVIDE

JUSTIFY RESULT

; QUOTIENT TO STACK

; REMAINDER TO STACK

;RESTORE IR

The $*/MOD entrance is used by */. No tests are per¬

formed to insure valid number lengths.

WORDS, WORDS, AND MORE WORDS 113

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Notes:

Class:

Function:

*C#

Literal Handler (Headerless)

Pushes to the stack the byte whose address is in the instruc¬

tion register and increments the instruction register once

(past the literal).

None/One stack entry.

Available only to the system.

LD A,{BC} ;GET BYTE AT IR

LD E,A ;MOVE IT TO DE

INC BC ;BUMP IR

RLA A ;SIGN TO CY

SBC A,A ,FF IF NEG ELSE 00

LD D,A ;SET SIGN EXTENSION

PUSH DE ;PUSH 16-BIT WORD

10

*C + LOOP

Program Control Directive (Headerless)

Pops the top stack entry and increments the top return

stack byte by the low-order byte from the stack. Control is

then transferred to the *CLOOP code to mechanize a non¬

unity byte indexed loop.

One stack entry and one return stack byte/One return

stack byte.

Available only to the system.

PUSH IX ;GET RETURN STACK

POP HL ;POINTER

POP DE ;GET INC BYTE

LD A,{HL} ;GET LOOP COUNT

ADD E ;ADD INCREMENT

LD {HL}A ;RESTORE LOOP COUNT

JP $CLOOP JUMP TO ‘CLOOP CODE

12

*C + LOOP has a code address but not a return address.

Increments must be in the set — 128<I<127.

*CDO

Program Control Directive (Headerless)

Moves the low-order byte of the top stack entry (the loop

start index) and the low-order byte of the second stack en-

114 THREADED INTERPRETIVE LANGUAGES

try (the loop termination argument) to the return stack

with the start index as the top return stack entry and the

terminator as the second entry. This initializes the byte in¬

dexed loop.

Input /Output: Two stack entries/Two return stack byte entries.

Usage: Available only to the system.

Z80 Code: POP HL ;GET START INDEX

LD {IX—2},L ;TO RETURN TOP

POP HL ;GET TERMINATOR

LD {IX 1 },L ;TO RETURN SECOND

DEC IX ; RESET RETURN

DEC IX ; STACK POINTER

Bytes: 16

* CLEAVE

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Program Control Directive (Headerless)

Replaces the top return stack byte (the byte loop index)

with the second return stack byte (the terminating argu¬

ment) to force loop exit on the next byte loop test.

Two return stack bytes/Two return stack bytes.

Availabe only to the system.

LD A,{IX + 1} ;GET TERMINATOR

LD {IX-1-0},A ;TO INDEX

10

*CLOOP

Class: Program Control Directive (Headerless)

Function: Increments the top return stack byte by 1 and compares it

to the second return stack byte entry. If the second byte is

larger than the first, a jump to the *WHILE code occurs to

implement a relative backwards jump. Otherwise the top

two return stack entries are dropped and the instruction

register is incremented by 1 to step past the relative jump

byte. Controls byte loop termination.

Input/Output: Two return stack bytes/Two return stack bytes except on

completion.

WORDS, WORDS, AND MORE WORDS 115

Usage: Available only to the system.

Z80 Code: PUSH IX ;GET RETURN

POP HL ;STACK POINTER

INC {HL} INCREMENT INDEX

SCLOOP: LD A,{HL} ;GET INDEX

INC HL ;POINT TO TERMINATOR

SUB {HL} ;INDEX - TERMINATOR

IP C,$WHILE ;IF CY = 1, JUMP BACK

INC IX ;ELSE DROP INDEX

INC IX ;AND TERMINATOR

INC BC INCREMENT IR

Bytes: 19

Notes: *C+LOOP uses the SCLOOP entrance.

*DO

Class: Program Control Directive (Headerless)

Function: Moves the top stack entry word (the loop start index) and

the second stack entry word (the loop terminating argu¬

ment) to the return stack with the start index as the top

return stack entry and the terminator as the second entry.

This initializes a word indexed loop.

Input/Output: Two stack entries/Two return stack word entries.

Usage: Available only to the system.

Z80 Code: POP HL ;GET START INDEX

LD {IX—4},L ;MOVE TO THE RETURN

LD {IX—3},H ; STACK AS TOP ENTRY

POP HL ;GET TERMINATOR

LD {IX—2},L ;MOVE TO THE RETURN

LD {IX —1},H ; STACK AS 2ND ENTRY

LD DE, -4 ;RESET RETURN

ADD IX, DE ; STACK POINTER

Bytes: 23

*ELSE

Class:

Function:

Input/Output:

Usage:

Program Control Directive (Headerless)

Increments the instruction register by the value whose ad¬

dress is in the instruction register to effect a relative for¬

ward jump.

None/None.

Available only to the system.

116 THREADED INTERPRETIVE LANGUAGES

Z80 Code:

Bytes:

Notes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Notes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Notes:

$ELSE:

OUT:

10

LD A,{BC}

ADD C

LD C,A

JR NC,OUT

INC B

JP {IV}

;GET JUMP BYTE

;ADD IT TO IR

;RESET IR

;PAST PAGE?

;YES

; RETURN

The $ELSE entrance is used by *IF.

*END

Program Control Directive (Headerless)

If the top stack entry is 0, the instruction register is in¬

cremented by the value whose address is in the instruction

register to implement a relative backwards jump. Other¬

wise the instruction register is incremented by 1 to step

past the relative jump byte.

One stack entry/None.

Available only to the system.

POP HL

LD A,L

OR H

JP Z,$WHILE

INC BC

;GET THE FLAG

;ARE ALL BITS 0

;OR FALSE

;IF 0, JUMP

;ELSE BUMP IR

11

The jump to $ WHILE evokes the backwards jump.

*IF

Program Control Directive (Headerless)

If the top stack entry is 0, the instruction register is in¬

cremented by the value whose address is in the instruction

register to implement a relative forward jump. Otherwise

the instruction register is incremented by 1 to step past the

relative jump byte.

One stack entry/None.

Available only to the system.

POP HL ;GET THE FLAG

LD A,L ;ARE ALL BITS 0

OR H ;OR FALSE

JP Z,$ELSE ;IF 0, JUMP

INC BC ;ELSE BUMP IR

11

The jump to $ELSE evokes the relative forward jump.

WORDS, WORDS, AND MORE WORDS 117

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Notes:

* LEAVE

Program Control Directive (Headerless)

Replaces the top return stack word (the word loop index)

with the second return stack word (the terminating argu¬

ment) to force loop exit on the next word loop test.

Two return stack words/Two return stack words.

Available only to the system.

LD A,{IX+3} ;GET TERM LOW BYTE

LD {IX + 1},A ;TO INDEX LOW BYTE

LD A,{IX+2} ;GET TERM HIGH BYTE

LD {IX + 0},A ;TO INDEX HIGH BYTE

16

*LOOP

Program Control Directive (Headerless)

Increments the top return stack word by 1 and compares it

to the second return stack word entry. If the second word

is larger than the first, a jump to the $WHILE code occurs

to implement a relative backwards jump. Otherwise the

top return stack entries are dropped and the instruction

register is incremented by 1 to step past the relative jump

byte. Controls word loop termination.

Two return stack words/Two return stack words except

on completion.

Available only to the system.

PUSH IX ;GET RETURN

POP HL ;STACK POINTER

LD A,1 ;GET INCREMENT

SLOOP: ADD {HL} ;INC INDEX LOW

LD {HL},A ;RESTORE LOW INDEX

INC HL ;BUMP TO INDEX HIGH

JR NC,PAGE ;PAST PAGE?

INC {HL} ;BUMP PAGE

PAGE: LD D,{HL} ;GET INDEX HIGH

INC HL ,BUMP TO TERM LOW

SUB {HL} ;INDEX-TERM {LOW}

LD A,D ; INDEX HIGH TO A

INC HL ;BUMP TO TERM HIGH

SBC {HL} ;INDEX-TERM-CY {HIGH}

JP C,$WHILE ;IF CY=1, JUMP BACK

LD DE,4 ;ELSE DROP INDEX

ADD IX, DE ;AND TERMINATOR

INC BC INCREMENT IR

30

* + LOOP uses the SLOOP entrance.

118 THREADED INTERPRETIVE LANGUAGES

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Notes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Notes:

*SYS

System (Incomplete)

Used by the system to recover the addresses of system

variables.

See notes.

Available only to the system.

LD A,{DE} ;DE = WA, @WA = OFFSET

LD HLJSYS ; START OF SYS BLOCK

ADD L ;ADD OFFSET

LD L,A VARIABLE ADDRESS LOW

PUSH HL ;ADDRESS TO STACK

JP {IV} ;JUMP TO NEXT

This code is the generic code for a user block type defined

keyword without the header-creating code.

All system variables defined in the system block contain

$SYS as their code address followed by a 1-byte offset as

their code body. The offset points to the system variable,

relative to the start of the block. A full 256-byte block is

not reserved for system variables (only 20 thru 30 bytes are

used), which is why there is no defining code. A possibility

exists for overwriting system code if this were allowed.

All system variables are predefined.

*WFHLE

Program Control Directive (Headerless)

Increments the instruction register by the value whose ad¬

dress is in the current instruction register to implement a

relative backwards jump.

None/None.

Available only to the system.

$WHILE: LD A,{BC} ;GET JUMP BYTE

ADD C ;ADD IT TO IR

LD C,A ;RESET IR

IR C,OUT ;PAST PAGE?

DEC B ;YES

OUT: JP {IV} ; RETURN

10
The $WHILE entrance is used by *END, *LOOP, and

*CLOOP to execute the backward jump.

WORDS, WORDS, AND MORE WORDS 119

*[

Class: Literal Handler (Headerless)

Function: Uses the Instruction Register (IR) as a pointer to a string

embedded in the threaded code. Extracts the string length

from the first byte pointed to by the IR and outputs that

many characters to the display. Leaves the IR pointing to

the first byte past the embedded string.

Input/Output: None/None.

Usage: Available only to the system.

Z80 Code: LD A,{BC} ;BC=IR, @IR=LENGTH

LD D,A ;SAVE LENGTH

SLOOP: INC BC ;BUMP IR

LD A,{BC} ;GET AT IR

CALL $ECHO ;ECHO CHARACTER

DEC D DECREMENT LENGTH

IR NZ, SLOOP ;LOOP UNTIL LENGTH=0

INC BC ; ADJUST IR

Bytes: 15

Class:

+

Arithmetic

Function: Adds the second stack entry and the top stack entry and

replaces both with the single two's complement sum as the

top stack entry.

Input/Output: Two stack entries/One stack entry.

Usage: Signed arithmetic.

Z80 Code: POP HL ;GET 1ST WORD

POP DE ;GET 2ND WORD

ADD HL,DE ;ADD THEM

PUSH HL ;PUSH SUM

Bytes: 14

Notes: No check of carry or overflow is done.

+ !

Class:

Function:

Input/Output:

Usage:

Memory Reference

Pops two stack entries and adds the word at the second en¬

try to the word whose address is the top entry.

Two stack entries/None.

Incrementing and decrementing word length data stored in

programmable memory.

120 THREADED INTERPRETIVE LANGUAGES

Z80 Code: POP

POP

LD

ADD

LD

INC

LD

ADC

LD

HL ;GET ADDRESS

DE ;GET INC/DEC

A,{HL} ;GET LOW BYTE

E ;INC/DEC LOW BYTE

{HL},A ;STORE IT BACK

HL ;STEP TO HIGH BYTE

A,{HL} ;GET HIGH BYTE

D ;INC/DEC HIGH BYTE

{HL},A ;STORE IT BACK

Bytes: 19

Notes: Overflow and carry in high-byte add are ignored.

+ LOOP

Compiler Directive (Immediate)

Adds the word address of the program control directive

*+LOOP to the dictionary, then computes the difference

between the current free dictionary address and the ad¬

dress at the top of the stack and encloses the low-order

byte in the dictionary as the relative jump byte.

Input/Output: One stack entry/None.

Usage: Used to terminate a DO . . . -I-LOOP construct in the com¬

pile mode.

Code: *# XX ;WORD ADDRESS OF * + LOOP {LITERAL}

END, ;ENCLOSE RELATIVE JUMP BYTE

Bytes: 16

Formal Definition:

: ■ + LOOP ■ XX ■ END, ■; ■ IMMEDIATE

Class:

Function:

+ SP

Class:

Function:

Input/Output:

Usage:

Z80 Code:

System

Adds the current stack pointer to the number at the top of

the stack.

One stack entry/One stack entry.

Direct addressing of data on the stack.

POP HL ;GET NUMBER

ADD HL,SP ;ADD STACK POINTER

PUSH HL ;RESTORE POINTER

Bytes: 13

WORDS, WORDS, AND MORE WORDS 121

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Class:

Function:

Input/Output:

Z80 Code:

Bytes:

Notes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

, (comma)

System

Pops the top stack entry word and encloses it in the free

dictionary space.

One stack entry/None.

Used to build dictionary keywords.

POP DE ;GET WORD

LD HL,{DP} ;GET @DP

LD {HL},E ; STORE LOW BYTE

INC HL ;BUMP @DP

LD {HL},D ; STORE HIGH BYTE

INC HL ;BUMP @DP

LD {DP},HL ;UPDATE @DP

Arithmetic

Pops the top two stack entries and two's complement sub¬

tracts the top entry from the second entry and pushes the

result.

Two stack entries/One stack entry.

POP DE ;GET B

POP HL ;GET A

AND A ; RESET CARRY

SBC HL,DE ;FORM A-B

PUSH HL ;PUSH RESULT

16

No tests of overflow or carry are made.

-SP

System

Subtracts the current stack pointer from the number at the

top of the stack.

One stack entry/One stack entry.

Direct addressing of stack data.

POP HL ;GET THE NUMBER

AND A ;RESET CARRY

SBC SP ; SUBTRACT STACK POINTER

PUSH HL ;PUSH POINTER

Bytes: 15

122 THREADED INTERPRETIVE LANGUAGES

• (period)

Class: I/O
Function: Displays the top stack entry number to the operator (given

the current number base) and follows by a space. Destroys
the top stack entry in the process.

Input/Output: One stack entry/None.
Usage: Displaying signed numbers to the operator.
Code: <# INITIALIZE CONVERSION

ABS ;TAKE THE ABSOLUTE VALUE
#S ;CONVERT ABSOLUTE VALUE
SIGN ;ADD - SIGN IF REQUIRED
#> .-DISPLAY RESULT

Bytes: 20
Formal Definition:

:B.B<#BABSB#SBSIGNB#> B;

.R

Class: I/O
Function: Displays the second stack number to the operator (given

the current system number base) in a field width deter¬
mined by the top stack entry. The number is right adjusted
in the field and followed by a space. The field width is the
minimum field width.

Input/Output: Two stack entries/None.
Usage: Formatting display number output.
Code: 2* ;DOUBLE CHARACTER COUNT

- SP ; SUBTRACT CURRENT STACK POINTER
< R ;SAVE AS TEMPORARY
< # INITIALIZE CONVERSION { SAVE SIGN}
ABS .-CONVERT NUMBER TO POSITIVE VALUE
#S ;CONVERT TO A STRING
SIGN ;ADD SIGN IF NEGATIVE
CR> .-GET SIGN FROM TEMPORARY
DROP ;DROP IT
R> ,-GET TEMPORARY
+SP .-ADD CURRENT STACK POINTER
PAD ;ADD SPACES IF REQUIRED
DISPLAY ;DISPLAY RESULT

Bytes: 36
Formal Definition:
:B.RB2*B —SPB<RB<#BABSB#SBSIGNBCR> BDROPB
R> B + SPBPADBDISPLAYB;

WORDS, WORDS, AND MORE WORDS 123

Class:

Function:

Input/Output:
Usage:

Z80 Code:

Bytes:

Notes:

Class:

Function:

Input/Output:
Usage:

Z80 Code:

Bytes:

Notes:

Arithmetic

Does a signed divide of the second stack word by the low-

order byte of the top stack entry. Replaces both entries

with an 8-bit quotient expanded to 16 bits.

Two stack entries/One stack entry.

Signed integer arithmetic.

EXX ;SAVE IR

POP DE ;GET DIVISOR {8 BITS}

POP BC ;GET DIVIDEND {16 BITS}

CALL $ISIGN ; FIELD INPUT SIGNS

CALL $US/ ;DIVIDE 16X8

CALL $OSIGN JUSTIFY RESULT

PUSH HL QUOTIENT TO STACK

EXX ;RESTORE IR

Does not test the top stack entry to insure it is a valid 8-bit

number. No test is made to insure a valid 8-bit quotient.

/MOD

Arithmetic

Does a signed divide of the second stack entry by the low-

order byte of the top stack entry. Replaces these entries

with the 8-bit quotient expanded to 16 bits as the second

entry and the positive 8-bit remainder expanded to 16 bits

as the top entry.

Two stack entries/Two stack entries.

Signed integer arithmetic.

EXX ;SAVE IR

POP DE ;GET DIVISOR {8 BITS}

POP BC ;GET DIVIDENCE {16 BITS}

CALL SISIGN ; FIELD INPUT SIGNS

CALL $us/ ; DIVIDE 16X8

CALL SOSIGN JUSTIFY RESULT

PUSH HL QUOTIENT TO STACK

PUSH BC REMAINDER TO STACK

EXX ;RESTORE IR

25

Does not test the top stack entry to insure it is a valid 8-bit

number. No test is made to insure a valid 8-bit quotient.

124 THREADED INTERPRETIVE LANGUAGES

Class:

Function:

Input/Output:
Usage:
Z80 Code:

Bytes:

Class:
Function:

Input/Output:
Usage:
Z80 Code:

Bytes:

Class:
Function:

Input/Output:
Usage:

0<

Relational

If the top stack entry is two's complement negative, it is

replaced by a True flag. Otherwise it is replaced by a False

flag.
One stack entry/One stack entry.

Test conditioning prior to branching.

POP

LD

RLA

JR
INC

PUSHIT: PUSH

19

0 =

Relational

If the top stack value is 0, it is replaced by a True flag.

Otherwise it is replaced by a False flag.

One stack entry/One stack entry.

Test conditioning prior to branching.

POP HL ;GET WORD

LD A,L ;MOVE LOW BYTE

OR H ;OR IN HIGH BYTE

LD DE,0 ;GET FALSE

JR NZ,OUT ;NOT ZERO PUSHES FALSE

INC DE ;ELSE MAKE FLAG TRUE

PUSH DE ;PUSH FLAG

20

AF ;GET NUMBER

DE,0 ;SET FLAG FALSE

;SIGN TO CY

NC,PUSHIT ;IF CY = 0, PUSH FALSE

E ;ELSE FLAG TRUE

DE FLAG TO STACK

OSET

Memory Reference

Pops the top stack entry and sets the word whose address

was the top entry to 0.

One stack entry/None.

Initializing word length data in programmable memory to

0 or setting word length flags in programmable memory to

False.

WORDS, WORDS, AND MORE WORDS 125

Z80 Code:

Bytes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Notes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Notes:

Class:

Function:

Input/Output:

Usage:

POP HL ;GET ADDRESS

XOR A ;ZEROS A REGISTER

LD {HL},A ;ZERO LOW BYTE

INC HL ;BUMP ADDRESS POINTER

LD {HL},A ,ZERO HIGH BYTE

15

1 +

Arithmetic

Increments the top stack entry by 1.

One stack entry/One stack entry.

Signed arithmetic, byte addressing and index incremen-

ting.

POP HL ;GET WORD

INC HL ;BUMP IT 1

PUSH HL ;RESTORE IT

13

No tests of overflow or carry are made.

1-

Arithmetic

Decrements the top stack entry by 1.

One stack entry/One stack entry.

Signed arithmetic, byte addressing and index decremen¬

ting.

POP HL ;GET WORD

DEC HL DECREMENT IT

PUSH HL ; RESTORE IT

13

No tests of overflow or carry are made.

1SET

Memory Reference

Pops the top stack entry and sets the word whose address

was the top entry to one.

One stack entry/None.

Initializing word length data in programmable memory to

one or setting word-length flags in programmable memory

to True.

126 THREADED INTERPRETIVE LANGUAGES

Z80 Code: POP HL ;GET ADDRESS

LD {HL},1 ;1 SET LOW BYTE

INC HL ;BUMP ADDRESS POINTER

LD {HL},0 ;0 SET HIGH BYTE

Bytes: 16

2*

Class: Arithmetic

Function: Multiplies the top stack entry by 2.

Input/Output: One stack entry /One stack entry.

Usage: Signed integer arithmetic.

Z80 Code: POP HL ;GET WORD

ADD HL,HL ;DOUBLE IT

PUSH HL ;RESTORE IT

Bytes: 13

Notes: No tests of overflow or carry are made.

2 +

Class: Arithmetic.

Function: Increments the word at the top of the stack by 2.

Input/Output: One stack entry /One stack entry.

Usage: Word addressing and incrementing.

Z80 Code: POP HL ;GET WORD

INC HL ;WORD + 1

INC HL ;WORD + 2

PUSH HL ;PUSH WORD + 2

Bytes: 14

Notes: No test for overflow or carry is made.

Class:

2-

Arithmetic

Function: Decrements the word at the top of the stack by 2.

Input/Output: One stack entry/One stack entry.

Usage: Word addressing and decrementing.

Z80 Code: POP HL ;GET WORD

DEC HL ;WORD -1

DEC HL ;WORD -2

PUSH HL ;PUSH WORD -2

Bytes: 14

Notes: No tests of overflow or carry are made.

WORDS, WORDS, AND MORE WORDS 127

2/

Class: Arithmetic

Function: Divides (signed) the top stack word by 2.

Input/Output: One stack entry/One stack entry.

Usage: Signed integer arithmetic.

Z80 Code: POP HL ;GET WORD

SRA H ARITHMETIC SHIFT

RR L ;PROPAGATE CY

PUSH HL ;PUSH WORD/2

Bytes: 16

2DUP

Stack

Duplicates the top stack entry twice.

One stack entry/Three stack entries.

Duplication of data on the stack.

Class:

Function:

Input/Output:

Usage:

Z80 Code: POP

PUSH

PUSH

PUSH

Bytes: 14

HL ;GET WORD

HL ;RESTORE IT

HL ;DUP IT

HL ;DUP IT AGAIN

20VER

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Stack

Duplicates the third stack entry over the top two and

pushes the word to the stack.

Three stack entries/Four stack entries.

Stack data management.

EXX ;SAVE IR

POP HL ;GET TOP

POP DE ;GET 2ND

POP BC ;GET 3RD

PUSH BC ;PUSH 3RD

PUSH DE ;PUSH 2ND

PUSH HL ;PUSH TOP

PUSH BC ;PUSH 3RD TO TOP

EXX ;RESTORE IR

Bytes: 19

128 THREADED INTERPRETIVE LANGUAGES

2SWAP

Class: Stack

Function: Interchanges the top and third stack words.

Input/Output: Three stack entries/Three stack entries.

Usage: Stack management.

Z80 Code: POP HL ;GET TOP

POP DE ;GET 2ND

EX {SP},HL ;TOP TO STACK

PUSH DE ;RESTORE 2ND

PUSH HL ;3RD TO TOP

Bytes: 15

Class:

Function:

Input/ Output:

Usage:

Code:

Bytes:

Formal Definition:

Defining Word

Sets the CONTEXT vocabulary equal to the CURRENT

vocabulary, creates a secondary header for the token

following in the input buffer and links it to the CUR¬

RENT vocabulary and sets the system mode to the compile

mode.

None/None.

Initiate compilation of secondary keywords.

CURRENT ;CURRENT ADDRESS

@ CONTAINS VOCABULARY ADDRESS

CONTEXT ; CONTEXT ADDRESS

! ; CURRENT INTO CONTEXT

CREATE ; CREATE PRIMITIVE HEADER

*# XX ;ADDRESS OF COLON ROUTINE

CA! ;REPLACE CODE ADDRESS

MODE ;MODE ADDRESS

ClSET ;SET COMPILE MODE {MODE = l}

30

: ■: ■ CURRENT ■ @ ■ CONTEXT ■! BXXBCA! ■ MODE ■ ClSET ■;

Class:

Function:

Input/Output:

Usage:

Compile Mode Termination Directive (Immediate)

Encloses the word address of the inner interpreter SEMI

routine in the dictionary and sets the system mode to the

execute mode.

None/None.

Terminates the definition of a secondary and re-establishes

the execute mode.

WORDS, WORDS, AND MORE WORDS 129

Code: *# XX ;ADDRESS OF SEMI ROUTINE

; ENCLOSE IT IN THE DICTIONARY

MODE ;MODE ADDRESS

COSET ;SET EXECUTE MODE {MODE = 0}

Bytes: 20

Formal Definition:

: BXXB, ■ MODE ■ COSET ■; ■ IMMEDIATE

;CODE

Class: Compile Mode Termination Directive (Immediate)

Function: Encloses the word address of the keyword SCODE in the

dictionary and sets the system mode to execute.

Input/Output: None/None.

Usage: Terminates a defining keyword definition. Always fol¬

lowed by generic machine code that defines the execution

time action of the defined class.

Code: *# XX ;WORD ADDRESS OF SCODE

;ENCLOSE IT IN THE DICTIONARY

MODE ;MODE ADDRESS

COSET 'SET EXECUTE MODE {MODE = 0}

Bytes: 20

Formal Definition:

: ■ ;CODE BXX ■, BMODE BCOSET ■; ■ IMMEDIATE

<

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Relational

If the second stack entry is less than the top entry, both en¬

tries are replaced by a True flag. Otherwise both are

replaced by a False flag.

Two stack entries/One stack entry.

Test conditioning prior to branching.

POP DE ;GET TOP

POP HL ;GET 2ND

AND A ;RESET CARRY

SBC HL,DE ;2ND-TOP

LD DE,0 ;SET FLAG FALSE

JP P,PUSHIT ;IF POSITIVE, FALSE

INC E ;SET FLAG TRUE

PUSHIT;

23

PUSH DE ,FLAG TO STACK

130 THREADED INTERPRETIVE LANGUAGES

<#

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Notes:

I/O

Pops the top stack entry, pushes an ASCII space code with

its high-order bit set to the stack, restores the top stack en¬

try and copies the high-order byte to the return stack.

One stack entry/Two stack entries and one return stack

byte entry.

Prepares for number conversion and display by saving the

number sign on the return stack, pushing the string ter¬

mination character to the stack and leaving the original top

stack entry on the top.

POP HL ;GET THE NUMBER

LD E,A0 ;SPACE WITH B7=l

PUSH DE ;PUSH STRING STOP

PUSH HL RESTORE NUMBER

DEC IX ;DEC RSP

LD {IX+0},H ;SIGN TO RETURN

Must be followed by a #> or CR> within a definition to

clean up the return stack and leave a valid return address

on the stack.

< BUILDS

Class: Defining Word

Function: Creates a CONSTANT keyword definition with an initial

value of 0. The keyword name is the next available token

in the input buffer when < BUILDS is executed.

Input/Output: None/None.

Usage: Used to initiate a high-level defining word which must later

be terminated with a DOES > .

Code: 0 ;INITIAL VALUE

CONSTANT ; CREATES A CONSTANT KEYWORD

Bytes: 14

Notes: See Section 4.5.5.

Formal Definition:

: ■ < BUILDS BOB CON ST ANT B;

<R

Class: Interstack

Function: Pops the top stack word and pushes it to the return stack.

Input/Output: One stack entry/One return stack word entry.

WORDS, WORDS, AND MORE WORDS 131

Usage:

Z80 Code:

Bytes:

Notes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Temporary storage of data within a definition or direct

return stack control.

POP HL ;GET WORD

DEC IX ;PUSH IT TO THE

LD {IX+0},H ;RETURN STACK

DEC IX

LD {IX+0},L ;

Temporary data stored on the return stack must be re¬

moved before exit to prevent incorrect return.

Relational

If the top two stack entries are equal, both are replaced by

a True flag. Otherwise both are replaced by a False flag.

Two stack entries/One stack entry.

Test conditioning prior to branching.

PUSHIT:

22

POP HL ;GET TOP

POP DE ;GET 2ND

AND A ; RESET CARRY

SBC HL,DE ;TOP-2ND

LD DE,0 ;SET FLAG FALSE

JR NZ, PUSHIT ;IF = , PUSH FALSE

INC E ;SET FLAG TRUE

PUSH DE ;FLAG TO STACK

>

Relational

If the second stack entry is greater than the top entry, both

entries are replaced by a True flag. Otherwise both are

replaced by a False flag.

Two stack entries/One stack entry.

Test conditioning prior to branching.

POP HL ;GET TOP

POP DE ;GET 2ND

AND A ;RESET CARRY

SBC HL,DE ;TOP-2ND

LD DE,0 ;SET FLAG FALSE

JP P,PUSHIT ;IF POSITIVE, FALSE

INC E ;SET FLAG TRUE

PUSHIT: PUSH

23

DE ;FLAG TO STACK

Bytes:

132 THREADED INTERPRETIVE LANGUAGES

Class:

Function:

Input/Output:

Usage:

Code:

Bytes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

?

I/O

Displays to the operator (using the current system number

base) the word whose address is the top stack entry.

Number display is always followed by a space.

One stack entry/None.

Displaying signed numbers to the operator, generally the

contents of variables.

@ ;GET THE NUMBER

;DISPLAY IT

14

?RS

System

Pushes to the stack the current return stack pointer.

None/One stack entry.

Return stack display and control.

PUSH IX ;PUSH RETURN POINTER

12

?SP

System

Pushes to the stack the address of the top stack entry prior

to the execution of ?SP. If underflow occurs, the stack is

reset prior to the push.

None/One stack entry.

Data stack display and control.

LD HL,0 ;GET STACK

ADD HL,SP ; POINTER

EX DE,HL *

LD HL, STACK ;GET END OF STACK

AND A ; RESET CARRY

SBC HL,DE ;END-SP

JR NC,SKIP ;NC IS OK STACK

LD SP, STACK ;ELSE INIT STACK

PUSH DE ;PUSH PRIOR SP

27 Bytes:

WORDS, WORDS, AND MORE WORDS 133

@

Class: Memory Reference

Function: Replaces the address at the top of the stack with the word

at that address.

Input/Output: One stack entry/One stack entry.

Usage: Returns word length data stored in memory.

Z80 Code: POP HL ;GET THE ADDRESS

LD E,{HL} ;LOW BYTE AT ADDRESS

INC HL ;BUMP ADDRESS

LD D,{HL} ;HIGH BYTE AT ADDRESS

PUSH DE ;PUSH CONTENTS

Bytes: 15

Notes: Low-byte, high-byte order is central processing unit depen¬

dent.

ABORT

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Notes:

System

Does an unconditional jump to the START/RESTART

routine to re-initialize the system and the stacks.

None/None.

Used when the operator is totally at sea. (The system

knows exactly what's going on.)

JP START ;TO START/RESTART

11

ABORT has no return address. See Section 5.3.1 and

listing 5.1.

ABS

Class:

Function:

Input/Output:

Usage:

Arithmetic

If the top stack entry is two's complement negative, its

two's complement (a positive integer) is returned to the

stack. Otherwise the original positive integer is returned to

the stack.

One stack entry/One stack entry.

Signed integer arithmetic.

134 THREADED INTERPRETIVE LANGUAGES

Z80 Code: POP

BIT

JR
LD

AND

SBC

EX

OUT: PUSH

Bytes: 23

DE ;GET NUMBER

7,D ;IF POSITIVE, Z = 1

Z,OUT ;IFZ = 1, IT'S OK

HL,0 ;ELSE GET A ZERO

A ; RESET CARRY

HL,DE ; ZERO—NUMBER

DE,HL ;IS POSITIVE

DE ; POSITIVE NUMBER

ADUMP

Class: I/O

Function: Does a memory dump taking the second stack entry as the

starting address and the top entry as the ending address.

Displays a line consisting of the address, eight characters

of ASCII, a space, and eight more characters of ASCII.

Control ASCII codes are not displayed. Removes both en¬

tries.

Input/Output: Two stack entries/None.

Usage: Examining memory to locate or display string data.

Code: OVER ,PREPARE FOR LOOP START INDEX

‘DO INITIALIZE DO LOOP

CRET ;ISSUE CR-LF

DUP ; DUPLICATE LINE ADDRESS

*Q 4 ;FOUR CHARACTER LINE ADDRESS

.R ;PRINT LINE ADDRESS

APART ;ISSUE FIRST 8 CHARACTERS

APART ; ISSUE SECOND 8 CHARACTERS

WAIT ;TIME TO STOP AND WAIT?

*C# 10 ;NUMBER OF CHARACTERS AS INDEX

* + LOOP EE ;LOOP UNTIL DONE

DROP ;DROP ADDRESS POINTER

Bytes: 37

Formal Definition:

:BADUMPBOVERBDOBCRETBDUPB4B.RBAPARTBAPARTB

WAIT ■ 10 ■ + LOOP ■ DROP ■;

AND

Class:

Function:

Logical

Pops the top two stack words, does a logical AND of all

bits on a bit-by-bit basis and pushes the result to the stack.

WORDS, WORDS, AND MORE WORDS 135

Input/Output: Two stack entries/One stack entry.

Usage: Logical operations

Z80 Code: POP HL ;GET TOP

POP DE ;GET 2ND

LD A,L ;AND LOW BYTES

AND E •

LD L,A ;BACK TO L

LD A,H ;AND HIGH BYTES

AND D *

LD H,A ;BACK TO H

PUSH HL ;RESULT TO STACK

Bytes: 19

APART

Class: I/O

Function: Displays eight characters of ASCII using the top stack en¬

try as a pointer. The pointer is incremented with each

character access. ASCII control code is converted to a

displayable form before being echoed.

Input/Output: One stack entry/One stack entry.

Usage: Displaying memory.

Code: SPACE ;FORMAT CONTROL

*Q 8 ;LOOP ENDING INDEX

0 ;LOOP STARTING INDEX

*CDO INITIATE DISPLAY LOOP

DUP DUPLICATE POINTER

C@ ;GET MEMORY BYTE

*C# 80 ;TO SET MSB TO 1

OR ;MAKE CONTROL CODE DISPLAYABLE

ECHO ;DISPLAY BYTE AS ASCII

SPACE ; SPACE BETWEEN CHARACTERS

1+ INCREMENT POINTER

*CLOOP EF ;LOOP UNTIL DONE

Bytes: 37

Formal Definition:

:BAPARTBSPACEB8B0BCDOBDUPBC@B80BORBECHOB

SPACE B1 + B CLOOP B;

ASCII

I/O

Converts the low-order byte of the top stack entry from a

binary number to an ASCII code in the set 0 thru 9, A thru

Z.

Class:

Function:

136 THREADED INTERPRETIVE LANGUAGES

Input/Output: One stack entry/One stack entry.
Usage: Converts binary numbers to their equivalent ASCII code

for conversion to displayable formats.
Z80 Code: POP HL ;GET BINARY

LD A, 30 ; ASCII 0 CODE
ADD L ;ADD BINARY
CP 3A ; LETTER?

JR C,OUT ;IF CY=1, A DIGIT
ADD 7 ;ADD LETTERS BIAS

OUT: LD L,A ;BACK TO L
PUSH HL ;CODE TO STACK

Bytes: 22

ASPACE

Class: System
Function: Pushes an ASCII space code to the low-order byte of the

stack.
Input/Output: None/One stack entry.
Usage: The normal token separator and to insert blanks in format-

ted displays.
Code: Not applicable.
Bytes:
Formal Definition:

9

HEX ■ 20 ■ CCONSTANT ■ ASPACE

BASE

Class: System Variable
Function: Pushes to the stack the address of the number base

variable.
Input/Output: None/One stack entry.
Usage: Used to access the system variable which contains the radix

for system I/O.
Code: Not applicable.
Bytes: 9
Notes: In the SYS user block. The code body contains an offset

number and there is no return address. See *SYS. BASE is
a CVARIABLE and must be referenced using byte-length
addressing keywords..

BEGIN

Class: Compiler Directive (Immediate)

WORDS, WORDS, AND MORE WORDS 137

Function:

Input /Output:

Usage:

Code:

Bytes:

Notes:

Formal Definition:

Pushes to the stack the address of the next available free

dictionary location.

None/One stack entry.

Initiates a BEGIN . . . END loop in the compile mode.

HERE ;GET AT DP

12

The immediate form of HERE.

: ■ BEGIN ■ HERE ■; ■ IMMEDIATE

BINARY

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

System

Sets the system number base to 2 decimal or the binary

radix.

None/None.

Sets I/O to the binary radix notation.

LD A,2 ;GET 2 DECIMAL

LD {BASE},A ;SET BASE TO 2

15

C!

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Memory Reference

Stores the low-order byte of the second stack entry at the

address at the top stack entry, removing both entries.

Two stack entries/None.

Storage of byte length data in programmable memory.

POP HL ;GET ADDRESS

POP DE ;GET BYTE

LD {HL},E ;STORE BYTE

13

C + !

Class:

Function:

Input/Output:

Usage:

Memory Reference

Pops two stack entries and adds the byte in the low-order

byte of the second stack entry to the byte whose address is

the top stack entry.

Two stack entries/None.

Incrementing/decrementing byte-length data stored in pro¬

grammable memory.

138 THREADED INTERPRETIVE LANGUAGES

Z80 Code:

Bytes:

Notes:

POP HL ;GET ADDRESS

POP DE ;GET BYTE

LD A,{HL} ;GET AT ADDRESS

ADD E ;ADD BYTE

LD {HL},A ; STORE AT ADDRESS

No tests for overflow or carry are made.

C+LOOP

Compiler Directive (Immediate)

Adds the word address of the program control directive

*C + LOOP to the dictionary, then computes the difference

between the current free dictionary address and the ad¬

dress at the top of the stack and encloses the low-order

byte in the dictionary as the relative jump byte.

Input/Output: One stack entry/None.

Usage: Used to terminate a CDO . . . C -I- LOOP construct in the

compile mode.

Code: *# XX ;WORD ADDRESS OR C+LOOP {LITERAL}

END, ;ENCLOSE RELATIVE JUMP BYTE

Bytes: 16

Formal Definition:

: BC + LOOP BXX BEND, B; B IMMEDIATE

Class:

Function:

C,

Class:

Function:

Input/Output:

Usage:

Z80 Code:

System

Pops the top stack word and encloses the low-order byte in

the dictionary

One stack entry/None.

Used to build dictionary keywords.

POP DE ;GET BYTE

LD HL,{DP} ;GET @DP

LD {HL},E ;STORE BYTE

INC HL ;BUMP @DP

LD {DP},HL ;UPDATE @DP

Bytes: 19

WORDS, WORDS, AND MORE WORDS 139

COSET

Class: Memory Reference

Function: Pops the top stack entry and sets the byte whose address

was the top entry to 0.

Input/Output: One stack entry/None.

Usage: Initializing byte-length data in programmable memory to 0

or setting byte-length flags in programmable memory to

False.

Z80 Code: POP HL ;GET ADDRESS

LD {HL},0 ;ZERO @ADDRESS

Bytes: 13

ClSET

Class: Memory Reference

Function: Pops the top stack word and sets the byte whose address

was the top entry to 1.

Input/Output: One stack entry/None.

Usage: Initializing byte-length data in programmable memory to 1

or setting byte-length flags in programmable memory to

True.

Z80 Code: POP HL ;GET ADDRESS

LD {HL},1 ;ONE SET @ADDRESS

Bytes: 13

C<R

Class: Interstack

Function: Pops the top stack entry and pushes the low-order byte to

the return stack.

Input/Output: One stack entry/One return stack byte entry.

Usage: Temporary storage of byte data within a definition, or

direct return stack control.

Z80 Code: POP HL ;GET TOP BYTE

DEC IX ;PUSH IT TO THE

LD {IX+0},L ;RETURN STACK

Bytes: 16

Notes: Temporary data stored on the return stack must be re¬

moved before the end of a definition to prevent incorrect

return.

140 THREADED INTERPRETIVE LANGUAGES

Class:

Function:

Input/Output:

Usage:

Code:

Bytes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Class:

Function:

Input/Output:

Usage:

Code:

Bytes:

C?

I/O

Displays to the operator (using the current system number

base) the byte whose address is popped from the stack. The

number is always followed by a space.

One stack entry/None.

Displaying signed numbers to the operator; generally the

contents of byte variables or constants.

C@ ;GET THE BYTE

; DISPLAY IT

14

C@

Memory Reference

Replaces the address at the top of the stack with the byte at

that address (in sign extended format).

One stack entry/One stack entry.

Returns byte-length data stored in memory in a format

compatible with 16-bit signed arithmetic.

POP HL ;GET ADDRESS

LD E,{HL} ;GET BYTE @ ADDRESS

LD A,E ;GET THE BYTE

RLA A ;SIGN TO CY

SBC A, A ;FF IF NEG ELSE 00

LD D,A ;SET SIGN EXTENSION

PUSH DE ;PUSH 16-BIT WORD

17

CA!

System

Stores the address at the top of the stack in the word ad¬

dress location of the latest entry in the CURRENT

vocabulary, ie: the top stack entry is the code address of

the keyword currently in the process of being defined.

One stack entry/None.

Used to define defining keywords.

ENTRY ;ADDRESS OF LATEST HEADER

*C# 6 ;LITERAL 6

+ ;HEADER PLUS 6 EQUAL WORD ADDRESS

! ; STORE CODE ADDRESS

19

Formal Definition:

:BCAIBENTRYB6B + BlB;

WORDS, WORDS, AND MORE WORDS 141

CCONSTANT

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Formal Definition:

Defining Word

Creates a byte constant keyword dictionary entry whose

name is the token following CCONSTANT and whose

value equals the low-order byte of the top stack entry.

One stack entry/None.

Defining byte-length named constants.

CREATE

C,

SCODE

22

LD A,{DE}

; CREATE PRIMITIVE

; STORE BYTE TO BODY

;REPLACE CODE ADDRESS

;GET BYTE IN CODE BODY

LD L,A ;TO L REGISTER

RLA A ;SIGN TO CY

SBC A,A ;FF IF NEG ELSE 00

LD H,A ;SET SIGN EXTENSION

PUSH HL ;PUSH 16-BIT WORD

JP {IV} JUMP TO NEXT

: ■ CCON ST ANT ■ CREATE ■ C, ■; CODE ■ .

Notes: The ". . . ."is the assembly or machine code.

CDO

Compiler Directive (Immediate)

Encloses the word address of the program control directive

*CDO in the dictionary and then pushes the address of the

next free dictionary location to the stack.

Input/Output: Used to initiate a CDO...CLOOP or CDO...C + LOOP

construct in the compile mode.

Code: *# XX ;WORD ADDRESS OF *CDO {LITERAL}

DO, ; STORE AND PUSH

Bytes: 16

Formal Definition:

: ■ CDO ■ XX ■ DO, ■; ■ IMMEDIATE

Class:

Function:

CI>

Class:

Function:

Interstack

Pushes to the stack the loop index for the innermost byte-

length loop which is the top return stack byte.

142 THREADED INTERPRETIVE LANGUAGES

Input/Output: One return stack byte/One stack entry and one return

stack byte entry.

Usage: Retrieval of the current byte loop index.

Z80 Code: LD
LD

RLA

SBC

LD

NEXA: PUSH

Bytes: 18

Notes: Assumes the byte

stack.

L,{IX + 0} ;GET RETURN TOP
A,L ;GET THE BYTE

A ;SIGN TO CY

A,A ;FF IF NEG ELSE 00

H,A ;SET SIGN EXTENSION

HL ;PUSH 16-BIT INDEX

loop index is at the top of the return

CJ>

Class: Interstack

Function: Pushes to the stack the loop index for the second innermost

byte-length loop.

Input/Output: Three return stack byte entries/Three return stack entries

and one stack entry.

Usage: Retrieval of the next level byte index.

Z80 Code: LD L, {IX + 2} ;GET 2ND INDEX

LD A,L ;GET THE BYTE

RLA A ;SIGN TO CY

SBC A,A ;FF IF NEG ELSE 00

LD H,A ;SET SIGN EXTENSION

NEXB: PUSH HL ;PUSH 16-BIT INDEX

Bytes: 18

Notes: Assumes only byte loop parameters are on the return

stack.

CJOIN

Class: Stack

Function: Pops the top two stack entries and combines them to a

single word by moving the low-order byte of the top entry

into the high-order byte of the second entry and pushes the

resulting 16-bit word to the stack.

Input/Output: Two stack entries/One stack entry.

Usage: Stack manipulation for multi-byte signed integers.

Z80 Code: POP HL ;GET LOW BYTE

POP DE ;GET HIGH BYTE

LD D,L ; COMBINE

PUSH DE ;PUSH RESULT

Bytes: 14

WORDS, WORDS, AND MORE WORDS 143

CK>

Class: Interstack

Function: Pushes to the stack the loop index for the third innermost

byte-length loop.

Input/Output: Five return stack byte entries/Five return stack byte entries

and one stack entry.

Usage: Retrieval of the second next level byte loop index.

Z80 Code: LD L,{IX + 4} ;GET 3RD INDEX
LD A,L ;GET THE BYTE

RLA A ;SIGN TO CY

SBC A,A ;FF IF NEG ELSE 00

LD H,A ;SET SIGN EXTENSION

NEXC: PUSH HL ;PUSH 16-BIT INDEX

Bytes: 18

Notes: Assumes only byte loop parameters are on the return

stack.

CLEAR

I/O

Clears the CRT display and homes the cursor.

None/None.

Control of display formatting.

LD A,CLEAR ;LOAD CLEAR CODE

CALL $ECHO ;ISSUE TO DISPLAY

15

Presumes that the display driver recognizes a command to

clear the screen and homes the cursor.

CLEAVE

Class: Compiler Directive (Immediate)

Function: Encloses the word address of the program control directive

* CLEAVE in the dictionary

Input/Output: None/None.
Usage: Compiles a command to cause an immediate exit from a

byte loop construct at execution time. Used within a condi¬

tional branch structure.

Code: *# XX ;WORD ADDRESS OF * CLEAVE

{LITERAL}

;ENCLOSE IT IN THE DICTIONARY

Bytes: 16

Formal Definition:

: ■ CLEAVE ■ XX ■, ■; ■ IMMEDIATE

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Notes:

144 THREADED INTERPRETIVE LANGUAGES

CLOOP

Class:

Function:

Input/Output:

Usage:

Code:

Bytes:

Formal Definition:

Compiler Directive (Immediate)

Adds the word address of the program control directive

* CLOOP to the dictionary, then computes the difference

between the current free dictionary address and the ad¬

dress at the top of the stack and encloses the low-order

byte in the dictionary.

One stack entry/None.

Used to terminate a CDO . . . CLOOP construct in the

compile mode.

*# XX ;WORD ADDRESS OF *CLOOP

{LITERAL}

END, ;ENCLOSE RELATIVE JUMP BYTE

16

:■ CLOOP ■ XX BEND, ■; ■ IMMEDIATE

COMPILER

Class: System Variable

Function: Pushes to the stack the address of the compiler variable

which points to the last entry in the COMPILER

vocabulary.

Input/Output: None/One stack entry.

Usage: Used to access the link to the last COMPILER vocabulary

entry.

Code: Not applicable.

Bytes: 9

Notes: In the SYS users block. The code body is an offset number

and there is no return address. See *SYS.

CONSTANT

Class: Defining Word

Function: Creates a word-length constant keyword dictionary entry

whose name is the token following CONSTANT and

whose value equals the top stack entry.

Input/Output: One stack entry/None.

Usage: Defining word-length named constants.

Z80 Code: CREATE ;CREATE PRIMITIVE HEADER

; STORE NUMBER IN CODE BODY

SCODE ;REPLACE CODE ADDRESS

WORDS, WORDS, AND MORE WORDS 145

EX DE,HL ;WORD ADDRESS TO HL

LD E,{HL} ;GET LOW BYTE IN CODE BODY

INC HL ;BUMP POINTER

LD D,{HL} ;GET HIGH BYTE

PUSH DE ;NUMBER TO STACK

JP {IY} JUMP TO NEXT
Bytes: 21

Formal Definition:

: ■ CONSTANT ■ CREATE ■ CODE ■....

Notes: The is the assembly or machine code.

CONTEXT

Class: System Variable

Function: Pushes to the stack the address of the system context

variable.

Input/Output: None/One stack entry.

Usage: Used to access the system variable which contains the ad¬

dress of the vocabulary that will be searched to locate

keywords.

Code: Not applicable.

Notes: In the SYS user block. The code body contains an offset

number and there is no return address.

CORE

Class: Vocabulary

Function: Sets the CONTEXT system variable to the address of the

code body of CORE which contains the address of the

latest entry in the vocabulary.

Input/Output: None/None.

Usage: Evokes the CORE vocabulary.

Code: Not applicable.

Bytes: 12

Notes: Predefined but exactly as if defined using the

VOCABULARY defining keyword.

146 THREADED INTERPRETIVE LANGUAGES

CR>

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Interstack

Pops the byte at the top of the return stack and pushes it to

the stack in sign-extended format.

One return stack byte entry/One stack entry.

Retrieval of temporary data stored on the return stack to

the stack in a format compatible with signed 16-bit

arithmetic.

LD L,{IX+0} ;GET TOP RETURN BYTE

INC IX ;ADJUST RSP

LD H,0 ;ASSUME BYTE POSITIVE

BIT 7, L ;TEST BYTE SIGN

JR Z,SKIP ;IF ZERO, POSITIVE

DEC H ;MAKE NEGATIVE

PUSH HL ;PUSH 16 BIT WORD

23

CREATE

Class: Defining Word

Function: Creates a dictionary header for a primitive keyword whose

name is the token following CREATE and links it to the

CURRENT vocabulary.

Input / Output: N one / N one.

Usage: Used to create all dictionary headers.

Code: ENTRY ;POINTER TO LATEST HEADER

ASPACE ;SET THE SEPARATOR

TOKEN ;TOKEN TO DICTIONARY SPACE

HERE ;POINTS TO THE TOKEN

CURRENT ;ADDRESS OF CURRENT VOCABULARY

@ VOCABULARY LINK

! ;UPDATE LINK TO NEW TOKEN

*C# 4 ;FOUR IDENTIFIER CHARACTERS

DP ; DICTIONARY POINTER

+! ; ENCLOSE FOUR CHARACTERS

;ADD LINK ADDRESS TO NEW

HEADER

HERE ;WORD ADDRESS OF NEW HEADER

2 + ;POINTS TO CODE BODY

;STORE AT WORD ADDRESS

Bytes: 39

Formal Definition:

: ■ CREATE ■ ENTRY ■ ASPACE ■ T OKEN ■ HERE ■ CURRENT ■ @ ■! ■
4BDPB + !H,BHEREB2 +

WORDS, WORDS, AND MORE WORDS 147

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Class:

Function:

Input/Output:

Usage:

Code:

Bytes:

Notes:

CRET

I/O

Issues a carriage-return line-feed sequence to the display.

None/None.

Display formatting.

CALL $CRLF ;CALL CR-LF

13

CSPLIT

Stack

Pops the top stack entry and creates two 16-bit numbers.

The high-order byte is moved to the low-order byte of the

second entry in sign-extended format. The low-order byte

is returned as the top stack entry as a positive 16-bit

number.

One stack entry/Two stack entries.

Stack manipulation of multi-byte integers.

POP HL ;GET 16 BIT NUMBER

LD E,H ;MOVE HIGH BYTE

LD H,0 ;MAKE LOW + 16 BIT

LD D,H ; ASSUME POSITIVE

BIT 7,E ;TEST SIGN

JR Z,OUTl ;IF + , IT'S OK

DEC D ;ELSE MAKE NEGATIVE

OUTl: PUSH DE ;PUSH SIGNED BYTE

22

PUSH HL ;PUSH REMAINDER

CURRENT

System Variable

Pushes to the stack the address of the current vocabulary

variable.

None/One stack entry.

Used to access the current vocabulary variable which con¬

tains the address of the vocabulary where new keywords

will be added.

Not applicable.

9

In the SYS user block. The code body is an offset number

and there is no return address. See *SYS.

148 THREADED INTERPRETIVE LANGUAGES

CVARIABLE

Class: Defining Word

Function: Creates a byte variable keyword dictionary entry whose

name is the token following CVARIABLE and whose ini¬

tial value is the low-order byte of the entry popped from

the stack.

Input/Output: One stack entry/None.

Usage: Defining byte-length named variables and initializing

them.

Z80 Code: CCONSTANT ;CREATE HEADER AND INITIALIZE

SCODE :REPLACE CODE ADDRESS AND EXIT

PUSH DE ;PUSH WORD ADDRESS

JP {IY} JUMP TO NEXT

Bytes: 15

Formal Definition:

: ■ CVARIABLE ■ CCONSTANT ■; CODE ■....

Notes: The "...." is assembly or machine code.

D*

Class: Arithmetic

Function: Does a signed multiply of the second stack word by the

low-order byte of the top stack entry and replaces both en¬

tries by the 24-bit product with the 8 most significant bits

sign extended as the second stack entry and the 16 least

significant bits as the top stack entry.

Input/Output: Two stack entries/Two stack entries.

Usage: Signed integer arithmetic.

Z80 Code: EXX ;SAVE IR

POP BC ;GET 8 BIT NUMBER

POP DE ;GET 16 BIT NUMBER

CALL $ISIGN ; FIELD INPUT SIGNS

CALL $UD* ;MULTIPLY 16X8

EX AF,AF' RETRIEVE SIGN FLAG

JP P,OUT* ;IF + , IT'S OK

LD A,C ;MOVE 8 MOST SIGNIFI¬

CANT

CPL ; COMPLEMENT

LD C,A ;RESTORE

EX DE,HL ;MOVE 16 LEAST

LD HL,0 ;GET ZERO

SBC HL,DE ;NEGATE 16 LEAST

JR NZ,OUT ;IF NOT ZERO, IT'S OK

INC C ;ELSE 2'S COMP MOST

WORDS, WORDS, AND MORE WORDS 149

Bytes:

Notes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

OUT* PUSH HL ;16 LEAST TO STACK

PUSH BC ;8 MOST TO STACK

EXX ;RESTORE IR

39

Does not test the top stack entry to insure it is a valid 8-bit

number. The 16 least significant bits are an unsigned

number on the stack.

D/MOD

Arithmetic

Does a signed divide of the 24-bit number in the third (16

least significant bits) and second (8 most significant bits)

stack entries by the low-order byte of the top stack entry.

Replaces these entries with the 16-bit quotient as the sec¬

ond stack entry and the positive 8-bit remainder expanded

to 16 bits as the top entry.

Three stack entries/Two stack entries.

Signed integer arithmetic.

MO VI;

MOV2;

EXX ;SAVE IR

POP HL ;GET 8 BIT DIVISOR

POP DE ;8 MOST SIGNIFICANT

POP BC ;GET 16 LEAST

LD A,H ; DIVISOR SIGN

XOR D ;RESULT SIGN

EX AF,AF' ;SAVE SIGN FLAG

LD A,L ;GET DIVIDEND SIGN

AND A ;TEST SIGN

JP P,MOVl ;IF + , IT'S OK

NEG ;MAKE POSITIVE

LD D,A ; STORE DIVISOR

LD H,B ;GET 16 LEAST

LD L,C ;TO HL

LD A,E ;GET 8 MOST

AND A ;TEST SIGN

JP P,MOV2 ;IF +, IT'S OK

CPL COMPLEMENT HIGH 8

LD HL,0 ;ELSE GET ZERO

SBC HL,BC ;NEGATE LOW 16

JPC NZ,MOV2 ;IF NON-ZERO, IT'S OK

INC A ;ELSE BUMP HIGH

LD D,A ;MOVE HIGH 8

CALL $UD/ ; DIVIDE 24X8

CALL $OSIGN JUSTIFY RESULT

150 THREADED INTERPRETIVE LANGUAGES

PUSH HL ;QUOTIENT TO STACK

PUSH BC REMAINDER TO STACK

EXX ;RESTORE IR
Bytes: 48

Notes: Does not test the top stack entry to insure it is a valid 8-bit

number. No test is made to insure a valid 16-bit quotient.

DECIMAL

Class: System

Function: Sets the system variable BASE to 10 decimal to evoke

decimal I/O.

Input/Output: None/None.

Usage: Evokes radix 10 I/O.

Z80 Code: LD A,0A ;GET 10 DECIMAL

LD {BASE},A ;STORE IT AT BASE
Bytes: 15

DEFINITIONS

Class: System Directive

Function: Sets the system variable CURRENT to the value in the

system variable CONTEXT.

Input/Output: None/None.

Usage: Sets the vocabulary into which new definitions will be

linked.

Z80 Code: LD HL,{CONTEXT} ;CONTEXT VOCABULARY

LD {CURRENT},HL ;TO CURRENT

Bytes: 16

DISPLAY

Class: I/O

Function: Outputs to the display the low-order byte of successive top

stack entries until a non-ASCII code is output (a character

with the high-order bit 1 set).

Input/Output: One to N stack entries/None.

Usage: Output to display the stack string data.

Z80 Code: SDISPLAY: EXX ;SAVE IR

DLOOP; POP HL ;GET TOP STACK WORD

LD A,L ;LOW BYTE

WORDS, WORDS, AND MORE WORDS 151

CALL $ECHO ; DISPLAY IT
AND A ;TEST CODE FOR BIT 7

JP P,DLOOP ;IF POSITIVE, LOOP
EXX ;RESTORE IR

Bytes: 21

Notes: Entered from #> (to display number strings) at the

SDISPLAY entrance.

DO

Class: Compiler Directive (Immediate)

Function: Encloses the word address of the program control directive

*DO in the dictionary and then pushes to the stack the ad¬

dress of the next free dictionary location.

Input/Output: None/One stack entry.

Usage: Used to initiate a DO . . . LOOP or DO . . . -I-LOOP con¬

struct in the compile mode.

Code: *# XX ;WORD ADDRESS OF *DO {LITERAL}

DO, ; STORE ADDRESS AND GET POINTER
Bytes: 16

Formal Definition:

: BDOBXXBDO, ■; ■ IMMEDIATE

DO,

Class:

Function:

Input/Output:

Usage:

Code:

Bytes:

Formal Definition:

System

Stores the program control directive at the top of the stack

to the dictionary and returns the address of the next free

dictionary location on the stack.

One stack entry/One stack entry.

Used to define compiler directive immediate keywords.

; STORE DIRECTIVE

HERE ;PUSH FREE ADDRESS

14

:BDO,B,BHEREB;

DOES>

Class:

Function:

Program Control Directive

Replaces the first word in the code body of the latest entry

152 THREADED INTERPRETIVE LANGUAGES

in the CURRENT vocabulary with the top return stack

word and then replaces its code address with the second

return stack entry.

Input/Output: Two return stack word entries/None.

Usage: Used to terminate the compile time code of a high-level

defining word definition. Always followed by keywords

that constitute the execution time generic code definition.

Z80 Code: R> ;GET TOP RETURN ADDRESS

ENTRY ; LATEST HEADER ADDRESS

*C# 8 ;PLUS 8

+ ;POINTS TO CODE BODY

! ; STORE RETURN TO CODE BODY

SCODE ;REPLACE CODE ADDRESS AND RETURN

DEC IX ; ADJUST RSP

LD {IX+0},B ;IR LOW BYTE TO RETURN

DEC IX ; ADJUST RSP

LD {IX+0},C ;IR HIGH BYTE TO RETURN

EX DE,HL ;WA REGISTER TO HL

LD C,{HL} ;@WA LOW INTO IR

INC HL ;BUMP WA

LD B,{HL} ;@WA HIGH INTO IR

INC HL ;BUMP WA

PUSH HL ;PUSH POINTER

Bytes: 39

Formal Definition:

:BDOES> BENTRYB8B + ■!B;CODEB....

Notes: The is assembly or machine code.

DP

System Variable

Pushes to the stack the address of the dictionary pointer

variable.

None/One stack entry.

Used to access the system variable which contains the ad¬

dress of the next free dictionary location.

Not applicable.

9

In the SYS user block. The code body contains an offset

number and there is no return address. See *SYS.

DROP

Class: Stack

Class:

Function:

Input/Output:

Usage:

Code:

Bytes:

Notes:

WORDS, WORDS, AND MORE WORDS 153

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Pops the top stack entry and discards it.

One stack entry/None.

Stack clean up.

POP HL ;DROP TOP

11

DUMP

Class: I/O

Function: Does a memory dump using the second stack entry as the

starting address and the top stack entry as the ending ad¬

dress. Displays a line consisting of the address, eight

numbers, a space, and eight more numbers. Removes both

entries.

Input/Output: Two stack entries/None.

Usage: Examining memory.

Code: OVER ;GET LOOP STARTING ADDRESS

*DO INITIALIZE DO LOOP

CRET ;ISSUE CR-LF

DUP ;DUPLICATE LINE ADDRESS

*C# 4 TOUR CHARACTER LINE ADDRESS MINIMUM

.R ;PRINT LINE ADDRESS

PART ;ISSUE FIRST 8

PART ; ISSUE SECOND 8

WAIT TIME TO STOP AND WAIT?

*C# 10 ;16 NUMBERS PER LINE

*+LOOP EE ;LOOP UNTIL DONE

DROP ;DROP ADDRESS

Bytes: 37

Formal Definition:

: ■ DUMP ■ OVER ■ DO ■ CRET ■ DUP ■ 4 ■. R ■ PART ■ PART ■ WAIT ■
10 ■ -I- LOOP ■ DROP ■;

DUP

Class: Stack

Function: Duplicates the top stack entry and pushes it to the stack.

Input/Output: One stack entry/Two stack entries.

Usage: Stack management.

Z80 Code: POP HL ;GET TOP WORD

PUSH HL ;RESTORE TOP

PUSH HL ;AND PUSH IT AGAIN

Bytes: 13

154 THREADED INTERPRETIVE LANGUAGES

ECHO

Class: I/O

Function: Pops the top stack entry and outputs the low-order byte to

the display.

Input/Output: One stack entry/None.

Usage: Direct control of the display for formatting.

Z80 Code: POP HL ;GET TOP

LD A,L ;GET LOW-ORDER BYTE

CALL $ECHO ;DISPLAY IT

Bytes: 15

ELSE

Class:

Function:

Input/Output:

Usage:

Code:

Bytes:

Notes:

Formal Definition:

Compiler Directive (Immediate)

Encloses the word address of the program control directive

*ELSE in the dictionary, saves the address of the next free

dictionary location on the stack, reserves 1 byte in the dic¬

tionary, swaps the top two stack entries, computes the dif¬

ference between the top stack entry and the current free

dictionary location and encloses the low-order byte in the

dictionary as a relative jump byte.

One stack entry/One stack entry.

Used to terminate the True code portion in an IF...ELSE

...THEN construct in the compile mode.

*# XX ;WORD ADDRESS OF *ELSE {LITERAL}

DO, ; STORE ADDRESS AND GET POINTER

0 ;GET ZERO

C, ;RESERVE BYTE

SWAP ;SWAP TOP TWO ADDRESSES

THEN ; EXECUTE THEN CODE

24

See definition of THEN.

: ■ ELSE ■ XX ■ DO, BOBC, ■ SWAP ■ THEN ■; ■ IMMEDIATE

END

Class: Compiler Directive (Immediate)

Function: Encloses the word address of the program control directive

*END in the dictionary, pops the top stack address, com¬

putes the difference between this address and address of

the current free dictionary location and encloses the low-

order byte in dictionary as a relative jump byte.

One stack entry/None. Input/Output:

WORDS, WORDS, AND MORE WORDS 155

Usage: Used to terminate a BEGIN . . . END loop structure in the

compile mode.

Code: XX ;WORD ADDRESS OF *END {LITERAL}

END, ;STORE AND COMPUTE JUMP

Bytes:

Formal Definition:

16

: ■ END ■ XX ■ END, ■; ■ IMMEDIATE

END,

Class: System

Function: Encloses the address of the program control directive at the

top of the stack in the dictionary, computes the relative

jump byte using the top stack entry and the current free

dictionary location and encloses the low-order byte in the

dictionary.

Input/Output: Two stack entries/None.

Usage: Used in defining compiler directive immediate keywords.

Code:

HERE

;STORE DIRECTIVE WORD ADDRESS

; CURRENT FREE ADDRESS
— ; COMPUTE RELATIVE OFFSET

C, ; ENCLOSE IT IN DICTIONARY

Bytes: 18

ENTRY

Class: System

Function: Pushes to the stack the address of the first header byte of

the latest entry in the CURRENT vocabulary.

Input/Output: None/One stack entry.

Usage: Used to locate the address of the latest vocabulary defini-

tion which

keyword.

will become the link address of the next

Code: CURRENT ; CURRENT ADDRESS

@ VOCABULARY ADDRESS

@ ;HEADER ADDRESS

Bytes: 16

ERASE

Class: Utility

156 THREADED INTERPRETIVE LANGUAGES

Function:

Input/Output:

Usage:

Code:

Bytes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Notes:

Class:

Function:

Input/Output:

Usage:

Code:

Fills a region of memory with ASCII spaces. The starting

memory address is the second stack entry and the ending

memory address is the top entry. Removes both entries.

Two stack entries/None.

Clearing string data.

1 + ;BUMP LAST ADDRESS FOR LOOPING

SWAP ;GET LOOP ORDER CORRECT

*DO INITIALIZE LOOP

ASPACE ;GET SPACE CODE

I> ; INDEX EQUALS MEMORY ADDRESS

C! ;SPACE TO MEMORY

*LOOP F8 ;LOOP UNTIL DONE

25

EXECUTE

System

Pops the top stack entry to the word address register and

jumps to the inner interpreter RUN routine to cause the ex¬

ecution of a keyword.

One stack entry/None.

Used by the system for keyword execution and by operator

for defining conditional execution keywords.

POP HL ;GET KEYWORD WORD ADDRESS

JP RUN ; EXECUTE IT

12
EXECUTE does not have a return address.

FILL

Utility

Fill a region of memory with a specified byte. The byte is

the third stack entry low-order byte. The starting memory

address is the second stack entry and the ending memory

address is the top entry. Removes all three entries.

Three stack entries/None.

Loading memory to some initial value.

1+ ;BUMP LAST ADDRESS FOR LOOPING

SWAP ;GET RIGHT LOOP ORDER

‘DO INITIALIZE LOOP

DUP ; DUPLICATE BYTE

I> ;GET MEMORY ADDRESS

C! ; STORE BYTE

‘LOOP F8 ;LOOP UNTIL DONE

WORDS, WORDS, AND MORE WORDS 157

DROP ; REMOVE BYTE FROM STACK

Bytes: 27

Formal Definition:

:■ FILL■ 1 + ■ SWAPBDOBDUPBI> BOBLOOP■ DROP■;

FORGET

Class: Vocabulary

Function: Searches the current vocabulary for the token following

FORGET. If located, the current link address is set to the

address of the link in the keyword located and the dic¬

tionary pointer is reset to the start of the header of the

located keyword. If not located, the token is echo

displayed and followed by a "?".

Input/Output: None/None.

Usage: Used to delete keyword definitions in a spatial sense.

Code: CURRENT ;GET CURRENT ADDRESS

@ ;POINTS TO LATEST ENTRY IN CURRENT

CONTEXT ;GET CONTEXT ADDRESS

1 ;SET TO SEARCH CURRENT

;SEARCH FOR TOKEN {KEYWORD}

DUP ;NEED WORD ADDRESS TWICE

*Q 2 ;WORD ADDRESS LESS 2 POINTS

;TO THE LINK ADDRESS

@ ;THE LINK ADDRESS

CURRENT ;GET CURRENT ADDRESS

@ ;POINTS TO THE LINK

! ;RESET LINK TO TOKEN LINK

*C# 6 , WORD ADDRESS LESS 6 POINTS TO THE

; FIRST HEADER BYTE OF THE TOKEN

DP ;GET FREE DICTIONARY ADDRESS

I ;RESET DICTIONARY FREE LOCATION

Bytes: 44

Notes: Caution is advised. It is possible to forget part or all of the

context vocabulary. The end result is an unusable language

since nothing can be located.

Formal Definition:

: ■ FORGET ■ CURRENT B @ B CONTEXT ■! ■’ ■ DUP ■ 2 ■ - ■ @ ■
CURRENTB@B!B6B-BDPB!B;

HERE

Class: System

158 THREADED INTERPRETIVE LANGUAGES

Function: Pushes the address of the next free dictionary location to

the stack (the address stored at the system variable DP).

Input/Output: None/One stack entry.

Usage: Used by the system in building dictionary entries and by

the operator to determine dictionary space usage.

Z80 Code: LD HL,{DP} ;GET @DP

PUSH HL ;FREE LOCATION TO STACK

Bytes: 14

HEX

Class: System

Function: Sets the system variable BASE to 16 decimal to evoke

hexadecimal I/O.

Input/Output: None/None.

Usage: Evokes radix 16 I/O.

Z80 Code: LD A,10 ;GET 16 DECIMAL

LD {BASE},A ;STORE IT AT BASE
Bytes: 15

Notes: Base 16 I/O is the base on start-up.

I>

Class: Interstack

Function: Pushes to the stack the loop index for the innermost word-

length loop which is the top return stack word.

Input/Output: One return stack word/One return stack word and one

stack word.

Usage: Retrieval of the current word loop index.

Z80 Code: LD L,{IX + 0} ;GET LOW INDEX

LD H, {IX ■+1} ;GET HIGH BYTE

PUSH HL ; INDEX TO STACK

Bytes: 17

Notes: Presumes nothing else on the return stack except loop in¬

dex.

IF

Class: Compiler Directive (Immediate)

Function: Encloses the word address of the program control directive

*IF in the dictionary, pushes the address of the next free

dictionary location to the stack and reserves 1 byte in the

WORDS, WORDS, AND MORE WORDS 159

dictionary for a relative jump byte.

Input/Output: None/One stack entry.

Usage: Used to initiate a conditional branch construct in the com-

pile mode.

Code: *# xx ;WORD ADDRESS OF *IF {LITERAL}

DO, ;STORE ADDRESS AND SAVE POINTER

0 ;GET A ZERO

C, ; RESERVE A BYTE

Bytes: 20
Formal Definition:

: ■IFBXXBDO, BOBC, IMMEDIATE

IMMEDIATE

Class:

Function:

Input/Output:

Usage:

Code:

Bytes:

Formal Definition:

Vocabulary

Delinks the latest entry from the current vocabulary and

links it to the compiler vocabulary. The previous second

entry in the current vocabulary becomes the latest entry.

None/None.

Adding keywords to the compiler vocabulary.

ENTRY

DUP

*C# 4

+

DUP

@
CURRENT

@
I
COMPILER

@
SWAP

!
COMPILER

I
39

;POINTS TO LATEST CURRENT KEYWORD

;SAVE IT FOR COMPILER LINK

;CURRENT HEADER + 4 POINTS TO THE

; LATEST KEYWORDS LINK

;SAVE AS NEW LINK ADDRESS

;GET THE LINK

;POINTS TO CURRENT

; POINTS TO VOCABULARY

; UPDATE CURRENT TO 2ND KEYWORD

; COMPILERS ADDRESS

;POINTS TO LAST COMPILER ENTRY

;ADDRESS THEN LINK

; STORE LINK IN PREVIOUS CURRENT

; COMPILER ADDRESS

PREVIOUS CURRENT TOP OF COMPILER

: ■ IMMEDIATE ■ ENTRY ■ DUP ■ 4 ■ + ■ DUP ■ @ ■ CURRENT ■ @ ■ 1 ■
COMPILER ■ @ ■ SWAP ■! ■ COMPILER ■! ■;

IOR

Class: Logical

160 THREADED INTERPRETIVE LANGUAGES

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Replaces the top two stack entries by the logical inclusive

or of the entries on a bit-by-bit basis.

Two stack entries/One stack entry.

Logical operations.

POP HL

POP DE

LD A,L

OR E

LD L,A

LD A,H

OR D

LD H,A

PUSH HL

;GET TOP WORD

;GET NEXT WORD

;MOVE TOP LOW BYTE

;OR IN 2ND LOW BYTE

;SAVE LOW OR

MOVE TOP HIGH BYTE

;OR IN 2ND HIGH BYTE

;SAVE HIGH OR

;PUSH RESULT

I>

Class: Interstack

Function: Pushes to the stack the loop index for the second innermost

word-length loop.

Input/Output: Three return stack word entries/Three return stack word

entries and one stack entry.

Usage: Retrieval of the second level word-length loop index.

Z80 Code: LD L, {IX + 4} ;GET LOW INDEX

LD H, {IX + 5} ;GET HIGH INDEX

PUSH HL ;INDEX TO STACK

Bytes: 17

Notes: Presumes only word-length loop parameters on the return

stack.

K>

Class: Interstack

Function: Pushes to the stack the loop index for the third innermost

word-length loop.

Input/Output: Five return stack word entries/Five return stack word en¬

tries and one stack entry.

Usage: Retrieval of the third level word-length loop index.

Z80 Code: LD L,{IX + 8} ;GET LOW INDEX BYTE

LD H, {IX ■+ 9} ;GET HIGH INDEX BYTE

PUSH HL ;INDEX TO STACK

Bytes: 17

Notes: Presumes only word-length loop parameters on the stack.

WORDS, WORDS, AND MORE WORDS 161

KEY

Class:
Function:

Input/Output:
Usage:
Z80 Code:

Bytes:
Notes:

I/O
Pushes to the stack in the low-order byte position the next
ASCII code entered via the keyboard.
None/One stack entry.
Interfaces the keyboard to the system.

CALL $KEY
LD L,A
PUSH HL

15
Presumes transfer via the A register.

LBP

Class:
Function:

Input/Output:
Usage:

Code:
Bytes:
Notes:

System Variable
Pushes to the stack the address of the line buffer pointer
variable.
None/One stack entry.
Used to access the line buffer pointer variable which con¬
tains the address of the start of the next token in the input
line buffer.
Not applicable.
9
In the SYS users block. The code body is an offset number
and there is no return address. See *SYS.

LEAVE

Class:
Function:

Input/Output:
Usage:

Code:

Compiler Directive (Immediate)
Encloses the word address of the program control directive
* LEAVE in the dictionary.
None/None.
Compiles a command to cause an immediate exit from a
word-length loop construct at execution time. Used within
a conditional branch construct.

XX ;WORD ADDRESS OF * LEAVE {LITERAL}
;ENCLOSE IT

Bytes: 16
Formal Definition:

: BLEAVEBXXB, ■; ■ IMMEDIATE

162 THREADED INTERPRETIVE LANGUAGES

LOOP

Class:
Function:

Input/Output:

Usage:

Code:

Bytes:

Formal Definition:

Compiler Directive (Immediate)

Encloses the word address of the program control directive

*LOOP in the dictionary, then pops the stacks and com¬

putes the difference between this address and the next free

dictionary address and encloses the low-order byte in the

dictionary as the relative jump byte.

One stack entry/None.

Used to terminate a DO . . . LOOP construct in the com¬

pile mode.

*# XX ;WORD ADDRESS OF *LOOP

{LITERAL}

END, ;STORE ADDRESS AND JUMP

16

: ■ LOOP ■ XX ■ END, ■; ■ IMMEDIATE

LROT

Class:
Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Stack

Rotates the top three stack entries left in an infix cyclic

sense (input ABC into B C A with A the final top stack en¬

try).

Three stack entries/Three stack entries.

Control of stack order.

POP DE ;GET TOP

POP HL ;GET 2ND

EX {SP},HL ; EXCHANGE 3RD AND 2ND

PUSH DE ;PUSH OLD TOP

PUSH HL ;PUSH OLD 3RD

15

MAX

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Arithmetic

Replaces the top two stack entries by the entry with the

higher value (signed).

Two stack entries/One stack entry.

Signed integer arithmetic tests.

POP DE ;GET TOP

POP HL ;GET 2ND

PUSH HL ;ASSUME 2ND GREATER

WORDS, WORDS, AND MORE WORDS 163

Bytes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

AND A ; RESET CARRY

SBC HL,DE ;2ND-TOP

JP P,OUT ;2ND GREATER, EXIT

POP HL ;DROP 2ND

PUSH DE ;PUSH TOP

JP {IY} ;JUMP TO NEXT

MIN

Arithmetic

Replaces the top two stack entries with the entry with the

smaller value (signed).

Two stack entries/One stack entry.

Signed integer arithmetic tests.

POP DE ;GET TOP

POP HL ;GET 2ND

PUSH HL ;ASSUME 2ND SMALLER

AND A ;RESET CARRY

SBC HL,DE ;2ND-TOP

JP N,OUT ;2ND SMALLER, EXIT

POP HL ;DROP 2ND

PUSH DE ;PUSH TOP

JP {IY} ;JUMP TO NEXT

MINUS

Arithmetic

Replaces the top stack entry with its two's complement.

One stack entry/One stack entry.

Signed integer arithmetic.

LD HL,0 ;GET ZERO

POP DE ;GET NUMBER

AND A ; RESET CARRY

SBC HL,DE ;0-NUMBER

PUSH HL ;PUSH 2'S COMPLEMENT

18

MOD

Class: Arithmetic

164 THREADED INTERPRETIVE LANGUAGES

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Notes:

Class:

Function:

Input/Output:

Usage:

Code:

Bytes:

Notes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Does a signed divide of the second stack word by the low-

order byte of the top stack entry. Replaces both entries

with the 8-bit remainder expanded to 16 bits.

Two stack entries/One stack entry.

Signed integer arithmetic.

EXX ;SAVE IR

POP DE ;GET 8 BIT DIVISOR

POP BC ;GET 16 BIT DIVIDEND

CALL SISIGN ; FIELD INPUT SIGNS

CALL $us/ ; DIVIDE 16X8

PUSH BC ;PUSH REMAINDER

EXX ;RESTORE IR

21
No test is made to insure a valid 8-bit divisor.

MODE

System Variable

Pushes to the stack the address of the system mode

variable.

None/One stack entry.

Used to access the system variable which contains the

system execution state.

Not applicable.

9

In the SYS user block. The code body contains an offset

number and there is no return address. See *SYS. If MODE

contains 0, the execute mode is in effect and if 1, the com¬

pile mode is in effect. MODE is a CVARIABLE and must

be referenced using keywords for byte-length addressing.

MODU/

Arithmetic

Does a signed divide of the second stack entry by the low-

order byte of the top stack entry. Replaces both entries

with the positive 8-bit remainder expanded to 16 bits as the

second stack entry and the 8-bit quotient expanded to 16

bits as the top stack entry.

Two stack entries/Two stack entries.

Signed integer arithmetic.

EXX ;SAVE IR

POP DE ;GET 8 BIT DIVISOR

WORDS, WORDS, AND MORE WORDS 165

POP BC ;GET 16 BIT DIVIDEND

CALL $ISIGN ; FIELD INPUT SIGNS

CALL $US/ ;DIVIDE 16X8

CALL $OSIGN ; FIELD OUTPUT SIGN

PUSH BC ; REMAINDER TO STACK

PUSH HL ;QUOTIENT TO STACK

EXX ;RESTORE IR

Bytes: 25

Notes: Does not test the divisor to insure it is a valid 8-bit

number. No test is made to insure a valid 8-bit quotient.

MOVE

Class: Utility

Function: Move the region of memory specified by the starting ad-

dress of the third stack entry and the ending address of the

second stack entry to the memory region specified by the

starting address of the top stack entry. Removes all three

entries.

Input/Output: Three stack entries/None.

Usage: Used to move memory data.

Z80 Code: EXX ;SAVE IR

POP DE ;NEW STARTING ADDRESS

POP HL ;OLD ENDING ADDRESS

POP BC ;OLD STARTING ADDRESS

AND A ;RESET CARRY

SBC HL,BC ; COUNT —1

PUSH BC ;OLD STARTING

EX {SP},HL ;SAVE COUNT-1

POP BC ;BC = COUNT-1

EX DE,HL ;HL=NEW STARTING

PUSH HL ;SAVE IT

AND A ; RESET CARRY

SBC HL,DE ;MOVE FROM TOP?

POP HL ;GET IT BACK

JR NC, BOTTOM ;NO, BOTTOM

EX DE,HL ;HL + OLD START

INC BC ;BC = COUNT

LDIR ;MOVE THE BLOCK

OUTM: EXX ;RESTORE IR

JP {IV} ;RETURN TO NEXT

BOTTOM: ADD HL,BC ;NEW ENDING ADDRESS

EX DE,HL ;OLD STARTING ADDRESS

ADD HL,BC ;OLD ENDING ADDRESS

INC BC ;BC +COUNT

166 THREADED INTERPRETIVE LANGUAGES

Bytes:

Notes:

LDDR ;MOVE THE BLOCK

JR OUTM JUMP TO RETURN

40

The memory blocks may be overlapping, but this routine

will correctly move them.

NEXT

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Program Control Directive

Encloses a jump to the inner interpreter NEXT routine in

the dictionary

None/None.

Used to terminate keywords defined using machine code.

*# E9FD ;FDE9 INSTRUCTION {LITERAL}

; ENCLOSE THE JP {IY}

Bytes: 16

Formal Definition:

HEX ■: ■ NEXT ■ E9FD ■, ■;

NOT

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Logical

Inverts the logic state of the flag at the top of the stack.

One stack entry/One stack entry.

Inverting the results of relational test or other flags.

POP HL ;GET THE FLAG

LD A,L ;MOVE LOW BYTE

OR H ;OR IN HIGH BYTE

LD DE,0 ;ASSUME FALSE RESULT

JR NZ,OUT ;IF NONZERO, FALSE

INC E ;MAKE TRUE

OUT: PUSH DE ;FLAG TO STACK

20

OCTAL

Class:

Function:

Input/Output:

Usage:

System

Sets the system variable BASE to 8 decimal to evoke octal

I/O.

None/None.

Evokes radix 8 I/O.

WORDS, WORDS, AND MORE WORDS 167

Z80 Code:

Bytes: 15

LD A,8

LD {BASE}, A

;GET 8 DECIMAL

;STORE IT AT BASE

OVER

Class: Stack

Function: Duplicates the second stack entry and pushes it to the top

of the stack.

Input/Output: Two stack entries/Three stack entries.

Usage: Control of stack order.

Z80 Code: POP HL ;GET TOP

POP DE ;GET 2ND

PUSH DE ;RESTORE 2ND AS 3RD

PUSH HL ;RESTORE TOP AS 2ND

PUSH DE ;RESTORE 2ND AS TOP

Bytes: 15

PART

Class: I/O

Function: Pops an address from the stack and displays eight numbers

to the operator from the 8 bytes following the initial ad¬

dress. The address pointer is left on the stack.

Input/Output: One stack entry/One stack entry.

Usage: Used by DUMP to display memory.

Code: SPACE ;ISSUE SPACE TO DISPLAY

*C# 8 ;LOOP ENDING INDEX

0 ;LOOP STARTING INDEX

*CDO INITIALIZE LOOP

DUP ; DUPLICATE POINTER

C@ ;GET MEMORY BYTE

*C# 3 ;SET TO DISPLAY 3 CHARACTERS

.R ;DISPLAY AT LEAST 3

1 + INCREMENT MEMORY POINTER

*CLOOP F3 ;LOOP UNTIL DONE

Bytes: 33

Formal Definition:

: ■ PART K SPACE ■ 8 ■ 0 ■ C DO ■ DUP ■C@B3B.RBl + B CLOOP ■;

R>

Class: Interstack

168 THREADED INTERPRETIVE LANGUAGES

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Pops the word at the top of the return stack and pushes it

to the stack.

One return stack word entry/One stack entry.

Retrieval of temporary data stored on the return stack or

direct control of return stack addresses.

LD L,{IX+0} ;GET RETURN LOW BYTE

INC IX ;ADJUST RSP

LD H,{IX+0} ;GET RETURN HIGH BYTE

INC IX ; ADJUST RSP

PUSH HL ;PUSH TO STACK

21

RROT

Stack

Rotates the top three stack entries right in an infix cyclic

sense (input ABC into CAB with B the top stack entry).

Three stack entries/Three stack entries.

Control of stack order.

POP HL ;GET TOP

POP DE ;GET 2ND

EX {SP},HL ;TOP TO 3RD

PUSH HL ;3RD TO 2ND

PUSH DE ;2ND TO TOP

15

S*

Arithmetic

Does a signed multiply of the low-order byte of the second

stack entry by the low-order byte of the top stack entry

and replaces both entries by the 16-bit product.

Two stack entries/One stack entry.

Signed integer arithmetic.

EXX ;SAVE IR

POP BC ;GET FIRST 8 BITS

POP DE ;GET 2ND 8 BITS

CALL $ISIGN ; FIELD INPUT SIGNS

CALL $US* ;MULTIPLY 8X8

CALL $OSIGN JUSTIFY RESULT

PUSH HL ;QUOTIENT TO STACK

EXX ;RESTORE IR

Bytes: 24

WORDS, WORDS, AND MORE WORDS 169

Notes: No test is made to insure that either stack entry is a valid

8-bit number.

SCODE

Class: Program Control Directive (Headerless)

Function: Resets the code address of the latest keyword in the CUR¬

RENT vocabulary to the address at the top of the return

stack.

Input/Output: One return stack word entry/None.

Usage: Used by the system to load the generic code address for

defining words at execution time and then return to the

outer interpreter.

Code: R> ;GET RETURN ADDRESS

CA! ;STORE IT AS CODE ADDRESS

Bytes: 8

Formal Definition:

:BSCODEBR>BCA!B;

SIGN

I/O

Pushes the ASCII code for a minus sign to the stack (in the

low-order byte position) if the top byte on the return stack

is twos complement negative.

One return stack byte entry/One return stack byte entry

and zero or one stack entries.

Adds a leading negative sign to the stack string number if

the original binary number was negative. Used in de¬

signing formatted displays.

BIT 7,{IX + 0} ;GET RETURN SIGN BIT

JR Z,OUT ;IF ZERO +, EXIT

LD L,2D ASCII CODE

PUSH HL ;MINUS SIGN TO STACK

OUT: JP {IY} JUMP TO NEXT

19

SINGLE

Class: System

Function: If the top stack entry is a valid 8-bit number (the high-

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

170 THREADED INTERPRETIVE LANGUAGES

Input/Output:

Usage:

Z80 Code:

Bytes:

Notes:

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Class:

Function:

Input/Output:

Usage:

Code:

Bytes:

Notes:

order byte is all zeros or all ones), a False flag is pushed to

the stack. Otherwise a True flag is pushed to the stack.

One stack entry/Two stack entries.

Used to determine storage or display requirements for

stack numbers.

POP HL ;GET WORD

PUSH HL ;RESTORE WORD

LD L,H ;IF SINGLE, 0 OR FFFF

LD A,H ;GET HIGH BYTE

AND A ;TEST IT

JR Z,OUT ;IF ZERO, PUSH FALSE

INC HL ;SEE NOTE BELOW

PUSH HL ;PUSH FLAG

18

If the top byte is single, the INC HL instruction will yield a

False flag since FFFF -1-1 = 0 if and only if the original value

of H was FF.

SPACE

I/O

Echo displays a space to the display.

None/None.

Display formatting.

LD A,20 ;GET ASCII SPACE CODE

CALL $ECHO ;ECHO DISPLAY IT

15

STATE

System Variable

Pushes to the stack the address of the system state variable.

None/One stack entry.

Used to access the system variable which contains the com¬

piler immediate state.

Not applicable.

9

In the SYS user block. The code body contains an offset

number and there is no return address. See *SYS. STATE

is 1 set if a compiler immediate keyword is located in the

compile mode and is 0 set when the keyword is executed.

STATE is a CVARIABLE and must be referenced using

keywords for byte-length addressing.

WORDS, WORDS, AND MORE WORDS 171

SWAP

Class:

Function:

Input/Output:

Usage:

Z80 Code:

Bytes:

Stack

Interchanges the order of the top two stack entries.

Two stack entries/Two stack entries.

Stack data management.

POP HL ;GET TOP

EX {SP},HL ;TOP TO 2ND

PUSH HL ;2ND TO TOP

13

THEN

Class:

Function:

Input/Output:

Code:

Bytes:

Notes:

Compiler Directive (Immediate)

Pops the address from the stack, computes the difference

between this address and the current free dictionary loca¬

tion as the relative jump byte, and stores the byte at the ad¬

dress popped from the stack initially.

Used to terminate a branch construct in the compile mode.

HERE ;GET FREE ADDRESS

OVER ;COPY JUMP ADDRESS OVER HERE

; COMPUTE JUMP BYTE

SWAP ;REVERSE ORDER

C! ;STORE JUMP BYTE

20
Loads a previously reserved byte in the dictionary. Define

THEN as a normal keyword, then define ELSE and WHILE

as IMMEDIATES, and finally make THEN an IM¬

MEDIATE.

Formal Definition:

: ■ THEN ■ HERE ■ OVER ■ - BSWAPBCIB;

TYPE

Class: I/O

Function: Pops the top stack entry which points to a string consisting

of a length argument followed by that many ASCII

characters. Outputs the string characters to the display.

Input/Output: One stack entry/None.

Usage: Display of system messages to the operator.

Z80 Code: POP HL ;GET STRING ADDRESS

LD E,{HL} ;GET LENGTH

LOOP: INC HL ;BUMP POINTER

172 THREADED INTERPRETIVE LANGUAGES

LD A,{HL} ;GET CHARACTER

CALL $ECHO ;ECHO DISPLAY IT

DEC E DECREMENT LENGTH

JR NZ,LOOP ;IF LENGTH * 0, LOOP

Bytes: 20

VARIABLE

Class: Defining Word

Function: Creates a word-length variable dictionary keyword entry

whose name is the token following VARIABLE and whose

initial value is the value popped from the stack.

Input/Output: One stack entry/None.

Usage: Defining and initializing word-length named variables.

Z80 Code: CONSTANT :CREATE HEADER AND INITIALIZE

SCODE :REPLACE CODE ADDRESS AND EXIT

PUSH DE ;PUSH WORD ADDRESS

JP {IY} JUMP TO NEXT

Bytes: 15

Formal Definition:

: ■ VARIABLE ■ CONSTANT ■; CODE ■....

Notes: The "...." is the assembly or machine code.

VOCABULARY

Class: Defining Word

Function: Creates a vocabulary keyword dictionary entry whose

name is the token following VOCABULARY, with an ini¬

tial link to the latest entry in the CURRENT vocabulary,

and which, when the vocabulary name is executed, sets the

system variable CONTEXT to the link address.

Input / Output: N one / N one.

Usage: Defining vocabularies.

Code: < BUILDS ;CREATE THE HEADER AND BODY

ENTRY ;GET CONTEXT LINK

; STORE IN BODY

DOES> ;RESET CODE ADDRESS, BODY AND EXIT

CONTEXT ;GET CONTEXT ADDRESS

! ; STORE LINK TO CONTEXT

Bytes: 22

Formal Definition:

:■ VOCABULARY■ <BUILDS■ ENTRY■,BDOES> BCONTEXTBlB;

WORDS, WORDS, AND MORE WORDS 173

WAIT

Class: Utility

Function: If a keyboard entry (any) has been received, a loop is

entered waiting for the next keyboard entry.

Input/Output: None/None.

Usage: Used to hold the display screen fixed to allow inspection.

Code: See notes.

Bytes: See notes.

Notes: A system specific keyword which first reads the keyboard

port without an initial rest. If an entry has been received,

the keyboard is sampled until the next entry is received.

No keyboard return is expected. The routine should not

manipulate the cursor but should simply await the next en¬

try. Very system specific.

WHILE

Class: Compiler Directive (Immediate)

Function: Encloses the word address of the program control directive

‘WHILE in the dictionary. The top two stack entries are
swapped, the top stack entry is popped. The offset from

this address to the current free dictionary location is

enclosed in the dictionary as a relative jump byte. The

function also pops the top stack entry, computes the dif¬

ference between this address and the current free dic¬

tionary location and stores the low-order byte to the ad¬

dress popped from the stack as a relative jump byte.
Input/Output: Two stack entries/None.

Usage: Used to terminate a loop construct containing a *WHILE.

Code: SWAP ;CHANGE STACK ORDER

*# XX ;WORD ADDRESS OF ‘WHILE

END, ; STORE ADDRESS AND OFFSET FOR BEGIN

THEN ; STORE OFFSET FOR IF OR ELSE

Bytes: 20

Formal Definition:

: ■ WHILE ■ SWAP ■ XX ■ END, ■ THEN ■; ■ IMMEDIATE

Notes: See definition for THEN.

XOR

Class:

Function:

Logical

Replaces the top two stack entries by the logical exclusive

174 THREADED INTERPRETIVE LANGUAGES

or of the entries on a bit-by-bit basis.

Input/Output: Two stack entries/One stack entry.

Usage: Logical operations.

Z80 Code: POP HL ;GET TOP WORD

POP DE ;GET 2ND WORD

LD A,L ;MOVE TOP LOW BYTE

XOR E ;XOR IN 2ND LOW BYTE

LD L,A ;MOVE TO RESULT

LD A,H ;GET TOP HIGH BYTE

XOR D ;XOR IN 2ND HIGH BYTE

LD H,A ;MOVE TO RESULT

PUSH HL ;RESULT TO STACK

Bytes: 19

Class:

Function:

Input/Output:

Usage:

Code:

Bytes:

Formal Definition:

Compiler Directive (Immediate)

Encloses the literal handler *[in the dictionary, changes

the token separator to] and scans the next token from the

input buffer and then encloses the token in extended

header format in the dictionary.

None/None.

Compiling literal strings into secondary keywords or
display formatting.

*# *[;WORD ADDRESS OF *[{LITERAL}

;ENCLOSE IT IN THE DICTIONARY

*C# 5D ;GET THE SEPARATOR]

TOKEN ;MOVE TOKEN TO THE DICTIONARY

HERE ;GET START OF TOKEN

C@ ;TOKEN LENGTH

1 + ; ADDRESS OF LENGTH OF TOKEN

DP : DICTIONARY ADDRESS

+ ! ; ENCLOSE TOKEN IN DICTIONARY

31

: ■[BXX ■ , ■ 5D ■ TOKEN ■ HERE ■ C@ ■ 1 + BDPB +! ■; ■ IMMEDIATE

6.2 A Classy Cross-Reference

What would you expect to find in a classy cross-reference? A cross-reference

by class, of course. Following are all the keywords arranged alphabetically by

class.

WORDS, WORDS, AND MORE WORDS 175

Arithmetic Keywords

★
2-

*/ 2/

VMOD ABS

+ D*
— D/MOD

/ MAX

/MOD MIN

1 + MINUS

1- MOD

2* MODU/

2 + S*

Compiler Directives

+ LOOP END

BEGIN IF

C + LOOP LEAVE

CDO LOOP

CLEAVE THEN

CLOOP WHILE

DO [
ELSE

Compile Mode Terminators

!code

Defining Words

< BUILDS

CCONSTANT

CONSTANT

CREATE

CVARIABLE

VARIABLE

VOCABULARY

176 THREADED INTERPRETIVE LANGUAGES

* CLEAR

CRET

#S DISPLAY

DUMP

.R ECHO

<# KEY

7 PART

ADUMP SIGN

APART SPACE

ASCII TYPE

C7

Interstack

<R CR>

C<R I>

CI> J>
CJ> K>

CK> R>

Literal Handlers

*#

*C#

Logical

AND

IOR

NOT

XOR

WORDS, WORDS, AND MORE WORDS 177

Memory Reference

1 C!

+ ! C+!

OSET COSET

1SET ClSET

@ C@

Program Control Directives

+ LOOP *IF

C+LOOP * LEAVE

CDO ‘LOOP

CLEAVE ‘WHILE

CLOOP DOES>

DO NEXT

ELSE SCODE

END

Relational

0<
0 =

<

>

Stack

2DUP DUP
20VER LROT

2SWAP OVER

CJOIN RROT

CSPLIT SWAP
DROP

178 THREADED INTERPRETIVE LANGUAGES

Subroutine

$CRLF $UD*
$ECHO $US*
$ISIGN $UD/
$KEY $US/
SOSIGN

System

'(tick) CA!
‘SYS DECIMAL
+ SP DO,
, (comma) END,
-SP ENTRY
?RS EXECUTE
?SP HERE
ABORT HEX
ASPACE OCTAL
BINARY
C,

SINGLE

System Directives

DEFINITIONS

System Variables

BASE DP
COMPILER LBP
CONTEXT MODE
CURRENT STATE

WORDS, WORDS, AND MORE WORDS 179

Utility

ERASE

FILL

MOVE

WAIT

Vocabulary

CORE

FORGET

IMMEDIATE

6.3 Sum Total

There are roughly 150 user-available keywords in the design presented. The

memory requirement to implement the keywords in the Section 6.1 description

is about 3200 bytes. The total design, including the inner interpreter, the outer

interpreter, and the routine of Section 5.3, can be easily coded in less than 4 K

bytes. Well, maybe not easily, but it will fit.

180 THREADED INTERPRETIVE LANGUAGES

7 I Extension Please

There are any number of extensions that may be added to
the TIL language. All depend only on defining the problem,
defining the keywords and extending the language. The utili¬
ty of the extension is the sole criteria. For example, an im¬
portant keyword in my system is an ASCII file called
SANDI. It contains our anniversary, her birthday, my
mother-in-law's phone number, and other critical data-base
parameters. One can never be too safe.

Some of the more useful extensions to the basic (not BASIC) TIL will be con¬

sidered in this section. Incorporation of all of these extensions will extend the

TIL from a language to a programming system. The extensions are not totally

unrelated among themselves, although it is possible to incorporate some

features and not others. The level of presentation of the material in this section

is higher than in previous sections. The reader is assumed to have a working

knowledge of more advanced software concepts and a broader knowledge of

hardware interfacing.

7.1 Introductions

The majority of the extensions to the TIL are predicated on a system con¬

figuration of 16 K bytes of programmable memory and a floppy disk/con¬

troller combination. It is presumed that a more sophisticated operating system

is available to support the system input/output to the disk system. The system

designer (you) is faced with many more decisions on how to configure the

overall software system. Depending on the idiosyncrasies of the disk system

designer, a total rewrite of the disk controller software may be in order. This

generally arises because the equipment manufacturer presumes that the disk

EXTENSION PEEASE 181

operating system should reside at some strange location in memory, and the

bootstrap read-only memory he supplies does not contain all of the fundamen¬

tal disk input, output and control functions.

The three main extensions to be considered are an assembler, a virtual

memory system, and an editor. These three functions are complimentary but

caution is advised; the functions are only similar in nature to what their names

imply. This will become clearer when the functions are discussed.

A TIL assembler is different from the normal concept of an assembler. It still

translates from 'assembly language" to "machine language" but it has restric¬

tions on how programs can be structured. Rather than using a symbol table to

resolve forward and backward references, it passes addresses on the stack. It

contains structured constructs to accomplish this semi-automatically. This is

generally adequate for resolving references in the short programs encountered
in TIL keyword definitions but not for general assembly language program¬

ming. The target memory for the assembled code is the TIL dictionary since

the assembler is specifically designed for defining new key words. The assembler

extension does not depend on the disk system and is very useful even in small

systems. The assembler is always evoked with the system in the execution

mode rather than the compile mode. This is true even when the assembly

source code is disk resident and is loaded to the system to extend the language.

The TIL virtual memory extension is a method for integrating a floppy disk

into the basic system. The disk is used to store both TIL source text and pro¬

gram data. Disk accesses are accomplished in a manner that is totally

transparent to the operator. Source text on the disk may include both

primitive and secondary keywords that are assembled/compiled to the free

dictionary space when the source text is evoked. The primitive keywords in

the source text must contain totally relocatable code if defined using a or C,

keyword, or they must be defined in assembly language (which allows reloca¬

tion by its very nature). A virtual memory system without an associated TIL

assembler is restrictive. Program data accesses are provided by the virtual

memory system, but the data formatting is strictly application-dependent.

The TIL editor is designed to allow generation and modification of TIL

source text files. Source text files allow individual keywords, classes of

keywords, or entire vocabularies to be stored in source form on the disk rather

than demanding resident TIL memory space. When the keywords are needed,

they can be loaded to the system and are compiled/assembled to the resident

dictionary. The editor is specifically designed to simplify source text manipula¬

tion. Although it has limited general text editor features, it is not designed to

be the last word in an editor. If it is desired or required, it is certainly possible

to add general text editing features.

In discussing the extensions, I will usually give an overview of how to

proceed with the design, rather than a detailed discussion of a precise design.

This is mostly a fallout of the hardware- specific nature of the designs. A Z80

assembler description is of limited use if you have some other microcomputer,

but the design approach is still similar. Note that, in order to proceed, the

designer of the assembler must be familiar with both the microcomputer and

the assembly language process. This is typical of all of the extensions; a degree
of sophistication is required to proceed with a design.

182 THREADED INTERPRETIVE LANGUAGES

7.2 Assemblers

An extension of great utility is the TIL assembler. The assembler consists of

a group of keywords which are usually spatially intermixed with the core

language but contained in a separate vocabulary. A TIL assembler materially

eases the generation of the full core language by allowing more easily

remembered keyword mnemonics to be used (instead of direct machine code)

in defining primitives. A TIL assembler is evoked in the execute mode and the

system never enters the compile mode while the assembler is in effect.

A TIL assembler is very different from the usual concept of an assembler.

The TIL assembler is specifically designed to allow the addition of keywords to

the TIL rather than to produce stand-alone programs or subroutines. The

target memory for the assembler is the free dictionary space since this is where

keyword extensions are always added. The TIL assembler does not use a sym¬

bol table but rather uses the stack to store addresses needed to resolve both

forward and backward references. This is generally adequate given the brevity

of most keyword definitions.

7.2.1 Assembler Overview

The problem with describing the assembler is the machine-specific nature of

the beast. Although the general design procedure for producing an assembler is

universal, the product is not. The design techniques will be illustrated relative

to the Z80.
The assembler for the threaded interpretive language is a translator. It

translates more easily remembered instruction mnemonics into machine code.

Like all TIL code entry, the assembler is a reverse Polish notation entry design.

A non-TIL assembler entry usually consists of a line number, an optional

label, an instruction mnemonic and one or more operands. The operands are

usually register designators, numbers, or labels. The TIL assembler does not

support line numbers and demands that the operands precede the instruction

mnemonic. Only limited label operands are supported.

The mnemonics for the TIL assembler will not necessarily be those suggested

by the manufacturer of the microprocessor. The manufacturer's mnemonics

generally presume a symbol table which can be used to resolve ambiguities

within a single mnemonic instruction regarding the addressing mode. It is far

easier in a TIL to assign individual mnemonic names to the various addressing
modes. As an example, the Zilog mnemonic ADD will generate 1-, 2-, or

3-byte instructions for implied register addressing, immediate addressing,

register pair addressing and indexed addressing. In the TIL, separate

mnemonics are used to evoke the different addressing modes.

Strictly from personal preference, the mnemonics (keywords) that I use for

the Z80 are all three letters followed by a comma. The instruction names are a

EXTENSION PLEASE 183

cross-breed of Z80 and 8080 mnemonics and a personal quirk that names

should be related to the action and the addressing modes. For example, the

mnemonics STA (store accumulator) and LDA (load accumulator) a la the

8080 are very descriptive and are retained. The mnemonic EX DE,HL (Z80) or

XCHG (8080) that interchange the DE and HL register pair is simplified to

XDH,. The Z80 mnemonic suggests that other register pairs could be inter¬

changed by using different operands (not true) while the 8080 mnemonic does

not indicate which items are to be exchanged (and there are several with the

Z80). I will leave the design of your mnemonics to you but will perforce use
my own in the design presentation.

7.2.2 Architecture and the Assembler

Any assembler must make use of the central processing unit architecture to

define a reasonable set of mnemonics. The machine-code instructions of a

given processor generally have a regularity that results from the logic design of

the unit. Individual bits within the machine instruction determine the opera¬

tion type, the register(s) involved, the conditional options depending on the in¬

ternal status, and the addressing mode. Some central processing units are very

regular in their architecture (the 6809) and some are very irregular (the Z80).

The goal is to find the regular instructions that will allow the definition of in¬

struction classes. A careful inspection of the manufacturer's documentation

will most often reveal this regularity. Almost all of the regular instructions in a

given processor can be built from bit mask patterns. The bit patterns represent

registers, conditions, operation types, or other parameters used by the central

processing unit to direct its internal operations.

To illustrate this pattern regularity, the Z80 internal architecture will be

briefly described first. Figure 7.1 shows the main register of the Z80. The

Figure 7.1: Z80 processor registers.

H L H' L'
D E D' E'

B C B' C'
A F _A!_ F

IX
IY
PC
SP

I R

registers A, B, C, D, E, H, and L may be individually addressed as 8-bit

registers with the A register as the accumulator. The register pairs AF, BC, DE,

HL, IX, IY, SP, and PC are 16-bit registers with the HL, IX, and IY registers

184 THREADED INTERPRETIVE LANGUAGES

serving as accumulators with limited scope. The F register is a program status

word that contains flag bits which are set by the central processing unit. The

state of the bits depends on the results from executing given instructions.

Ignore for the moment the addressing modes of the Z80; the mask patterns

that address registers, register pairs, and condition codes in the Z80 are

depicted below in table 7.1:

Pattern Register Register Pair Condition

0 0 0 B BC NZ (non-zero)
0 0 1 C DE Z (zero)
0 1 0 D HL,IX,IY NC (non-carry)
0 1 1 E AF,SP CY (carry)
1 0 0 H PO (parity odd)
1 0 1 L PE (parity even)
1 1 0 M,@X,@Y

or default P (positive)
1 1 1 A N (negative)

Table 7.1: Mask patterns that address registers, register pairs, and condition codes.

Note that the register pairs are 2-bit masks rather than 3-bit masks. So what

are M, @X, and @Y you ask, and why are there several register pairs evoked

by the same mask pattern? The addressing modes just landed.

The designation M (8080 derived), or in Z80 parlance {HL}, refers to the

fact that the HL register pair can be used as a pointer to a memory location

which can be accessed like a register (implied register pair indirect addressing).

The Z80 allows the IX and IY registers to be used to determine an effective ad¬

dress using the value in the register plus a signed displacement embedded in the

instruction. This is a form of indexed indirect addressing that is evoked by @X

or @Y, as opposed to the Z80 {IX + d} or {IY + d}. The form of these instruc¬

tions consists of 1 byte (DD for an @X or FD for an @Y), the first byte of the

equivalent M instruction, the signed displacement byte (— 126 to +129), and

the second byte of the equivalent M instruction, if applicable. When used in

this fashion the M, @X and @Y, along with displacement in the later two

cases, specify a memory location which is accessed as if it were an 8-bit

"register".

When the HL, IX or IY keywords are used as register pair designators, the

instruction formats for all three are the same except that the IX instruction is

preceded by a DD byte and the IY by an FD byte. The mask patterns for all

three register designators are the same, however.

One further factor is important relative to the mask patterns. The register

pair mask patterns always fall in bit position b5b4 in the instruction (with bO

the least significant bit). The condition code patterns always fall in positions

b5b4b3 and the register patterns may be in positions b5b4b3 or b2blb0. These

facts are important when the assembler is designed.

EXTENSION PLEASE 185

The regularity of the mask patterns for register designations and condition

flags is typical for most processors. This regularity often extends into instruc¬

tion groups as well. For example the entire Z80 ALG (arithmetic and logic
group) of instructions are of the form:

b 7 b6 b5 b4 b3 b2 bl bO

Register 1 0 ^ f — *- r

Immediate 1 1 <— f —> 1 1 O^n —

Here r is one of the 3-bit register masks, f is a 3-bit function code and n is an

8-bit byte following the instruction. The arithmetic and logic register instruc¬

tions perform some operation between the register designated by r and the A

register (accumulator) and leave the result in the A register and/or the condi¬

tion flags of F set appropriately. The immediate arithmetic and logic instruc¬

tions perform similar operations using the immediate byte instead of a register.
The f-bit mask pattern evokes the following functions:

f Function

000 Add

0 0 1 Add with carry

0 10 Subtract

Oil Subtract with carry

10 0 AND

10 1 Exclusive OR

110 Inclusive OR

111 Compare

Other microcomputers have similar instruction designator bits.

The object of the assembly keyword designs is to produce coding sequence

from input of the form:

keyword

operand. 1 keyword

operand. 1 operand.2 keyword

operand. 1 operand.2 operand.3 keyword

The operands are either register designations, condition codes, or numbers, all

of which leave numbers (or masks) on the stack. The keywords are the instruc¬

tion mnemonic and they expect any required input data on the stack. The

keywords combine the operand masks with the basic instruction masks as ap¬

propriate and enclose the resulting machine code instruction in the dictionary.

The mnemonics produce 1-, 2-, 3-, or 4-byte machine-code instructions in the

Z80 case.

Since the assembler always operates in the execute mode, numbers entered

as operands are always pushed to the stack. By defining the register and condi-

186 THREADED INTERPRETIVE LANGUAGES

tion codes as CCONSTANTs, the mask patterns can also be pushed to the
stack. The mnemonic keywords then evoke instruction skeletons, add in mask
patterns as appropriate, and enclose the results in the dictionary. If the instruc¬
tions are regular, it is usually possible to define the keywords using a high-
level defining word. In this case the specific mask is stored with the mnemonic
keyword and the generic instruction build code follows the defining word (see
1BYTE of Section 4.5.5 as an example).

7.2.3 The Z80 Assembler

The code for producing a subset of the Z80 assembler will be given in the
following pages. It is not a "complete" assembler since some possible Z80 in¬
structions are not produced. Generally this is because more than one form of
the instruction exists.

One of the more difficult aspects of the design of the Z80 TIL assembler is
designing a method for handling the indexed addressing mode. The inclusion
of these instructions considerably complicates the design of keywords. This
will become obvious when the design is presented. It is possible to produce a
less complex assembler by totally ignoring the indexed instructions. They are
still available via the and C, keywords if needed.

There are several ways to present the design: by addressing mode, by func¬
tional group, or by the number of bytes in the instruction. Because of the ir¬
regularity of the Z80 instruction set, a mixture of the different design ap¬
proaches will be used. The result will be total coverage but in a nonstandard
way.

7.2.3.1 The Operands

The object of the game at this point is to define the operand keywords. The
design is not complex. Consider the following:

:B8*B2*B2*B2*B;

OBCCONSTANTBB
1BCCONSTANTBC
2 BCCONSTANT BD
3BCCONSTANTBE
4BCCONSTANTBH
5BCCONSTANTBL

EXTENSION PLEASE 187

6 B CCONSTANT BM

7BCCONSTANTBA

OOBCCONSTANTBBC
10BCCONSTANTBDE

20BCCONSTANTBHL

30BCCONSTANTBAF

30 B CCONST ANT BSP

00 B CCONSTANT BNZ

08BCCONSTANTBZ

10BCCONSTANTBNC

18BCCONSTANTBCY

20 B CCONST ANT B PO

28BCCONSTANTBPE

30 B CCONSTANT BP

38BCCONSTANTBN

Several points should be noted. The carry and minus keywords are defined as

CY and N to prevent contention with register designators. The 8* keyword

will be used to shift the register masks to position b5b4b3 from the b2blb0

position of the definitions. The use of A, B, C, D, and E as keyword names in

the ASSEMBLER vocabulary will force the use of leading zeros during

equivalent hexadecimal number entry. There are alternate naming conven¬

tions that could be used to prevent these problems. The choice is yours, but I

personally prefer C as the register designator rather than C. or C{ or some

other convention.

The register pair keywords @X and @Y will load the initial byte which in¬

dicates the index mode and will leave a negative-valued mask on the stack.

The mask is designed such that the low-order byte position contains a positive

07 (the mask pattern for M) but the high-order bit is set to 1. The negative

value is easy to test to determine if the index mode special store of the displace¬
ment value is required. Thus:

:B@XBDDBC,B8007B;

:B@YBFDBC,B8007B;

The register pair keywords are simply:

:BIXBDDBC,BHLB;

:BIYBFDBC,BHLB;

Having the operand enclosing the indexed byte simplifies the design

somewhat. Trouble arises in only one case with this design.

188 THREADED INTERPRETIVE LANGUAGES

7.2.3.2 The Constants

There are several Z80 instructions that have no required operands or are ir¬

regular enough to preclude the use of operands. These instructions are either 1

or 2 bytes long but the first byte of the 2 byte instructions is always hexa¬

decimal ED. The 1-byte instructions are defined using the 1BYTE defining
word of Section 4.5.5. The definition is:

: ■ 1BYTE■ < BUILDSB C, B DOES > BC@ BC, B;

The mnemonic keywords are then defined as:

3F ■ IB YTE B CCF,

AF ■ IB YTE B CLA,

2F ■ IB YTE ■ CPL,

27B1BYTEBDAA,

F3 BlBYTEBDSI,

FB ■ 1BYTE ■ ENI,

76 ■ IB YTE ■ HLT,

OOB1BYTEBNOP,

A7 ■ IB YTE B RCF,

37 ■ 1BYTE ■ SCF,

C9 ■ IB YTE ■ RET,

08B1BYTEBXAA,

D9 ■ IB YTE ■ XAL,

EBB IB YTE ■ XDH,

Complement carry flag

Clear accumulator {XOR A}

Complement accumulator (l's complement)

Decimal adjust accumulator

Disable interrupts

Enable interrupts

Halt

No operation

Reset carry flag {AND A}

Set carry flag

Return from subroutine

Exchange AF and AF'

Exchange all three register pairs

Exchange DE and HL

Two-byte instructions are defined using the high-level defining keyword:

: B2BYTES B < BUILDS BC, BDOES > BEDBC, BC@ BC, B;

With this defining keyword, the mnemonic keywords are:

46B2BYTEBIM0,

56B2BYTEBIM1,

5EB2BYTEBIM2,

44B2BYTEBNEG,

4DB2BYTEBRTI,

45B2BYTEBRTN,

6FB2BYTEBRLD,

67B2BYTEBRRD,

57B2BYTEBLAI,

5FB2BYTEBLAR,

4FB2BYTEBLRA,

47B2BYTEBLIA,

Set interrupt mode 0

Set interrupt mode 1

Set interrupt mode 2

Complement A (2's)

Return from interrupt

Return from non-maskable interrupt

Rotate left digit

Rotate right digit

A = I

A = R

R = A

I = A

EXTENSION PLEASE 189

Several of these instructions are so useless (R = A) that they are included for

drill rather than utility.

7.2.3.3 8-Bit Move Group

The 8-bit move group simply moves data around the machine in byte-sized

hunks. There are several addressing modes allowed.

The register to register move basic instruction is of the form:

b7 b6 b5 b4 b3 b2 bl bO

0 1 - r - - r' -

Here r and r' are register masks, and the x register is moved to the r register.

One of the "registers" may be M, @X, or @Y. There are ninety-one forms of

this type — forty-nine involving only the 8-bit registers, fourteen involving the

indirect HL register (M) and twenty-eight involving the indirect indexed

registers (@X and @Y). The indirect indexed forms are 3-byte instructions and

all others are 1-byte instructions.

The sequence to assemble an instruction to move the M register to the C

register is:

CBMBMOV,B

The C register is input first to retain the infix notation form C = M, which

would equate C to the value of M. The sequence to assemble an instruction to

move the A register to the memory location whose address is four more than

the value in the IX register is:

4B@XBABMOV,B

The keyword MOV, is defined as:

:BMOV,BOVERB8*BOVERB + B40B + BC,B + B0< BIFBC,

BTHENB;

The OVERB8* extracts the r register mask and shifts it over to b5b4b3. The

OVERB -I- then adds the r and r' masks. The 40B -I- adds in the register-to-

register move mask and the C, encloses the result in the dictionary. At this

point the stack still contains at least the r and r' masks. Remember if @X or

@Y precede the MOV, the first DD or FD byte will have already been en¬

closed prior to the execution of MOV,. The + B0< adds the r and r' mask and

leaves a true value on the stack if the result is negative. Only the @X or @Y

190 THREADED INTERPRETIVE LANGUAGES

register masks are negative so that the IFBC,BTHEN will drop the flag and

store the displacement only for the indexed indirect cases. One note should be

mentioned. There is no test to prevent using two M, @X, or @Y operands.

Using two M operands will assemble a 76 (HALT) instruction. Any other com¬

bination leads to nonsense and should be avoided.

The instruction group to move a given 8-bit number to some register is of

the form:

b7 b6 b5 b4 b3 b2 bl bO

0 0 — r — 1 1 0 — n —

Here n is the 8-bit number. The register may be the M @X, or @Y "register."

The calling sequence is of the form:

dBrBnBMVI,B

Here d is the indexed displacement used only for the @X or @Y register op¬

tions, r is the register, and n is the byte number. The keyword MVI, is defined

as:

:BMVI,BOVERB8*B06B + BC,BSWAPB0< BIFBSWAPBC,B

THENBC, B;

There are eight possible instructions of this type with the indexed forms being

4 bytes long and all others being 2 bytes long.

The Z80 has six instructions that move the A register to the memory loca¬

tion whose address is the contents of the BC, DE, or HL register pair, or move

the memory location to the A register. Those involving the HL register pair are

evoked using the MOV, mnemonic keyword with M as an operand. The other

four instructions are all 1-byte instructions. These four instructions and two

other extended addressing instructions, which also load or store to the A

register using the memory location whose address is embedded in the instruc¬

tion, complete the 8-bit move group. One would like to evoke these six in¬

structions via LDA, and ST A, keywords. This can be done but at the expense

of some restrictions in the extended addressing mode. Specifically, a test is

made to see if the top stack value is 0000 (a BC operand result) or 0010 (a DE

operand result), rather than some other number that would indicate an ex¬
tended address. This eliminates two out of sixty-four K memory locations

which could be addressed in the extended mode.

To use this approach, first define a keyword that will leave a True flag on
the stack only if the top stack entry is a BC or DE register pair mask. This

keyword can be defined as:

: B BCORDE B 2DUP B BC B = B SWAP B DEB = BORB;

The four mask patterns involved are:

EXTENSION PLEASE 191

b7 b6 b5 b4 b3 b2 bl bO

Load | 0
t 0

Store / ^
t 0

0 - rp -

Oil
0 ^ rp —

Oil

10 1
10 1
0 0 1
0 0 1

0

0 *— nL

0

0 — n£

nH —

nH —

The keywords for the mnemonics are:

:BLDA,BBCORDEBIFB0AB + BC,BELSEB3ABC,B,BTHENB;

:BSTA,BBCORDEBIFB02B + BC,BELSEB32BC,B,BTHENB;

Although this may appear unduly complex, it is the price one pays for an ir¬

regular set of machine instructions.

7.2.3.4. 16-Bit Move Group

The 16-bit move group moves data around the machine in word-sized

hunks. As in the 8-bit move group, there are several addressing modes.

The extended addressing, 16-bit move instructions load register pairs with a

word embedded in the instruction. The BC, DE, HL, and SP instructions are 3

bytes long while the IX and IY forms are 4 bytes long. The basic instruction has

the following form:

b7 b6 b5 b4 b3 b2 bl bO

0 0 — rp — 0 0 0 1 ^ n£ — — nH ^

Here rp is a register pair mask, n£ is the low-order byte and nH is the high-order

byte. This instruction may be preceded by a DD or FD byte in the case of the

IX or IY register designation. The calling sequence is:

rpBnBDMI,

The DMI, (double move immediate) is fairly descriptive of the action. The

keyword DMI, is defined as:

:BDMI, BSWAPBOlB + BC,B,B;

The register pair to memory and memory to register pair move instructions are

fairly regular except that two forms exist for those involving the HL pair. The

odd forms of these two instructions are unfortunately both faster and shorter

than the regular forms and are the preferred forms. The register pair to

memory move instructions are of the form:

192 THREADED INTERPRETIVE LANGUAGES

b7 b6 b5 b4 b3 b2 bl bO

Regular ED 0 1 ^ rp — 0 0 1 1 ^ n£ — ^ n„ —

Irregular 0 0 1 0 0 0 1 0 ^ n£ — ^ n„ —

The irregular HL form is different from the regular form and there is no leading

ED byte. The irregular form may be preceded by a DD or FD byte if the IX and

IY register pair is involved. The calling sequence for these instructions is:

nBrpBDSM,

The DSM, (double store to memory) keyword is defined as:

: BDSM, BDUPBHLB = BIFB22BC, B DROP B ELSE B ED B C, B43B +

BC,BTHENB,B;

Note that this sequence will not allow the regular form of the HL move instruc¬

tion to be assembled.

The memory to register pair instructions have the form:

b7 b6 b5 b4 b3 b2 bl bO

Regular ED 0 1 — rp — 1 0 1 1 ^ nL ^ nN -*

Irregular 0 0 1 0 1 0 1 0 ^ nL — ^ n„ —

The DLM, (double load from memory) keyword is called using the following

protocol:

rpBnBDLM,

The DLM, mnemonic keyword is defined as follows:

:BDLM,BSWAPBDUPBHLB = BIFB2ABC,BDROPBELSEBEDB

C,B4BB + BC,BTHENB,B;

Again the regular form of the instruction referencing the HL register cannot be

generated.

The Z80 has sixteen instructions to push 16-bit words from register pairs to

the stack and six instructions to pop 16-bit words from the stack to register

pairs. The instructions are of the form:

b7 b6 b5 b4 b3 b2 bl bO

Push 1 1 - rp - 0 1 0 1

Pop 1 1 - rp - 0 0 0 1

These instructions may be preceded by the indexed byte indicator DD or FD.

The keywords necessary are part of a group of keywords that use the high-

EXTENSION PLEASE 193

level defining keyword defined as follows:

: BlMASKB < BUILDSBC, BDOES> BC@ BSWAPB8* ■ + BC, B;

The keywords are defined as:

C5B1MASKBPSH,

Cl B1MASK B POP,

7.2.3.5 Arithmetic and Logic Group

The arithmetic and logic group includes both 8- and 16-bit operations. The

accumulator for the 8-bit instructions is the A register, and for the 16-bit in¬

structions is either the HL, IX, or IY register. Condition flags are contained in

F.

There are eighty 8-bit instructions that operate on registers where registers

include the indirect M and indexed registers @X and @Y. The machine-code

forms for these instructions was given in Section 7.2.2. The mnemonic

keywords are defined using a high-level definition. The defining sequence is:

:B8ALGB <BUILDSBC,BDOES> BC@BOVERB

+ BC,B0< BIFBC,BTHENB;

80B8ALG BADD,

88B8ALGBADC,

90B8ALGBSUB,

98B8ALGBSBC,

A0B8ALGBAND,

A8B8ALGBXOR,

BOB8ALGBIOR,

B8B8ALGBCMP,

The generic code in the defining word encloses the displacement byte if the @X

or @Y forms are used.

The immediate forms of the 8-bit arithmetic and logic instructions are again

defined using a high-level keyword. Eight possible instructions can be

generated. The defining sequence is:

: B 8IM B < BUILDS BC, B DOES >BC@BC,BC,B;

C6B8IMBADI,

CEB8IMBACI,

D6B8IMBSUI,

DEB8IMBSCI,

194 THREADED INTERPRETIVE LANGUAGES

E6B8IMBANI,
EEB8IMBXOI,
F6B8IMBORI,
FEB8IMBCPI,

There is nothing magic about the sequence, and the mnemonics are strictly

personal preference.

The 8-bit register increment and decrement instructions again allow the ex¬

tended definition of a register. The bit patterns for these instructions are:

b 7 b6 b5 b4 b3 b2 bl bO

Increment 00 — r — 100

Decrement 00 — r — 101

The keywords are simply:

: BINC, BDUPB8* B04B + BC, BIFBC, BTHENB;

: BDEC, BDUPB8* B05B + BC, BIFBC, BTHENB;

The 16-bit arithmetic instructions in the Z80 are:

BC DE HL SP IX IY

Add to HL 09 19 29 39

Add to IX DD09 DD19 — DD39 DD29 —

Add to IY FD09 FD19 — FD39 — FD29

Add with carry to HL ED4A ED5A ED6A ED7A — —

Subtract with carry to HL ED42 ED52 ED62 ED 72 — —

The problem with this instruction set arises in part from our definition of the

IX and IY keywords. The other part results from some type of indicator being

required for the indexed accumulator case. By defining the keywords such that

only the indexed keywords require two operands, a reasonable design results.

The following sequence of definitions will do the job:

: BDAD, B09B + BC, B;

: B DAI, B SWAP B OVER B = BIFB — 1BDPB-HBTHENB DAD, B;

: BDAC, BEDBC, B4AB + BC, B;

:BDSC,BEDBC,B42B + BC,B;

The double-add indexed instruction moves the dictionary pointer back if an

IXBIX or an IYBIY operand sequence is input, since in this case two index

bytes are incorrectly enclosed in the dictionary.

Since the Z80 does not directly support a double subtract without carry in¬

structions, an instruction of this type is generated by defining the sequence:

: BDSB, BEDA7B, B42B + BC, B;

EXTENSION PLEASE 195

The sequence EDA7B, encloses first the A7 byte and then the ED. The A7 in¬

struction is a A BAND, instruction which resets the carry flag but leaves A un¬

changed. (This instruction also exists as RCF,.)

The technique of defining macroinstructions, such as DSB, is very useful. It

is quite common in microcomputers to encounter sequences of instructions

which occur regularly. In the 8080, for example, it is possible to define a dou¬

ble length subtract instruction as a macroinstruction in the assembler since the

basic instruction set does not contain such an instruction. Macroinstructions

are easy to define and implement in a TIL assembler. It is even possible to

define instructions such as multiply and divide if you want to generate these

sequences as in-line code.

The double precision register pair increment and decrement instructions

are:

b7 b6 b5 b4 b3 b2 bl bO

Increment 0 0 ^ rp — 0 0 1 1

Decrement 0 0 ^ rp — 1 0 1 1

These instructions may be preceded by the indexed byte indicator DD or FD.

The keyword mnemonic is defined using the 1MASK defining word as follows:

03 ■ 1MASK ■ DIN,

OB ■ 1MASK ■ DDC,

7.2.3.6 Rotate and Shift Group

The rotate and shift group is fairly regular except that there are four 1-byte

instructions that are duplicates of the regular 2-byte instructions. The 1-byte

versions do not have the leading CB byte (which is standard for the 2-byte

regular instructions), but are otherwise identical except for status flag results.

The form of the second byte is:

b7 b6 b5 b4 b3 b2 bl bO

0 0 - f - - r -

Here r is one of the extended register definitions. The f code is as follows:

Mask Function

000
001

Rotate left circular

Rotate right circular

196 THREADED INTERPRETIVE LANGUAGES

010 Rotate left through carry

Oil Rotate right through carry

100 Shift left register

101 Shift right register

110 Not defined

111 Shift right logical

The choice to patch the four odd rotate instructions is optional but will be con¬

sidered here.

The keyword mnemonics are defined using a high-level defining word as

follows:

:BRSG■ <BUILDS BC,BDOES> BCBBC,BC@BDUPB20B — B0< B

IFBOVERB07B = BIFB -1BDPB +! B THEN BTHENB OVER BO < B

IFBLROTBC,BTHENB + BC,B;

The mnemonic keywords are:

OOBRSGBRLC,
08BRSGBRRC,

10BRSGBRLT,
18BRSGBRRT,

20BRSGBSLR,
28BRSGBSRR,

38BRSGBSRL,

The majority of the code in the defining word is devoted to dropping the

leading CB byte in the four odd cases. The third IF clause tests for indexing and

inserts the displacement in the third byte location, if so.

7.2.3.7 Bit Addressing

The Z80 bit addressing mode allows testing, setting, or resetting of any bit in

any register where the extended "register" definition is used. The forms of

these instructions are:

b7 b6 b5 b4 b3 b2 bl bo

Bit test CB 0 1 b r

Set CB 1 1 — b — *_ r —

Reset CB 1 0 — b — — r —

Here b is the bit number ranging from 0 to 7. If the register is @X or @Y, the

EXTENSION PLEASE 197

CB is the second byte in the instructions, the dispacement is the third byte and

the fourth byte is the specific instruction byte. The calling sequences are:

b ■ r ■ mnemonic

d ■ b ■ r ■ mnemonic

The keyword mnemonics are defined as follows:

:BBITADB < BUILDS BC, ■DOES> BCBBC, BC@ BLROTB8*B

+ BOVERB + BSWAP B0< BIFBSWAPBC,BTHENBC, B;

40BBITADBBIT,

80BBITADBRES,

CO B BIT AD B SET,

7.2.3.8 Block-Directed Instructions

Although it is not obvious from the ZILOG Z80 manual, the block move,

compare, input, and output instructions can be classified into one group. The

general forms of these instructions are:

b7 b6 b5 b4 b3 b2 bl bO

ED 1 0 1 - C - 0 - f' -

Here the condition mask and function masks have the following significance:

C Mask Condition

00 Increment

01 Decrement

10 Increment and repeat

11 Decrement and repeat

f' Mask Function

00 Load

01 Compare

10 Input

11 Output

The sixteen instructions can be defined as follows:

198 THREADED INTERPRETIVE LANGUAGES

OOBCCONSTANTBIC

01 ■ CCONST ANT ■ DC

10 ■ CCONSTANT ■ IR

11 ■ CCONST ANT ■ DR

:BBDIRB <BUILDS BC,BDOES> BEDBC,BC@B + BC,B;

AOBBDIRBCLD,

AlBBDIRBCCP,

A2BBDIRBCIN,

A3 BBDIRB COT,

Here the constants are the conditional operands for the four basic mnemonic

types.

7.2.3.9 Miscellaneous Instructions

Several instructions, however, fall into no clearly defined category when

building the assembler. Consider the following: the Z80 restart instruction has

this form:

b7 b6 b5 b4 b3 b2 bl bO

11- n - 111

Here n' refers to the restart number (0 to 7). These are modified page zero

addressing mode instructions. They are equivalent to a subroutine call to a

page zero address whose address is eight times the restart number. The eight

instructions are assembled by the keyword:

:BRST, B8*BC7B + BC,B;

Operands not in the set 0 thru 7 will obviously lead to problems.

The input and output mnemonic keywords expect an I/O port number on

the stack. These port numbers are in the set 0 to FF (0 to 255 decimal). The

basic instructions have no variables and are defined:

DBB8IMBINA,

D3B8IMBOTA,

There are three groups of instructions that assemble very different instruc¬

tions but in a similar manner. One group assembles instructions that exchange

the top stack parameter with a register pair. Another group loads the stack

pointer register with the register pair. The last group loads the central proces-

EXTENSION PLEASE 199

sing unit program counter with the register pair contents. The register pairs are

the HL, IX, or IY only. In all cases the basic instructions are the same with in¬

dexed bytes preceding the group instruction. The keywords are defined as:

: BXST, BE3BC, BDROPB;

: BJPM, BE9BC, BDROPB;

: BLSP, BF9BC, BDROPB;

In all cases, the keyword expects a register pair operand. The only purpose for

this is to load the index bytes where applicable.

7.2.3.10 Call and Return Group

The call and return group of instructions assembles calls to subroutines or

returns from subroutines. The problem with using these instructions is

knowing what the call address is. One cannot stop in the middle of assembling

a definition and define a label keyword to save the current stack pointer. This

would lead to disastrous results.

There are several methods of keeping track of critical system addresses. One

method is to simply use a HEREB. sequence at the critical point in the

assembly code followed by a quick resort to a pencil to note the address on a

laundry ticket or some other handy surface. The problem with this method is

the transient nature of such notations and the fact that the system does not

know the data. Another method is to define the entrance points as CON¬

STANTS before the definition is started. The CONSTANTS may be filled with

the required address data using a LABEL keyword defined as follows:

: B LABEL B'B2+ B HERE B SWAP BIB;

At the point in the code where the dictionary pointer is to be saved, the se¬

quence LABEL followed by the name of the label is inserted in the assembly

stream. The keyword LABEL uses the sequence 'B2+ to locate the code body

of the constant and then fills it with the current dictionary free space address.

The unconditional subroutine call instruction expects an address on the

stack left there by a number or label (CONSTANT) operand. The call instruc¬

tion will simply assemble a CD byte followed by the 2-byte address. The

keyword mnemonic is defined as:

:BCAL,BCDBC,B,B;

The unconditional return from a subroutine is a 1-byte instruction already

defined in Section 7.2.3.2.

The conditional call and return instructions have the formats:

200 THREADED INTERPRETIVE LANGUAGES

b 7 b6 b5 b4 b3 b2 bl bO

Call 11— cc— 10 0n£ n„

Return 11— cc— 0 0 0 n£ n*

Here cc is one of the condition code masks. The calling sequence is of the form:

n ■ cc B mnemonic

The keyword mnemonics are defined using the following sequence:

:BCCODEB <BUILDS BC, BDOES> BC@ B + BC, B, B;

C4 ■ CCODE ■ CLC,

COBCCODEBRTC,

7.2.3.11 Jump Instructions

The jump instruction includes both conditional and unconditional jumps to

either an absolute address or to an address relative to the instructions address.

The problem of using these instructions is obviously knowing the target ad¬

dress of the jump. The mnemonic keywords do not care how the address data

got on the stack; it simply must be there. I shall consider methods of ac¬

complishing this semi-automatically in a later section.

The conditional and unconditional absolute jump instructions are of the

form:

b7 b6 b5 b4 b3 b2 bl bO

Unconditional 11000011 n£ n„

Conditional 1 1 — cc — 0 1 0 n£ n„

Like the call conditional instruction, the operand order is address then condi¬

tion code. The instruction mnemonic keywords are defined as follows:

:BJMP,BC3BC,B,B;

C2 B CCODE B JPC,

The relative jump instructions have the following forms:

b7 b6 b5 b4 b3 b2 bl bO

Unconditional 00011000 — n

Conditional 0 0 1 — cc' — 0 0 0 — n

EXTENSION PLEASE 201

Here the cc' conditions are the low-order 2 bits of the CY, NC, Z, and NZ con¬

dition (only), and n is the relative-jump offset from the address following the

address of n. The value n is treated as a signed 8-bit value allowing relative

jumps of —128 to -1-127 bytes relative to the next instruction following the

jump. The required keywords are defined as follows:

18B8IMBJPR,

:BJRC,BlOB + BC,BC,B;

The Z80 has a relative jump instruction that first decrements the B register

and performs the relative jump only if the B register is not zero. If the B register

is zero after the decrement, the next instruction is executed. This instruction

keyword is defined as:

10B8IMBDJN,

7.2.3.12 Summary

The Z80 assembler presented here is a fairly complete, fundamental

assembler. The design requires about 1800 bytes in this form. The major disad¬

vantage of the design is its weak error detection and protection. The only real

error detection is stack underflow. Adding the protective code is certainly

feasible but requires more memory. The design does contain extra code to op¬

timize the assembled code where two instruction forms exist. Additionally, all

of the possible Z80 instructions are covered. Many instructions are scarcely

used, so including them is of limited utility. It is certainly possible to define a

limited subset of the design in about 1 K bytes of memory that will provide

well over 95% percent of the instructions usually used. The remaining instruc¬

tions can be assembled using C, and keywords when encountered.

7.2.4 Structured Assembly Code

Up to this point, the forward and backward reference problem has not been

addressed. First, a brief explanation of the problem is in order. The problem

arises because it is sometimes necessary to execute code only if some event oc¬

curs or to repeat code execution until some event occurs. If the code is to be

skipped over, the address where execution is to be continued must be known

to allow the forward jump. At assembly time, however, the address of the con¬

tinuation point is not known until the intervening code is assembled in place. If

202 THREADED INTERPRETIVE LANGUAGES

the code is to be repeated, a jump backwards to some point in the code is re¬

quired. This implies that someone or something must remember an address to

allow this backward reference.

A non-TIL assembler usually handles the forward and backward reference

problem in one of two ways. One solution is to employ a two-pass arrange¬

ment. The code is written using labels instead of addresses. The first pass

through the code counts instruction bytes and builds a symbol table with the

address of each label noted. The second pass can then assemble the code since

all addresses are known. Another common method is to use a forward

reference table. This allows a one-pass assembler to be built. Each time a label

is encountered, a symbol table entry is opened with the address of the label

noted. If an operand label is encountered, the symbol table is checked to see if

the label is in the table. If it is, the address is known and the backward

reference can be resolved. If the label is not in the symbol table, the reference

must be a forward reference. In this event, the assembler stores the address

where a patch to the code is required in a forward reference table along with

the label itself. After each symbol table entry is made, the forward reference

table is tested to see if there are occurrences of the label just entered. If there

are, the code at the patch addresses is corrected and the patch address and

labels are removed from the forward reference table. At the end of the

assembly the forward reference table is checked to insure that it is empty or

that all forward references have been resolved.

Actually, implementation of these techniques depends on the available jump

instructions of the microcomputer in question. If only absolute jump instruc¬

tions are available, the process is fairly simple since the number of bytes to be

counted or to be patched is fixed. Some microcomputers, such as the Z80,

have relative jump instructions that are shorter than the absolute jump instruc¬

tions. In this case, the assembler designer is faced with the additional problem

of deciding which type of jump to employ. Most relative jumps are limited in

how far they can jump (— 126 to -1-129 bytes in the Z80 case). In the

backwards reference case, it is easy to test and assemble the right type of jump.

In the forward jump case, the length of the jump is unknown when the byte

count for the instruction must be set. One method of resolving this dilemma is

to always assume the longer absolute jump. Another is to allow the program¬

mer to specify the jump byte and to trust his judgment on the length of the

jump required.

The LABEL keyword introduced in Section 7.2.3.10 is one method that

could be used for resolving backward jumps. The problem with the technique

is that the associated CONSTANT keyword must be defined before the

assembly, and it will remain a part of the dictionary. In the case of a

subroutine, this is usually a desirable condition. For a simple backward jump

during program assembly, it is not a good technique.
The forward and backward reference problem in a TIL assembler is resolved

via the stack using constructs similar to those used in the language itself. This

technique is somewhat different from the usual assembler techniques. The fun¬

damental difference is that a symbol table is never generated and cannot be

recovered after the assembly process. In a TIL assembler, the backward

reference address is pushed to the stack using a special keyword. Other

EXTENSION PLEASE 203

keywords are defined to retrieve the address from the stack and assemble the

backward jump. In forward references, the patch address is pushed to the

stack, and space is allocated for the jump instruction using a special keyword.

At the target location of the forward jump, other keywords retrieve the patch

address (but only one time) and assemble the address to this location. The con¬

struct keywords are designed to assemble the constructs semi-automatically.

By semi-automatically I mean that in some cases the programmer must decide

whether to use an absolute or relative jump.

7.2.4.1 BEGIN—END Loops

The simplest construct is the BEGIN—END loop. The loop differs somewhat

in form and usage from the equivalent TIL form. Instead of expecting a flag on

the stack, the END form keyword expects a condition code. Further, there are

several different END forms possible. Since the jump is a backward jump, the

keyword could decide between a relative and absolute jump depending on the

length of the jump, or two keywords could be defined which would require the

operator to select the address mode.

In all cases, the BEGIN keyword simply pushes the next free dictionary ad¬

dress to the stack. The keyword is defined in the assembler vocabulary as:

: ■ BEGIN ■ HERE ■;

This keyword simply saves the address of the next instruction to be assembled

by pushing it to the stack.

The END form to be considered for the Z80 will consider the automatic

generation of the jump instruction depending on the jump length and the con¬

dition code. The condition codes considered in the basic assembler did not in¬

clude an unconditional condition but only eight specific conditions (Z, NZ,

CY, NC, PE, PO, P, N). The first step is to define the unconditional 'condi¬

tion" as:

— 1 ■ CCONSTANT BU

This allows the assembly sequence to be:

... ■ BEGIN ■... ■ condition ■ END ■...

The END keyword will assemble a relative jump instruction back to the first

assembler instruction following BEGIN if the backward jump is less than 126

bytes and the condition code is U, Z, NZ, CY, or NC. Otherwise, the END

keyword will assemble an absolute address.

To generate the required END keyword, the first step is to define two

204 THREADED INTERPRETIVE LANGUAGES

keywords that will decide whether to assemble a conditional or unconditional
jump address, given that the addressing mode has already been decided. The

keywords are:

:BJRCBDUPB0< BIFBDROPBJPR,BELSEBJRC,BTHENB;

: ■ JAC ■ DUP ■ 0 < ■ IF ■ DROP ■ JMP, ■ ELSE ■ JPC, ■ THEN ■;

Both keywords expect the condition code on the top of the stack and the ad¬

dress or relative address as the second stack entry. The END keyword can then

be defined as:

:BENDBDUPB20B - B0< BIFBOVERBHEREB2 + ■ - BDUPB80B

- B0< B IF B 2S W AP B DROP B JRC B ELSE B DROP B J AC B THEN B

ELSE B JAC BTHEN B;

The outer conditional branch selects the absolute addressing mode if the condi¬

tion code calls for PE, PO, P, or N condition since there are no relative jumps

for these conditions. The inner conditional branch tests the jump length and

assembles a relative jump if the jump is —128 bytes, or assembles an absolute

jump otherwise.

The keywords defined in this fashion are somewhat slow but very conve¬

nient. The programmer never needs to consider which addressing modes are

applicable or how far the jump may be. The alternative is to define a sequence

of keywords that requires the programmer to specify the type of backward

jump required or to default all backward jumps to absolute jumps.
One final note. The unconditional END construct can lead to an endless

loop since it is the analog of the TIL OB END form.

7.2.4.2 IF . . . ELSE . . . THEN

The IF . . . ELSE . . . THEN assembler construct is similar in concept to the

TIL constructs. The problem is that both the IF and ELSE forms assemble for¬

ward jumps. The IF forms always assemble conditional forward jumps, and

the ELSE forms always assemble unconditional forward jumps. The only

reasonable way out of the dilemma is to trust to the programmer's judgment

on the length of the jump.

The decision to trust the programmer's judgment implies separate keywords

for both absolute and relative IF forms. The ELSE form must then be informed

as to which type of IF form it must fill in an address, and whether its forward

jump is an absolute or relative jump. The THEN form must similarly know the

addressing type of the IF or ELSE form. The forms are then:

EXTENSION PLEASE 205

RIF — A relative if

AIF — An absolute if

RRELSE — Assumes a RIF and a relative else

RAELSE — Assumes a RIF and an absolute else

ARELSE — Assumes an AIF and a relative else

AAELSE — Assumes an AIF and an absolute else

RTHEN — Assumes a RIF or RRELSE or ARELSE

ATHEN — Assumes an AIF or RAELSE or AAELSE

The ELSE forms are optional as in the TIL constructs.

Given the IF forms, the idea is to assemble a forward jump instruction, given

a condition code operand preceding the mnemonic, and to leave a pointer to

the jump instruction variable field on the stack. The variable jump field will be

filled with a 0 until filled in by an ELSE or THEN form. The definitions are:

: ■ RIF ■ 0 ■ SWAP ■ JRC, ■ HERE ■;

: ■ AIF HO ■ SWAP ■ JPC, ■ HERE ■ 2 + ■;

The ELSE forms must assemble an unconditional forward jump, fill in the

variable field of the IF form and leave a pointer to the unconditional forward

jump variable field on the stack. This variable field is again filled with a 0 until

filled in by the THEN form. The ELSE form does not have any operands. The

keywords are defined as:

: ■ ATHEN ■ HERE ■ SWAP ■! ■ ;
:BRTHENBOVERB-BSWAPBl-BC!B;

:BRRELSEBHEREB2+BRTHENB18B,BHEREB;

: ■ RAELSE ■ HERE ■ 3 ■ + BRTHENBOBJMP, BHEREB2- ■
: B ARELSE B ATHEN B18 B, B HERE B;

: BAAELSEB ATHENBOBJMP, BHEREB2 - B;

Observant of you to notice that the THEN forms were whiffled in and used to

define the ELSE forms. After all, both the ELSE and THEN are used to patch

forward jump variable fields and should look similar. It should also be realized

that the THEN forms do not actually assemble any code at the point that they

are evoked but merely fill in the previously reserved locations.

There is actually one important fact about the conditional branch constructs

which you may have noted. The True code and False code bodies are reversed

from the usual TIL constructs. This results from the fact that the Z80, like most

microcomputers, jumps if the condition is met. The syntax diagrams are:

I condition I

False Unconditional

IxIF
l

IxxELSEI IxTHENI

True Unconditional

206 THREADED INTERPRETIVE LANGUAGES

False

51
Unconditional

I condition BxIFB.f . . . BxTHENB.l. .
_f

True

Actually this does not represent a problem with the Z80 since both senses of

condition codes are available, which can effectively reverse the sense of the

code bodies.

7.2.4.3 WHILE

The assembler WHILE construct is the exact analog of the TIL WHILE con¬

struct. It does need to know, however, the addressing mode of the ELSE or IF

form it is to patch. This leads to the following forms:

: ■ RWHILE ■ SWAP HUB END B HERE B RTHEN B;

: B AWHILE B SWAP B U B END B HERE B ATHEN B;

These keywords expect the address stored by BEGIN to be the second stack en¬

try and the pointer stored by the IF or ELSE form to be the top stack entry. The

SWAP BUB END sequence will assemble an absolute or relative conditional

jump back to the address stored by BEGIN. The remaining code then patches

the IF or ELSE form as appropriate.

The construct syntax of Section 4.4.3 applies with minor variation. The dif¬

ferences involve the condition code, the use of the relative or absolute forms

and the reverse code body sense in the IF form.

7.2.4.4 DO ... LOOP

The assembler DO . . . LOOP construct is substantially different from the

TIL construct. It is specifically designed in the Z80 assembler to utilize the

DJNZ (decrement and jump non-zero) instruction (the DJN, in our notation).

This instruction decrements the B register and does a relative jump if the

register is non-zero. Otherwise, it executes the next instruction. The evoking

sequence for the assembler DO . . . LOOP construct is:

...nBDOB.... BLOOPB...

EXTENSION PLEASE 207

Here the LOOP code will be repeated n times. An initial value of 0 will cause a

256-count loop, so that the loop may be executed from 1 to 256 times. The

keywords required for the construct are:

: ■ DO ■ HERE ■ B ■ LROT ■ M VI, ■ ;
: BLOOPBHEREB2 + ■ - BDJN, ■;

It is possible to use the LOOP keyword in a construct of the form:

....BEGIN....LOOP....

This construct presumes that the B register was suitably loaded by some other

means (say by the result of some computation followed by a BBABMOV,)

prior to the occurrence of BEGIN.

It must be noted that loop constructs of this form are not specific to the Z80

with its DJNZ instruction. The operation can just as easily be emulated on

other central processing units by defining a suitable macroinstruction. For ex¬

ample, an 8080 assembler DJN, keyword could be defined as:

: BDJN, BBBDEC, BNZBJPC, B;

This, of course, presumes that the mnemonics for the 8080 are selected to con¬
form to the design presented.

Other loop constructs could be defined for the Z80 using macroinstructions.

This will not be done in the basic assembler since there are no fundamental

machine instructions which they support. Other loop structures are applica¬

tions specific.

7.2.4.5 Construct Summary

Implementing the structured constructs for the assembler requires an addi¬

tional 375 bytes or so. The assembly language programmer job is eased

somewhat by the presence of these simple constructs, since they can keep track

of the addresses on the stack without effort on the programmer's part. The

constructs can be nested as long as entire constructs are defined in one code

section. A validity test on nesting is simply that removal of any construct in its

entirety cannot remove part of another construct. This must be true for all

constructs.

If the constructs available do not match the programmer's needs, the BEGIN

keyword plus the stack keywords of the CORE vocabulary can be used to

suitably manipulate addresses for the assembler jump keywords. As with all

TIL keywords, the assembler keywords do not care how their expected stack

entries arrived; they just assume they are there.

208 THREADED INTERPRETIVE LANGUAGES

7.2.5 Assembler Design Notes

The TIL assembler keywords are normally defined in the ASSEMBLER

vocabulary. The vocabulary is linked to the CORE vocabulary and is usually

intermixed spatially with the CORE vocabulary. Keywords to be defined in

assembly code are primitives. The defining word that creates the keyword is

called CODE. This keyword not only creates a primitive header but also sets

the CONTEXT vocabulary to ASSEMBLER. In my personal system, CODE

also sets the hexadecimal number base since I prefer to code using hexadecimal

numbers. The keyword CODE is thus defined as:

: ■ CODE ■ CREATE ■ HEX ■ ASSEMBLER ■;

All of these keywords exist in the CORE vocabulary. The keyword that ter¬

minates the definition is NEXT. This keyword encloses in the dictionary the in¬

structions necessary to return to the inner interpreter (IYBJPM, for the Z80)

and then sets the CONTEXT vocabulary to the CURRENT vocabulary. In ef¬

fect, this restores the vocabulary before the keyword was defined. A formal

definition of NEXT is:

: BNEXT ■ IY ■ JPM, ■ DEFINITIONS ■;

NEXT exists in the ASSEMBLER vocabulary and differs from the NEXT de¬

fined in the CORE vocabulary.

Inevitably the question arises about the viability of building a 'real"

assembler using the TIL assembler. It is possible, but not easily accomplished,

and not without several modifications and extensions to the TIL assembler.

The modifications necessary are to solve problems that also arise in a non-TIL

assembler. Fundamentally, the non-TIL assembler is designed to input an

assembly code source file, generate machine code that is to reside and execute

at some given address but is stored at assembly time at some different location,

and, finally, to store the resulting machine-code file in some mass storage

device. A TIL-based real assembler must perform similar tasks.

The capability to store a file on some mass media and to load a file to the

system has been assumed just to build the TIL. The ability to generate an

assembly language source text file has not been considered. This requires some

type of editor program to generate and update the source test. This require¬

ment is not really necessary for the short definitions encountered in a TIL

assembler. There is a vast difference between a 3-line keyword definition

and a long assembly language program. With the interactive TIL assembler,

the assembly "source" disappears when the line it is entered on is scrolled off

the display. An editor to generate an assembler source file and a virtual

memory system to access the files will be considered later.

The usual problem is relocating the assembly code. TIL source assembly

code is always assembled to the free dictionary space. All of the assembler

keywords are constructed using the and C, keywords which accomplish

EXTENSION PLEASE 209

this action. A more general scenario is to allow the starting location of the

desired program to be specified, but to actually save the program at some dif¬

ferent location. This implies that a program could begin at any memory ad¬

dress, including an address which is occupied by the assembler at assembly

time.

There are two basic changes needed to allow a TIL assembler to be of more

general-purpose value. The keywords and C, must be redefined prior to

defining any of the assembler keywords. The keywords that assemble absolute

addresses must also be modified. These include both the assembler mnemonic

keywords and the assembler construct keywords. The reason for these

modifications is almost self-evident.

The keywords and C, must be modified to pop words or bytes from the

stack and enclose them at the next consecutive assembler file location rather

than the next free dictionary location. The assembler file location can be set

equal to the dictionary pointer to assemble TIL keywords or to any available

free memory space to support either direct assembly to the true target location

or to a file location which will later be stored on the mass media. The address

where the stack data is enclosed is referred to as the program counter (PC).

The CODE keyword could be designed to set PC to DP to assemble TIL

keywords.

The keywords that assemble absolute addresses to the program must also be

modified to support the assembly of a program to a different area of memory

than it will occupy at execution time. For example, the TIL may start with a

PC value of 4000, but the program may execute with the assembled program at

1000. Thus, the absolute address stored by the assembler must be 3000 less

than the PC value reference for the loading address at assembly time. The off¬

set between the program origin and the initial value of the PC is always a con¬

stant. To assemble TIL keywords or to assemble a program that will execute at

its assembly address, set this offset to 0. The CODE keyword could also be de¬
signed to zero this offset value for assembling TIL keywords.

A 'real" assembler does have some restrictions and disadvantages. The real

problem is that the programs must be fairly short due to the lack of a symbol

table. For those cases where the built-in constructs are inadequate, stack

management can become a very real problem. The interactive building of an

assembly program will not allow program documentation. If the editor and

virtual memory system are not supported, program debug and modification

really implies program re-entry via the keyboard and not correction of some

source text.

One final note about threaded interpretive language assemblers. Some in¬

structions are used so rarely that the memory required to implement them ex¬

ceeds their utility. The right answer is to ignore these instructions. The and

C, keywords can always be used in the event the unimplemented instructions

are required. The TIL assembler should be designed for utility rather than for¬

mal completeness.

210 THREADED INTERPRETIVE LANGUAGES

7.3 Virtual Memory

Virtual memory is a technique for transparently extending the addressing

space of a computer by using a combination of actual system memory and a

direct access storage device. A user could have an effective addressable

memory space of several hundred thousand bytes in a system that only has

12 K to 16 K bytes of actual memory. The direct access storage device could

be any of a number of devices. I will constrain this discussion to a floppy disk

system rather than opening Pandora's box. This is the most popular type of

microcomputer system direct access storage device.

There are roughly forty skillion ways to implement a virtual memory

system. I won't even scratch the surface but will direct the presentation to a

particular philosophy. Because of the extreme hardware dependence of the

device interface, the level of the presentation will be somewhat sketchy. The

design of the virtual memory system is not extremely difficult if one is in¬

timately familiar with both the disk system hardware and its associated soft¬

ware. If not, it is almost impossible unless the disk system documentation is

absolutely superb.

7.3.1 The Device

A disk system usually consists of a disk controller board and an actual disk

drive mechanization. The object of the disk system is to allow storage of data

on the diskette media. The important point about the disk system is that the

data are stored in blocks of bytes which are accessed from consecutive

memory locations. The actual number of bytes in a block is usually 128, but

systems with 256 bytes per block are common and 4 K-byte blocks are not
unheard of.

The format the system uses to record the blocks on the diskette media is

device-dependent. The blocks are stored on tracks or circular areas on the

diskette. The mini-floppy diskette usually has thirty-five tracks and the floppy

seventy-six tracks for storage of data. The concentric tracks are usually

numbered from 0 upward, with 0 the outermost track. Within a track there are

a number of sectors defined. Depending on the device, a sector consists of data

used to synchronize and/or identify the sector, the actual data block, and

some type of block validation data. The most common sector formats consist

of twenty-six sectors of 128 data bytes or ten sectors of 256 data bytes, but

many other formats exist.

The total number of data blocks the disk system can contain is the number

of tracks times the number of sectors per track. The disk controller always ad¬

dresses the blocks by track number and sector number. This addressing is ap¬

plicable between the system and the disk controller.

EXTENSION PLEASE 211

Disk controllers are extremely variable in design. Some are very simple
devices that depend on the central processing unit for initialization and simply
signal the arrival of each data block byte at the interface and expect the pro¬
cessor to store to the proper memory location. Other controllers have their
own processor on the controller board and quite sophisticated file manage¬
ment software in read-only memory. Most controllers are somewhere between
these extremes.

A common problem with disk controllers is that presumptions about the
location of a supporting disk operating system (DOS) are embedded in the
controller design. This may force the system designer to either patch the con¬
troller software (generally read-only memory resident) or build the threaded
interpretive language around the disk operating system. Exactly how this will
be accomplished is so system-dependent that no more can be said.

7.3.2 Disk Access

The object of the virtual memory system is to access disk blocks by some ad¬
dressing scheme such that the access is transparent to the operator. Correct ac¬
cess will occur regardless of whether the block is currently system resident or
disk resident. If a block is not resident in the system when it is accessed, it is
automatically loaded to the system memory. If a block has been modified
while system resident, it will be updated by the system under operator direc¬
tion such that the operator never needs to know which blocks are to be up¬
dated.

Disk data blocks that are system resident are stored in buffers. There are
usually sufficient buffers defined to hold one or two screens of data. A screen
is 1 K bytes of data (which will just fill a display screen of 16 lines of 64
characters per line). For a block length of 128 bytes there are thus eight to six¬
teen block buffers of 128 bytes each required. Data screens are a convenient
form for storing TIL source text. The block buffers are usually defined at some
convenient memory address out of the way of the main TIL language area.

The block buffers are used for temporary storage of data read from the disk
or to be written to the disk. Blocks of data are read from the disk and stored to
some block buffer using the keyword GETIT. Data in a block buffer are writ¬
ten to the disks using the keyword PUTIT. These two keywords are the
primitives needed to implement all disk accesses. The target disk blocks for the
accesses are addressed by a block number. There is a mapping between the
disk block number and the disk track and sector number. The relationship is:

Block# = (Track#) X (Sectors/Track) + (Sector#)+ 1

The block numbers are thus in the set [1 — N] where N is system-dependent.
The primitives GETIT and PUTIT will interface with the system disk I/O

routines to actually perform the disk read/write. These routines usually re-

212 THREADED INTERPRETIVE LANGUAGES

quire a buffer address, a block number (or sector and track number) and a

drive number as input parameters. The drive number is usually stored in the

system variable DRIVE if multiple drives are available. The buffer address and

block number are passed to the keywords on the stack. The availability of

these keywords will be presumed.

Typically both GETIT and PUTIT are designed to reserve disk space at the

low end of the disk which is used to store the core language. This disk is usual¬

ly placed in disk drive number 0 in a multidrive system. By defining a system

variable named OFFSET, the amount of reserved area can be stored as a

system parameter. The keywords DRO, DRl, . . . can be defined to both set

the DRIVE system variable and the OFFSET system variable as appropriate for

the given system configuration. This can be somewhat risky in a single drive

system.

Two other factors are important about GETIT. The keyword leaves a buffer

address at the top of the stack when it completes. This allows for convenient

recovery of the address where the data is located. GETIT also tests the block

number to insure that a valid block is requested. If it detects an error, the error

routine is called by GETIT, with the address of a disk addressing error message

as a parameter. A similar scheme is employed in PUTIT. Depending on the

available disk software, read or write errors may be handled by the system

disk software or may need to be fielded by routines within the TIL code.

To implement GETIT and PUTIT in a somewhat uniform manner, it is usual

to segment the software tasks between the TIL and the system I/O code.

Typically the TIL code is designed to pass the data needed by the system I/O

code in the system user area. For example, a typical scheme is for the TIL code

to set the following parameters:

TARGET — The starting address of the block buffer.

DRIVE — The drive number.

TRACK — The track number.

SECTOR — The sector number.

OPER — The operation (0 = Write, 1 = Read).

The definition of GETIT and PUTIT are then something like:

: ■ GETIT ■ SETUP BOPER B ClSET B DISKI/O B;

: B PUTIT B SETUP B OPER B COSET B DISKI/O B;

Here SETUP pops the block number and the buffer address from the stack;

computes TRACK and SECTOR from the block number, OFFSET, and the

number of sectors per track; calls an error routine if the track number com¬

puted is outside the boundaries of the disk; and exits with TARGET, TRACK

and SECTOR set. The DISKI/O routine then calls a system I/O routine which

actually performs the reading and writing of the I/O operation. Alternately,

GETIT and PUTIT can be written as primitives which perform the same opera¬

tion using a subroutine $SETUP.

EXTENSION PLEASE 213

7.3.3 Buffer Control

By knowing the definition of the keywords GETIT and PUTIT, the actual

design of the virtual memory scheme can be considered. This involves laying

out the buffer area and designing keywords to load a specific disk block to a

specific block buffer or vice versa. This implies a control structure but the con¬

trol should be invisible to the operator.

Buffers can have several states. They can be empty or otherwise available to

the system. They can contain some specific disk block exactly as contained on

the disk. They can contain either new data or modified versions of blocks that

are contained on the disk. The system needs to know the status of the buffers

to properly manage the system resources. One relatively simple way to store

the information is in a keyword called SBUF which contains the current status

of the block buffers.

The keyword SBUF is an array that contains two words for each block buf¬

fer in the system. The first word is a status word and the second word is the ad¬

dress of the starting location of the block buffer. The status word contains 0 if

the buffer is empty, or if it is in use, contains the block number of the block

currently located in the buffer. The high-order bit of the status word is 1 set if

the block is modified or updated. The array is a convenient way to store the

data the system needs to hide the disk accesses from the operation.

The keyword the operator uses to access any block is BLOCK. This

keyword expects the desired block number on the stack when it is evoked and

replaces the block number with the address of the first byte of the block. This

address is always the starting address of one of the block buffers. The defini¬

tion of BLOCK is:

: ■ BLOCK ■ RESIDENT ■ IF ■ BUFFER ■ GETIT ■ THEN ■;

The keyword RESIDENT searches the array SBUF looking for a status word

that matches the block number at the top of the stack (ignoring the most

significant bit). If a match is found, the block number is replaced by the ad¬

dress of the starting location of the block buffer associated with the status

word and a False flag is then pushed to the stack. If a match is not found, a

True flag is pushed to the stack leaving the block number as the second stack

entry. The keyword BUFFER searches the array SBUF looking for a 0 status

word. If an empty buffer is located, the address of the starting location of the

block buffer associated with the 0 status word is pushed to the stack and the

buffer is loaded by GETIT. If there are no available buffers, the error routine is

called by BUFFER with the address of a buffer full message as a parameter.

With the advent of BLOCK, a virtual memory scheme is at hand. Reading of

disk blocks to the disk is totally transparent to the operator. The operator

simply treats all blocks as if they were system-resident. There is no file direc¬

tory and no 'named" files except as defined by the operator. Named files can

be created by the operator as follows:

: ■ FILENAME ■ i ■ BLOCK ■ j ■ BLOCK ■....■ n ■ BLOCK ■;

214 THREADED INTERPRETIVE LANGUAGES

Here i. . . n are block numbers. As many blocks can be defined in FILENAME

as there are block buffers. However, named files are strictly applications-

dependent.

The storage of updated block buffers back to the disk is not done

automatically. The operator must evoke this action manually using the

keyword SAVE. SAVE searches the array SBUF looking for status words with

their high-order bit set. If the update bit is set, the associated buffer is written

to the disk block using PUTIT and the status word is set to 0. If the update bit

is not set, the status word is simply 0 set. A keyword named ZBUF is also

defined; it merely sets all the status words in SBUF to 0. This implementation

does not change any block buffer contents when either SAVE or ZBUF is

evoked. This is sometimes helpful when the operator makes an error. The im¬

portant point is that the operator does not need to concern himself about

which blocks need to be updated. The system will perform the task semi-

automatically. The system needs to be directed to perform the task to prevent

overwriting of disk blocks when this action is undesirable.

Setting of the update bit in the SBUF array status words is done by the

system using special keywords. The design of these special keywords hides the

activity from the operator. For example, if the operator is updating a data file,

the keyword D! is usually based instead of the "!" keyword. D! is defined as:

: BD! ■ UPDATE*! ■ ;

Just like "!", D! expects an address at the top of the stack and a number as the

second stack entry. The keyword UPDATE searches the SBUF array starting

address locations. If the address at the top of the stack is within the block buf¬

fer range of one of the buffer areas, the update bit of the associated status word

is 1 set. Other methods of setting the update bit will be considered later.

7.3.4 Screens

Source text for special vocabularies can be stored on the disk in screens. A

screen may be loaded to the system and assembled/compiled to the dictionary

space that exists when the load occurs. Typical applications for this technique

are language extensions that are required for some applications but are usually

not needed. A floating point package or an editor are examples. The source

text may be either primitives (defined using assembly language or numbers

followed by or C,) or secondaries. Primitives may not contain absolute ad¬

dress references unless the address is known to be invariant (a system variable

for example) since the assembly origin is not known a priori. Listing 7.1 gives

examples of typical screens.

EXTENSION PLEASE 215

(SCREEN 0 - EDITOR, SCREEN I OF 2) : EDITOR ; HEX

(1) 40 CCONSTANT LENGTH

(2) 12 CCONSTANT LBUF 160 CA!

(3) : LLBUF LBUF @ LENGTH 4- 1 - ;

(4) : LCLEAR LBUF @ DUP 7F 4- ERASE ;

(5) : 15TH SCREEN @ @ 3C0 1 ;

(6) : L15TH 15TH LENGTH 4- I- ;

(7) : BSTART DUP 0< OVER F > OR IF QUESTION ELSE LENGTH *

SCREEN @ DUP 1 - IF QUESTION ELSE @ E THEN THEN ;

(9) CREATE INLINE 2EB CA!

(10) : REPLACE BSTART INLINE LBUF @ LLBUF LROT MOVE LCLEAR ;

(11) : CLEAR BSTART DUP LENGTH 4- 1 ERASE ;

(12) : DELETE BSTART DUP LENGTH \ LI5TH LROT MOVE F CLEAR

LCLEAR ;

(14) : INSERT DUP BSTART 15TH - IF REPLACE ELSE DUP BSTART

15TH 1- OVER LENGTH f MOVE REPLACE THEN ; 1 LOAD

(SCREEN 1 - EDITOR, SCREEN 2 OF 2)

(1) : TYPE CRET BSTART DUP LENGTH 4- SWAP DO I > C@ ECHO LOOP ;

(2) : SHOW CRET L1STH SCREEN @ @ DO I> C@ ECHO LOOP HIDE ;

(3) : LIST 14- SWAP CRET CDO CI> 4 * 14 @LBUF GETIT DUP 40 4-

SWAP DO I> C@ ECHO LOOP CLOOP LCLEAR ;

(14) : EMSG CRET [EDITOR LOADED, DECIMAL BASE 1 ; DECIMAL

(15) EMSG

Listing 7.1: EDITOR screens.

The method of addressing screens is by screen number. Screen numbers are

in the set (0...N) where N is a system configuration-dependent number.

Screens are always stored on the disk in consecutive disk blocks. There is a

mapping between screen numbers and the block number of the first of the con¬

tiguous blocks that form the screen. The mapping is:

Block # = (Screen #) X 8 + (Offset #) -I- 1

The offset number is a system variable used to control the location of the first

defined screen. Typically this is desirable to allocate low-order blocks as data

blocks and high-order blocks as a screen block area. Usually the offset is con¬

tained in the system variable SCRNOFF but is sometimes arbitrarily set to a

constant. In any event remember that OFFSET is also applied by GETIT and

PUTIT.

216 THREADED INTERPRETIVE LANGUAGES

The purpose of having text screens is to use them as system inputs precisely

as if they had been typed in by the operator. The outer interpreter of Section 2

(figure 2.2) had provisions for loading the input buffer from a mass storage
device and for echo displaying the OK message when the input buffer is

empty, only if the keyboard is the input device. Consider this outer interpreter

and the design of the MASS keyword: in our present design, MASS will per¬

form the input from the disk screen to the input buffer . . . not a block buffer.
To begin our design, first consider the initiation of the screen loading event.

A keyword name LOAD is defined to initiate the loading of the screen number

that is the top stack entry. The LOAD keyword simply sets two system

variables. The system variable SCRN is set equal to the screen number at the

top of the stack. The system variable LINE is set to 0. When the line in which

the keyword LOAD appears is complete, the outer interpreter returns to get

the next input. It first tests LINE to see if it is positive. If it is, MASS is called.

Otherwise, the keyboard input routine INLINE is called.

The keyword MASS can be defined many ways, one of which follows:

: ■ MASS ■ 7LINE ■ IF ■ LBUF ■ @ ■ GETIT ■ DROP ■ ELSE ■
BT OL ■ THEN ■ LBUF ■ @ BLBPB! ■ ;

A fairly careful look at the undefined keywords should reveal the game plan.

The keyword 7LINE first computes a block number based on LINE, SCRN

and SCRNOFF. It next increments LINE by one and resets LINE to —1 if it

equals 8. 7LINE then searches SBUF to see if the block is already system-

resident. If it is, the address of the block buffer and a False flag are pushed to

the stack. This will cause a branch to BTOL which will move the block buffer

to the input buffer. If the block is not system-resident, the block number and a

True flag are pushed to the stack. This will cause a branch to

LBUF■@BGETITBDROP which will load the line buffer with the disk

block. The DROP removes the input buffer address, which was returned by

GETIT, from the stack. Finally, the line buffer pointer is reset to point to the
start of the input buffer.

When the outer interpreter regains control from MASS, it cannot tell how

the input line buffer was loaded. Whatever is in the line will be executed

precisely in accordance with the TIL syntax. If an executable token is scanned,

it will be executed just as if it had been typed by the operator. When the input

line is entirely scanned, the LINE variable is tested to insure it is negative

before the OK message is displayed. This prevents a sequence of OK messages

from appearing as the lines are executed. One final note: the error routine must

set SCRN negative if an error is detected. This forces operator response if an

error occurs during screen loading.

The above scheme allows eight successive blocks (or sixteen display lines) to

be executed. After the eighth block is executed, LINE will be negative and the

OK message will be displayed. If only a partial screen of source text is

available, a method to cause early return to the INLINE input can be designed.

Consider a ;S keyword that sets LINE to — 1. By embedding ;S in a screen

block, forced exit to INLINE occurs on the completion of block execution. If a

EXTENSION PLEASE 217

LOAD command is embedded in a screen, it will terminate loading of the cur¬

rent screen and initiate loading of the new screen. This allows screens to be

chained together so that vocabularies or user programs are not constrained to

be a single screen in length.

One feature that is important in a virtual memory system of this type is

some means of identifying screen contents. This can be done by defining a

comment medium, placing descriptive comments on the first line of each

screen and defining a keyword that will display the first line of successive

screens.

Since there is no way to retain source text, a comment keyword makes little

sense in a system without the virtual memory mechanization. Assume that the

comment keyword is defined as "(” (left parenthesis). The keyword "(" sets the

token separator to ")" and scans the next token from the input line. It does

nothing with the token it scans. This allows text to be entered in a screen

following the ■ after the initial until terminated by a ")" or the end of the

line. This text will be ignored by the system when the comment is encountered

in the input buffer. I usually include the screen number in the comment as well

as a brief description of the screen contents and note if more than one screen is

chained by the screen. See listing 7.1 for typical screen comment usage.

The keyword that displays the first line of successive screens is LIST. This

keyword expects a starting and ending screen in the input range. To allow the

operator to stop the display, a call to the WAIT keyword is coded after each

line is output. LIST needs at least one empty buffer to hold the first block of

each screen as it is read from the disk. The first sixty-four characters of each

block are then displayed. Since there is no reason to make the first lines of the

screens permanently system resident, the buffer is marked empty after each ac¬

cess.

A keyword that is very similar to LIST is SHOW. This keyword shows the

entire screen contents on the display rather than just the first line. At the end of

each screen display, a keyword named HIDE is called rather than WAIT.

HIDE not only waits for the next keyboard entry but also suppresses the cur¬

sor. This allows the entire screen to be displayed without a hole at the cursor

point.

The protocol for screen residency is somewhat analogous to block residen¬

cy. The keyword that loads a screen to the system is OPEN. OPEN expects a

screen number on the stack and will attempt to load the screen to one of two

sets of eight contiguous blocks. There are four important system variables

associated with the operation as follows:

SCRN — The target screen.

SCRNO — SCRNl — The screen number of the screen resident in the nth

set of eight blocks (if resident) or —1 (if not).

SCREEN — A pointer to the start of the SBUF low-order or high-order

set of block buffers of the current screen.

OPEN will first test SCRNO and SCRNl to determine if the screen is resident.

If it is, SCREEN is set to point to the start of the appropriate set of buffers. If

218 THREADED INTERPRETIVE LANGUAGES

the screen is not resident, and one of the two available screens is open, the

screen is loaded to the system and both SCREEN and SCRNn are updated with

the screen number. If both screens are in use, an error message is called in¬

dicating that the screens are full. The operator is thus forced to free a screen

area to load the new screen.

The screens, when loaded to the system, result in the block number of each

screen block being stored in SBUF. This effectively prevents BLOCK calls from

overwriting screens. Both one screen and one or more blocks can be system-

resident if at least two screen buffers are available. Screens differ somewhat

from blocks in that screen keywords do not set update bits in SBUF. Screen can

be written to the disk only by explicitly calling the WRITE command.

The keyword WRITE will always write eight consecutive blocks to the disk.

The target screen number is assumed to be on the stack and whichever screen

was opened last will be written to the disk. In short, SCREEN is used as the

pointer to the appropriate screen to write. This particular scheme will allow

easy duplication of screens (ie:]■ OPENB4BWRITE will duplicate screen 0

as screen 4). When screens are written to the disk, no changes to the residency

status of the screens takes place. Screens are deleted from the system only by

using the CLOSE keyword. CLOSE expects a screen number on the stack and

will set SCRNO and SCRNl to —1 if the screen is system-resident. If the screen

is not resident, an error message results.

There are a number of additional keywords that can be defined to

manipulate screens. For example, SCREENS could be defined to display which

screens are currently resident. There are any number of additional keywords

that can be defined. Remember too that screens need not be accessed simply by

number but may be given aliases. For example, the editor vocabulary is ac¬

cessed simply by the EDITOR keyword which is defined as:

: ■ EDITOR ■ n ■ LOAD ■;

The keyword that accesses the ASCII file SANDI is defined as:

: ■ SANDI ■ n ■ OPEN ■ SHOW ■;

This definition both loads the file (screen) to the system and displays the entire

file.

7.3.5 Data Manipulation

The virtual memory system contains the core keywords for transparent disk

accessing. These keywords will allow easy data manipulation just as they

allow easy screen manipulation. Data storage is very applications-dependent.

Several techniques for using data blocks will be considered, albeit lightly.

EXTENSION PLEASE 219

Data files can be defined to hold either ASCII data or numerical data. The

format is fully controlled by the application. Actually, the main reason that

block numbers start at 1 rather than 0 is that the system uses block 0 as an

ASCII data file. Block 0 is used to store operator messages that are seldom

used but need to be available somewhere. The messages that are displayed to

the operator on system start-up or when a system error occurs are examples.

The error message block is loaded to the input line buffer and an offset number

is expected on the stack when the message is evoked. The message keyword is:

: BDISKMESSAGE BO B LBUF B @ B GETIT ■ + BTYPE ■;

This is a typical application of a block as a special file. Actually this block con¬

tains records where each record is a message which is evoked by the address

offset loaded to the stack by the error-handling routine which calls

DISKMESSAGE.

Although the basic unit of storage is a block of 128 bytes, it is easy to define

data files of different sizes. A record is a subunit of a file where a file consists of

some multiple number of blocks. An integer number of records may not com¬

pletely fill a file. The easiest case to consider is the case where an integer

number of records of n bytes each equals 128 bytes or one block. The more dif¬

ficult case is where a record crosses a block boundry.

To consider the easier case, assume that records consist of 32 bytes. The

records will be stored in consecutive blocks on the disk starting at the block

number stored in the constant DATA. A record can be transparently accessed

by the operator given the following definition sequence:

n ■ CONSTANT ■ DATA

DECIMAL ■: ■ RECORD ■ 32 ■ 128 ■ * /MOD ■
SWAP ■ DATA ■ + ■ BLOCK ■ + ■;

The sequence nB RECORD will leave the address of the first byte of the record

on the stack. The operator need not worry about the residence status of the

block, since the system will load the correct block if it is not system-resident

using the RECORD keyword via the BLOCK call.

Accessing records that cross a block boundary is a much more difficult feat.

There are several ways to attack the problem. They fall into two categories.

One method is to design the record allocation scheme so that records always

begin on block boundaries and must contain an integer number of records.

The other procedure is to always load two disk blocks to two consecutive

block buffers if the boundary could be crossed. The design of the keywords is

not extremely difficult. The intent is to always load a complete record to the

system.

In turn, a record can contain subfields where specific items in the record are

stored. These subfields can also be accessed transparently with a suitable set of

keyword definitions. The fundamental reason for always loading a complete

record is to insure that all record subfields are available. The overall intent is

to allow record and subfield definitions that always return the address of the

data regardless of its location in the system when it is requested. Thus blocks.

220 THREADED INTERPRETIVE LANGUAGES

records, and subfields are precisely like arrays defined in the core, always
available simply by their keyword names.

When a data block, record, or subfield is updated it is important that D! be

used rather than if the update is to be marked for later storage to the disk.

As previously described, a SAVE command is required to actually update the

disk.

7.3.6 Loose Ends

At this point we have considered most of what is required to implement the

virtual memory system. There are, however, still a few loose ends to tidy up.

The virtual memory system is usually made a part of the CORE vocabulary.

There is little point in establishing a separate vocabulary for the basic disk ac¬

cessing routines. When the editor is discussed, several other disk (as opposed

to purely editing) functions will also be covered. This is simply a convenient

place to hide the routines, since the editor vocabulary is usually disk-resident.

A system is usually designed from its inception to include the virtual

memory extension. This isn't surprising since most people remember spending

the several hundreds of dollars that disk hardware costs. Even if the expensive

part isn't acquired until later, the existing language is not lost. The INLINE

keyword address of the outer interpreter of Section 5 could be replaced by the

word address of the keyword INPUT as an example. INPUT is a secondary

which is designed to choose between INLINE and MASS. A change to QUES¬

TION also needs to be implemented to suppress the OK message appropri¬

ately.

7.4 Editor

The threaded interpretive language editor is the tool for generating and

modifying screens of source text. Unlike the assembler and virtual memory

keywords, the EDITOR vocabulary keywords are not system-resident but

must be loaded to the system when needed. The keyword EDITOR ac¬

complishes this by pushing the screen number of the initial editor screen to the

stack and then calling LOAD. The first definition in the editor screen is a

redefinition of the keyword EDITOR so that the EDITOR vocabulary can be

discarded using FORGET when all editing tasks are completed.

EXTENSION PLEASE 221

7.4.1 Line by Line

The basic (not BASIC) editor is line-oriented. That is, it manipulates entire

lines of text rather than the characters within a line. The editor always

operates on a screen of data which is loaded to the block buffers using the

OPEN command. To modify an existing screen or to generate a new screen,

the screen must be loaded to the buffers before editing begins. To locate

screens or display screens, the keywords LIST and SHOW are available.

The editor commands are fairly simple. The commands all assume that a

line number between 0 and 15 is on the stack when the command is evoked.

Any textual data to be input to the block buffers is done by calling the normal

INLINE input routine. If INLINE was implemented in the core language as a

headerless primitive, it can be given a header in the EDITOR vocabulary as

follows:

CREATE ■ INLINE ■ nn ■ C A! ■;

Here nn is the address of the first instruction of the INLINE primitive, not its

word address. (See line 9 of screen 1 in listing 7.1). One other point does bear

on this use of INLINE; only the first 64 characters may be used rather than the

usual 128 input characters. For example, the command to replace line 0 of the

current screen is:

OB REPLACE ■

Note that a carriage return follows REPLACE and the cursor point will im¬

mediately drop to the start of the next line. Any text following REPLACE will

be ignored by the system since the input buffer is first cleared by INLINE. At

the occurrence of the next carriage return, the contents of the first sixty-four

characters in the input buffer are moved to the appropriate block buffer half.

As a result of the manner in which INLINE was designed, the backspace, line

delete, and carriage return functions work as always. In fact, an editor com¬

mand to clear a line is not required since a replaced line with a single carriage

return will clear the line. The line editing commands include:

REPLACE — Pops a line number from the stack, fills the line with spaces, and

then replaces the line with the textual string following the REPLACE. Also

used to clear a line.

INSERT — Pops a line number from the stack, moves all lines from this line

through line 14 down one line, and replaces the line originally popped from the

stack with textual string following as if the REPLACE command were used.

The fifteenth (last) line is lost.

DELETE — Pops a line number from the stack, moves all lines from this line

number plus one up one line, and clears line 15.

TYPE — Pops a line number from the stack and displays the line.

222 THREADED INTERPRETIVE LANGUAGES

To write the completed screen back to disk, the WRITE command must be

used. The keyword CLOSE is used to free the screen area.

Although the LIST and SHOW were presented as screen keywords, I usually

embed them in the EDITOR vocabulary. Since screens are seldom played with

except in the edit mode, this is not a very restrictive feature.

Actually the editor vocabulary is used to generate itself. The editor

keywords are first designed and then the following sequence is typed in the ex¬

ecute mode:

: ■ EDITOR ■ n ■ LOAD ■; ■: ■EDITORS; ■ BnBOPEN

This opens screen n (ie: makes it system-resident). Next, the keywords that

constitute the editor vocabulary are entered in the system. These keywords are

then used to generate the screen which contains the same definitions. The first

line of the screen is defined as:

(■ SCREEN ■ n ■ - ■ EDITOR ■) ■: ■ EDITOR ■ ;

Note that EDITOR in both this definition and the second occurrence in the

previous definition are simply placeholders used to forget the definitions after

the EDITOR screen(s) are generated. This editor is the minimum configuration

that should be considered. It can be assembled/compiled to the current dic¬

tionary space in less than one second (typically) and occupies about 350 bytes.

Listing 7.1 lists the two editor screens associated with ZIPD. The editor is

loaded by typing EDITOR and responds:

EDITOR LOADED, DECIMAL BASE

when loading completes. Note that ZIPD disk blocks are 256-bytes long.

7.4.2 In a Line

A more advanced line editor can be easily added to the line-oriented editor.

The line editor will allow the characters within a line to be modified without

retyping the whole line. The editor does not directly modify the block buffer.

Rather it is used to generate a new line. When the new line is correct, it is

moved to the block buffer to incorporate the line in the screen.

The line editor function requires a sixty-four character array and two

pointers. The line pointer points to the block buffer where the line being edited

is stored. The array pointer points to the array where the modified line is being

built. The line editor is called from the EDITOR using the command keyword

EDIT. The keyword will first display the line whose address is on the stack,

clear the array to ASCII spaces, set the line pointer to the first address of the

EXTENSION PLEASE 223

buffer half where the line to be modified is stored, set the array pointer to the

first address of the array, and enter a special input mode. In this special input

mode, all commands to the editor are ASCII control codes. The control codes

and the action they evoke follow:

CNTL-@(At). Echoes a CRLF, the screen line, a CRLF, and the array line up

to the array entry point. Neither pointer is changed.

CNTL-A (Advance). Moves the character pointed to by the line pointer to the

location pointed to by the array pointer; echo displays the character and ad¬

vances both pointers.

CNTL-B (Back). Enters a space at the current array point, decrements both

pointers, and echo displays the backspace command. This command will not

allow either pointer to be decremented past its starting address.

CNTL-C (Copy). Moves the remaining characters in the line from the block

buffer to the array buffer. Terminates when the end of either buffer is reached.

CNTL-D (Delete). Advances only the line pointer and echo displays a delete

symbol to the screen. (I use an 2 symbol, but this is arbitrary.)

CNTL-E (Enter). Echoes a < symbol to the display and enters an entry mode.

All characters entered via the keyboard except CNTL-E are moved to the array

buffer at the array pointer location and the array pointer is advanced. A

CNTL-E input results in the display of a > symbol and the entry mode is ter¬

minated.

CNTL-F (Find). The command expects a second keyboard input. When the in¬

put is received the line buffer characters are copied to the array buffer until the

line buffer character equals the second keyboard input character. Always ter¬

minates if the end of either buffer is reached.

CNTL-G (Go). Moves the array buffer to the line buffer (sixty-four characters)

and exits the line edit mode.

CNTL-H (Home). Exits the line edit mode.

The line editor design sketched above is but one of many approaches. It has

one very important feature: the original line is not modified until all editing

functions are complete. An escape command (CNTL-H) allows the current line

to remain untouched and returns control to the editor to allow for a re-edit in

case one becomes totally confused. For me, such touches are a requirement.

In case you didn't notice, the commands are in the set 0 thru 8 (the ASCII

codes for CNTL-@ thru CNTL-H). This allows a case construct to be built to

control the calls to the various keywords that implement the actions. It is not

important that the editor be either super-fast or super-small. It can be defined

using existing CORE keywords rather than using a group of primitives. After

all, its main use is to generate and modify source text which is to be saved on

the disk. It is seldom called when any task program is actually system-resident.

More time is lost due to the operator's snail-like pace than to keyword execu¬

tion.

224 THREADED INTERPRETIVE LANGUAGES

7.5 Cross-Compilation

Cross-compilation of a threaded interpretive language program refers to the

process of generating a stand-alone program capable of executing some given

task. The program is always generated and stored on the disk rather than in

memory. The target address for the program being cross-compiled may be any

memory location in the system in which it will be resident, including the

memory space of the TIL being used to generate the program. The object of the

cross-compilation is to generate a threaded program which can be loaded to

the target system and which will autonomously perform some specific task.

The programs may be developed and tested using the TIL before being cross-

compiled. The intent is to delete all of the unnecessary features of the CORE

language and produce the smallest possible object program. For example, the

entire outer interpreter is the executive for the TIL and is not required by most

programs. It need not be resident in the autonomous program.

7.5.1 The End Result

The easiest way to understand the cross-compilation process is to consider

what the final object program will be like. Obviously the object program will

contain an inner interpreter, primitive and secondary keywords, and some

type of executive program to control execution. It will not contain the TIL

outer interpreter (the TIL executive) nor will it contain any keyword headers.

Keyword headers are designed to allow the TIL to thread keywords together.

This is not required of the object program since the scope of the program is

fixed.

The program being generated will be stored on the disk rather than in

memory. Actually it will be built in the block buffers and transferred to the

disk. The target address of the program maps directly to a disk block address.

That is, if the target address of the object program is hexadecimal 0000 to

01FF, and the program is to be stored in block 6, there is a constant offset of

hexadecimal 0600 between the block "address" and target memory address (ie:

the program will be stored in blocks 6, 7, 8, and 9).

Since the object program does not have headers in its keyword definitions,

the "dictionary" for the object program is not available in the usual sense. The

vocabulary for the object program is actually stored in the generating system.

When it is searched, it will return the word address of some keyword in the ob¬

ject program. The object program vocabulary is essentially a symbol table of

the word addresses for the object program.

Because object program headers will be created in the resident vocabulary

but the code addresses will be stored in the object virtual space, all defining

words are redefined in the cross-assembler. The keyword CREATE in the

cross-assembler generates a header in the OBJECT vocabulary and saves the

EXTENSION PLEASE 225

address of the next available location in the free object program space at word

address location of the keyword. It then stores a pointer to the word that

follows the next free object location at the build address and increments the

free object space location pointer. This creates a primitive code address in the

object program code whose word address is stored in the word address of the

header in the OBJECT vocabulary. This is diagrammed in figure 7.2. Note that

the virtual address where the object code is stored (the build address) is not the

same as the target memory address where the object code will be located but is

offset. This offset is the offset from object to virtual memory (0300 in our ex¬

ample).

RESIDENT OBJECT VIRTUAL
ADDRESS

Sgure 7.2: A cross-compiled DUP primitive example.

The point of all of this is not nearly as strange as it first appears. To build a

secondary implies locating a word address to be enclosed in the object dic¬

tionary space. This word address is the word address of the keyword in the ob¬

ject program when it is the resident program. The dictionary headers are,

however, being added to the TIL free dictionary space, not the object space.

Further, the virtual address of the place where the code is to be stored is dif¬

ferent from the object address where it will finally be located. This concept is

central to understanding the cross-assembler.

The keywords that enclose data in the object dictionary ("," and C,) also

must be redefined in the cross-compiler. This impacts the entire assembly pro¬

cess. A cross-assembler must be available to build entries to the object pro¬

gram and store them to the virtual memory build space. Defining words such

as VARIABLE and CONSTANT must also be redefined. Even the number¬

handling routines of the outer interpreter are different in the cross-compilation

mode, since the literal handlers are differently located. The cross-compiler is

very different from the normal compiler/assembler.

226 THREADED INTERPRETIVE LANGUAGES

7.5.2 The Process

The cross-compilation of TIL programs requires a substantial redefinition of

the resident TIL program. The cross-compiler is usually disk-resident. When it

is evoked, the cross-compiler and cross-assembler are loaded to the system. Ef¬

fectively an entirely new outer interpreter is contained in the cross-compiler.

The object program to be cross-compiled is also resident on the disk in source

text form.

The usual technique is to define a special load screen for cross-compiler ob¬

ject program generation. This screen includes the source text for an inner inter¬

preter and several of the most useful keywords. These include the keywords to

support the branch and loop constructs, the defining words, literals, some

basic arithmetic, memory reference, relational, stack and interstack keywords.

(If some of the keywords are known to be unnecessary, this general-purpose

screen can be copied and edited first.) The screen is loaded by the cross-

compiler and becomes the core of the object program.

A second general-purpose screen is then loaded to establish the variable
storage policy for the object program. If the object code will be placed in read¬

only memory, special provision for correctly allocating variables to the pro¬

grammable memory must be included. Otherwise the variable storage can be

in-line. One of two screens is loaded to the system to establish the variable

storage protocol.

Unless you are very lucky, the keywords embedded in the object program to

this point do not match the requirements of the object program load screen. If

the object program was generated by redefining all those keywords needed to

support the object code except those known to exist in the core object screen,

the object program screen can be loaded to produce the final object program.

In either event, remember that all keywords must be defined before they are

used in another definition.

It should be noted that the object program cannot be tested in the normal

system environment in its final form. The load screen used to generate the final

object program can be checked out interactively but the final object program

cannot. By including definition of all the keywords except those known to ex¬

ist in the core object screen, a fairly high degree of assurance that the object

program is correct can be achieved before cross-generation.

7.6 Widget Sorters

Because the etiology of widgets is an obscure science, I won't even discuss

widgets here. Instead, I will discuss something even more vague.

The system software necessary to control the hardware is generally referred

to as the system monitor or the operating system. This software may be writ-

EXTENSION PLEASE 227

ten in threaded code just as easily as any other program. The I/O routines

should still be coded as subroutines to allow access by other programs, but this

is a minor point. A review of the keywords and extensions will reveal that

most of the features of a general-purpose system monitor program are

available in the TIL.

There are several functions that are usually available in a system monitor

that have not been considered in the TIL. These include several debugging

features and utility functions. The core monitor features include the ability to

generate, display, and test programs, the ability to load programs to memory

and save programs on mass media, the ability to test the system hardware, and

the ability to perform housekeeping chores of various types (such as I/O).

There are several ways to generate a threaded system monitor. The most

simplistic approach is to design an outer interpreter that has the ability to ex¬

ecute keywords but does not have a compile mode. This approach results in a

substantially smaller outer interpreter with far fewer keywords needed to sup¬

port the outer interpreter. This fixes the scope of the monitor at build time. A

2 K-byte monitor of this type will support an amazing number of features.

Only the keyword directly available to the operator needs headers, which

helps shoehorn the system into 2 K-bytes of memory.

Using this approach, the full-blown compiling outer interpreter must be a

separate program. The inner interpreter for the system monitor can be used by

the more comprehensive language exactly as if it were a utility program. All of

the keywords with headers can also be used if this is done. The primitive

keywords without headers in the system monitor can be given headers in the

main language with suitably defined coding addresses.

It should be noted that even though the system monitor is a threaded inter¬

preter, this does not imply that only threaded code can be supported by the

system. The monitor must be capable of loading a program to memory. It does

not care what the contents of the memory load are. By defining an uncondi¬

tional jump keyword to the address at the top of the stack, any program can be

executed. I do run BASIC in a system with a threaded system monitor.

A saner but larger monitor can be constructed using a full compiling version

of the outer interpreter. The virtual memory features can be included in this

type of a monitor. Not all of the language features of the general purpose

language need be contained in the monitor. By concentrating the resources on

I/O and other essential features, a subset of the language will suffice. The full

language can be called into play via a load screen. This is somewhat of an ad¬

vantage in that only the monitor software need be in a fixed location. By set¬

ting the dictionary pointer before calling the load screen, the language may be

relocated at will to any area of programmable memory.

There are several tacks that can be taken to achieve the desired goal. Most

involve bootstrapping. For example, the initial bootstrapping operation for

my Z80 system started with a 1 K-byte read-only memory monitor on the cen¬

tral processing unit board. The monitor was debugged on an 8080 system; the

read-only memory was programmed and then installed in the Z80 system.

Using this monitor, the disk system (with its own read-only memory bootstrap

loader and disk operating system) was then installed. The disk operating soft¬

ware was then specialized to the Z80 I/O using the 1 K-byte read-only

228 THREADED INTERPRETIVE LANGUAGES

memory monitor. Using the combined disk operating system/1 K-byte moni¬

tor, a new system disk was generated that bootstrapped not the disk operating

system, but a more extensive system monitor. This monitor was then used to

develop the threaded system monitor. Finally, a more extensive disk bootstrap

loader was generated and burned into a 1 K-byte read-only memory, and the

disk read-only memory and original system monitor read-only memory were

removed. In the end, a power-on or master reset boot loads the threaded

monitor from the disk. Other programs, such as BASIC, have their own in¬

dividual bootstrap loaders. They can be loaded autonomously or by the

threaded system monitor.

By suitable trickery, a fairly universal operating system can be developed.

The compiling version of the system can even allow the development of

relocatable system utility software. As an example, a disassembler can be writ¬

ten in threaded source code as a load screen. The advantage of this is fairly

simple to see. A program to be disassembled can generally be located at its in¬

tended load point (unless it is located in the system monitor area). The

disassembler can be loaded to any free memory area by setting the dictionary

pointer prior to loading the appropriate screen. This leaves the source to be

disassembled where it should be, resulting in an easier disassembler design.

The ability to extend the language to system software has a subtle advan¬

tage. There exists only one protocol and one set of input commands for both

the system and the language itself. There is no question about separators being

commas for one command language and spaces for another. The keywords

evoke the same response in both languages unless purposefully changed.

Uniformity has its advantages.

7.7 Floating Point

All of the arithmetic keywords considered so far have been restricted to

signed integers. There is no fundamental reason for not building a floating¬

point arithmetic package for the TIL if it is required. If scientific computations

are needed, the TIL will certainly support your requirements. The only reason

that my current TIL does not support floating-point is my lack of time to teach

the beast the basics. A quick sketch of the fundamentals should point the more

ambitious in the right direction.

7.7.1 Formats

There are as many floating-point formats kicking around as there are opin-

EXTENSION PLEASE 229

ions about what constitutes beauty. All of the formats eventually reduce to the

form:

N = ± A X B±c

In this form A is called the mantissa, B is called the exponent base and C is

called the exponent. After this simple fact is stated, all sanity disappears and

emotion ensues.
The mantissa is usually constrained to be in the range:

B‘ < |A| <B,+1

where i is an integer. Simply because computers are usually (but not always)

implemented as binary machines, the exponent base B is usually selected to be

some power of 2. Because B is selected a priori, it is not explicitly carried

within the floating-point number format but is implicit in the computational

routines. What needs to be carried in the floating-point representation is: the

sign of the mantissa, the mantissa magnitude, the sign of the exponent, the ex¬

ponent magnitude, and, finally (because of the mantissa constraint), some in¬

dicator of a zero mantissa condition.

Since computers are computers and generally recognize only integers (and

usually binary integers at that), there are some fundamentally rational ways to

define floating-point number formats. The way the format is designed affects

the attributes of the numbers to be represented. Two common choices for the

exponent base are 2 and 16. The numbers can be represented for the case i =

— 1 as:

±A1X2±C ±A2X16±c

0.5< |Ai| <1.0 0.0625< |A2| <1.0

Given a maximum integer value for C, the dynamic range of the A1 format is

much less than that of the A2 format. This is easy to see since 2128=1038 but

16128= 10154. The larger the value of B, the fewer bits needed for C in order to

achieve the same dynamic range. The dynamic range advantage for a larger

value of B does not come for free. As a scaled binary number, the Al format

always has a 1 to the right of the binary radix point. The A2 format may have

up to three leading zeros to the right of the binary radix point before the ap¬

pearance of a 1. Given the same number of bits to define A, the Aa format

always has the same number of significant digits but the A2 format does not.

To illustrate this, consider a floating point number which is first divided by 2

and then multiplied by 2. In the Al format, the value of Al would not change

since the divide and multiply affect the value C only. In the A2 format, the

divide could result in a right shift of A2 and no change to C. The least signifi¬

cant bit of A2, if it were 1 set, would be lost by the divide and not recovered by

the multiply. In fact, there are variations of up to 3 bits in the significance of

the A2 format due to the choice of C.

230 THREADED INTERPRETIVE LANGUAGES

Two common formats for floating-point numbers are given in figure 7.3.

/'-RADIX POINT

IBM

p

MANTISSA SIGN BIT

V___J ^ j

24 BIT MANTISSA 8 BIT EXPONENT,

BASE 2, EXCESS 128

Figure 7.3: Two common floating-point number formats. One is used by IBM, the other

is in general use.

In both formats, the exponent is carried as an excess number and the special

case of C = 0 indicates that A = 0. For example:

Exponent Value Exponent Mantissa

in Hex _

FF 2+127

TFormat 80 2° > 0.5< A<1.0

01 2~U7 s

00 - A = 0

In the IBM format, the mantissa is allocated 24 bits but may have only 21

significant bits. In the "7" format, the MSB (most significant bit) is known to

be a 1 so that it is hidden by the sign bit which overlays the MSB. In both for¬

mats a mantissa sign bit of 0 indicates a positive mantissa and a mantissa sign

bit of 1 indicates a negative mantissa.

If your computer supports hardware floating point, all of this is moot since

it fixes the format to be used. If not, the ideal format depends on your re¬

quirements for precision, dynamic range and the ease with which your format

can be mechanized on your machine. Since some microcomputers support

BCD (binary coded decimal) arithmetic, even these forms of floating-point

EXTENSION PLEASE 231

arithmetic are feasible (ie: an exponent base C of 10).

Within the constraints of most microcomputer instruction sets, the fastest

floating-point arithmetic routines are usually exponent base 2 formats. If speed

is not the important criteria, select the format with the right attributes for your

application. Whatever the criteria, the use of formats with multiples of 16-bits

are generally preferred for TILs since the stack is 16 bits wide.

There are actually four different formats associated with TIL floating-point

numbers: the conceptual format, the format used to store floating-point

numbers in code bodies or when in threaded code lists as literals, the format

when the number is on the data stack, and the I/O (input/output) format.

There are no fixed rules for designing these formats. The 'right" answer

depends on the microcomputer and the ease of the implementation.

7.7.2 Floating Keywords

The keywords required for floating-point manipulation are remarkably

similar to those required for integer manipulation. The biggest potential

change to the TIL in adding floating-point involves the I/O. None of the outer

interpreters considered to this point allowed for the possibility that an input

number could be a floating-point number rather than an integer number.

There are several ways to correct the I/O to allow this eventuality.

The floating-point philosophy is exactly the same as the integer philosophy:

data type resolution is incumbent on the programmer. All floating-point

keywords are predicated on the stack being preloaded before the keyword is

evoked. The necessary keywords for general programming are relatively easy

to predict.

The stack-oriented keywords consist of FDROP, FDUP, FOVER and

FSWAP as a minimum. The only essential difference between these keywords

and the equivalent integer versions is that a single floating-point number oc¬

cupies two (or more) consecutive stack entries. The interstack floating-point

operators F<R and FR> are simply multiple transfers of floating numbers.

The memory reference operators F@, F! and F+! involve conversions be¬

tween floating-point stack and memory formats. The F+! operator does not

have the utility of the -I-! operator and may not be needed.

The floating arithmetic operators include FABS, FMINUS, F + , F —, F*, F/,

F/MOD, FMOD, FMAX, FMIN, and F10*. Obviously this is where the nitty-

gritty of the floating-point resides. Oddly enough, FABS and FMINUS are

easier to implement than ABS and MINUS. If only the remainder were! The

floating-point relational operator includes F = , F>, F<, F0 = , and F0< . The

first three of these routines are mildly complex.

Clearly, floating-point defining words FCONSTANT and FVARIABLE and

a floating-point number literal handler *F# are required. Routines to convert
signed integers to floating-point (ITOF) and floating-point to integer (FTOI)

232 THREADED INTERPRETIVE LANGUAGES

are also desirable. A floating-point output routine such as F. would be nice

too. Except for ITOF and FTOI, these routines are concerned with I/O and

I/O formats.

There are several ways to implement the I/O routines. One method is to

change the outer interpreter to allow floating-point input numbers to be

generated if a token is one of the following forms:

N = (X

(XEY

where: X =/ i.

1 i.J for i and j integer base 10

Y=j i
(— i for i integer base 10

This change to the outer interpreter is clearly the preferred implementation

since the system can decide whether to push the result to the stack (execute

mode) or add the floating-point literal handler plus the floating-point number

to the threaded list (compile mode).

An alternate approach is to define two separate keywords. A keyword

named FLOAT could be defined to scan the next token from the input buffer,

convert the token to the internal floating-point stack format and leave the

result on the stack. An immediate keyword could perform a similar conversion

in the compile mode except it would enclose the floating-point literal handler

plus the converted number to the threaded list of code being compiled. This

method works but does have the potential for error.

7.7.3 Summary

Clearly, there are many additional operands that could be defined to extend

the system capabilities beyond the level supported by these relatively

simplistic operands. Once a floating-point capability is available, trigono¬

metric and other mathematical functions are reasonable candidates. All of this

is in the works for my TIL, with a floating-point design half complete and my

eye on cordic-based mathematical algorithms.

EXTENSION PLEASE 233

7.8 Extension Summary

The extensions to the language are a somewhat mixed blessing. As more and

more features are added, the language becomes bigger and bigger. On the

other hand the language utility increases. However, the good part is that an

initial threaded interpretive language of size 4 K can grow and grow as the

system grows. A 12 K-byte TIL should support an absolutely incredible set of

capabilities. I simply cannot imagine a TIL of that size.

234 THREADED INTERPRETIVE LANGUAGES

8 | Life With a TIL
When it comes down to brass tacks, living with most pro¬

gramming languages is like living with your mother-in-law:

tranquility interspersed with moments of incredible rage.

The most insidious aspect is getting the "thing" to do what

you want. For "thing" read mother-in-law, BASIC, FOR¬

TRAN.but not TIL.

8.1 Starting Out

The aspect of the TIL which is most enjoyable and also the most hazardous

is its interactive nature. TILs love to "talk" to people and are extremely adept

at learning (given proper guidance). TILs are very happy to reveal their inner¬

most secrets and show you their home. There is no part of the system which

can't be displayed, changed, manipulated, and occasionally messed up in your

conversations with the TIL. The problem is the very ease with which new

keywords can be added to the language. It leads to the "design-at-the-

keyboard" (DATK) syndrome.

The only known cure for the "design-at-the-keyboard" syndrome is a

deliberate effort on the part of the programmer to design a program before the

keyboard is touched. Designing a TIL program is not much different than

designing in other languages. A TIL does demand a modest amount of struc¬

ture in a program: that is, a keyword cannot be used before it is defined, and it

does demand that the structured construct syntax be complete (ie: a LOOP or

+ LOOP must terminate a DO). The actual structure of a program must be en¬

forced by the programmer.

In designing a TIL program, I generally attack the problem in a very rigid

fashion; design the keywords from the top-down and then enter the program

in a fixed format. The fixed format for program entry is a self-enforced,

disciplined technique, rather than something demanded by the language itself.

The other steps are simply common sense. (Programming does demand a cer¬

tain amount of common sense, although I will admit that some programs

reflect more than others.) It should be pointed out that the techniques I will

LIFE WITH A TIL 235

espouse are designed to preserve my sanity, since they work and work very

well.

8.2 Program Structure

There are several reasons for insisting on a fixed structure for a program.

Fundamentally it allows one to reconstruct the crime at some later point in

time from the scattered remnants of keywords covering the battleground.

There is nothing worse than trying to figure out some program post-facto.

Ideally the program should be a source code version stored on the mass media

rather than an embedded program in some vocabulary. In any event some

type of listing of the program should be created during the build process to

allow later program modification or simply to allow precise determination of

what the code actually does.

The structural aspects of the program are designed both to satisfy the

undefined keyword problem and to put items that are declared in a logical

order. All programs are arranged as follows:

• Vocabulary definitions.

• Data type definitions.

• Global data definitions.

• Procedure definitions.

• Main program.

While this is the general format of a program, a certain amount of

precedence must exist within each category. This will become obvious later

(hopefully), since it is part of the design process.

8.2.1 Vocabulary Definition

Defining the vocabulary is fundamental to determining the resources

available for program design. Almost all programs (except for cross-compiled,

stand-alone programs) are linked back to the core vocabulary. How the pro¬

gram is linked to the core language can seriously affect the attributes of the

program. For example, consider that a complete floating-point arithmetic

package exists as a separate vocabulary that is linked to the core vocabulary.

The floating-point vocabulary could contain a complete set of keywords for

the generation, manipulation, and display of floating-point data types. By

linking the new program vocabulary to the floating-point vocabulary rather

than directly to the core vocabulary, the new program could contain both in-

236 THREADED INTERPRETIVE LANGUAGES

teger and floating-point data types.
The rationale for linking indirectly to the core vocabulary through a

vocabulary such as the floating-point vocabulary only makes sense if the
linking vocabulary is always system-resident or if the linking vocabulary
redefines keywords that also exist in the core vocabulary. In the case of the
floating-point vocabulary, both the floating-point data declaration types and
other definitions are contained in the vocabulary. The data declaration types
need to be available before global data definitions are attempted.

In cases where it is desired to include an entire library of standard functions
in a new program, an alternate technique to vocabulary linking can also be
used. How this is done is dependent upon whether the new program is being
built on disk or is being interactively defined. If the program is being built on
the disk, the library screens are first duplicated, the first screen of the library
routine is reidentified as the first screen of new program and the screen load
linkages are redefined to incorporate all of the library screens. The reiden¬
tification should include the name of the new program as a keyword definition
to allow FORGET < new program> to delete the entire program. It is simply
required to type in the names of the library functions desired after the
vocabulary is established. Simply including the names of the desired library
functions on a screen will not work. The screen calls are not nested so that the
appearance of the library-loading keyword in another screen will load the
library but will not return to the calling screen. If you want, a routine called
LIBRARY could be defined to initiate a screen-load nesting operation. The
final screens in each library vocabulary would have to contain the denesting
code to complete this scenario.

The important point about the vocabulary definition step is that it defines
the basic capabilities available to the new program. Keywords that are unique
to the new program are not placed in libraries or added to the resident
vocabularies to allow linking via the unique vocabulary. The vocabulary
definition simply establishes the basic keywords available as resources to
define the unique keywords of the new program.

8.2.2 Data Type Definitions

The basic TIL language contains only limited predefined data types. De¬
pending on how you have defined the language, arrays, strings, user blocks,
and other data types may not be available to a particular applications pro¬
gram. If required, they must be added. Data files unique to the program and
the record structure of the data files must be defined along with any unique
data type definitions. The keywords for the data and file definitions must
precede the definition of the global data. In this case the appearance of the data
type definitions before data declaration is required. Simply demanding that

LIFE WITH A TIL 237

they all appear in one place is not required; it is common sense.

8.2.3 Global Data Definitions

Although it has not been stressed to this point, a TIL distinguishes between

local and global data. Any named data such as a variable is globally available

via its keyword name and occupies dictionary memory space. Data passed to a

procedure or program on the stack or stack data internal to the procedure is

local to the procedure and occupies stack memory space. Local data may be

nothing more than a copy of global data, but once the quantity is on the stack,

it is local data.

One other interesting feature of a TIL is that it allows data passage by value,

by address, by pointer to an address, or by any other conceivable means. Ex¬

amples of the first three methods are constants, variables, and user variables.

In all cases the correct resolution of the data rests with the programmer and

not the system.

In defining global data, I generally define the keywords in the order of in¬

creasing complexity. Constants are defined first, followed by variables, ar¬

rays, pointers, strings (messages), data files and records, etc. An important

point about defining data keyword names is to make them descriptive. Proper

keyword names and suitable usage of the keywords in subsidiary definitions

lead to much more lucid programs. The use of a constant keyword with a

descriptive name is much preferred, for example, over the isolated appearance

of some number in the middle of a keyword definition. Although this is at

odds with the desire to conserve memory, a self-documenting keyword is a

boon to understanding the intent of the program.

8.2.4 Procedure Definitions-

The procedural definition phase is where all of the keywords required to

support the main program are defined. Procedures may be operands, func¬

tions, subroutines, program control directives, or other actions required by

the main program. Because a keyword cannot be referenced before it is de¬

fined, it is not unusual to observe a natural precedence in the entry order for

procedures. The "natural" precedence order is from the most primitive level to

the most sophisticated level. Usually this is precisely the order demanded by

the define-before-use criteria.

During the procedure definition phase, it is not unusual to incorporate

library routines by stealing the source code from the disk and merging it with

238 THREADED INTERPRETIVE LANGUAGES

the program source code. A library of such source code routines is very helpful

in generating programs. As an example, trigonometric floating point routines

could be stored on the disk in a library file. Those routines required by a given

application program could be copied to the procedural definition area of the

program. This process limits the resulting program size since only the subset of

the library really needed for the application is added to the program. Devel¬

oping the library is not easy, but it is easier than regenerating the same

routines each time an application stumbles by.

As in the case of the global data, names of the procedures are important.

Comments are also helpful. Anything that supports an understanding of the

procedures will turn out to be useful in the final analysis.

8.2.5 Main Program

The TIL main program will always turn out to be the final keyword defini¬

tion in an applications program. There may actually be several interrelated

main programs, but this is an exception rather than the rule. The editor

vocabulary can be viewed in this context, for example. The more usual situa¬

tion is to have a single main program. The appearance of the main program as

the last entry is consistent with the fact that keywords cannot be used before

they are defined.

A TIL main program is often a loop which returns to the outer interpreter

only on operator command. Whatever its design, it is a stand-alone program

which is not constrained to have the same characteristics as the outer in¬

terpreter. The operator's interactions with the program are defined by the pro¬

gram design.

8.2.6 Physical Records

Any TIL application program must exist somewhere as a source code listing.

This may be in program screens on disk or it may be on the back of a laundry

ticket or it may be only in the mind of the programmer. The above list is in

decreasing order of preference. The subtle inference that a disk system is

available is embedded in the entry structure discussion. The fundamental ad¬

vantage to the disk is that it produces a self-documenting file when the entry

takes place. This is not true of the other methods of listing generation.

If the mass media supported by your system is cassette storage, source file

generation and program retrieval are much more difficult. Usually hand

documentation combined with recording of the object file (the entire TIL

LIFE WITH A TIL 239

language with the application program already entered) is required. Other

methods that allow saving or loading only the source file could be designed but

they usually require fairly large memory blocks for the source code. At that, it

is to be preferred over hand documentation.

Given that a disk system is available, one important factor must be raised.

Store your applications programs on a disk different from your system disk.

The system disk should contain a bootstrap loader for the TIL, the basic TIL

language, the operator message block, system utilities such as the editor, and

the library routines. An application program should be on a separate disk

which contains only the operator message block, applications programs, and

possibly the application data files. Intermixing the system and applications

programs on a single disk is rarely an advantage.

The physical records of any program determine the long-term utility of the

code. Undocumented or poorly documented programs are as useful as a JSW

(jump somewhere) assembler mnemonic.

8.3 Program Design

As has been noted, the disadvantage of a TIL is that its interactive nature

can lead to poor programming practice. It is so easy to add, check-out, and re¬

tain code that program design tends to occur at the keyboard rather than at the

desk (the DATK syndrome). Program entry must be bottom-up, but a bottom-

up program design leads to a poor design. The design stage must be top-down

if a reasonable design is to result.

So much has been written about top-down design that I hesitate to muddy

the water with my oar. Suffice to say that there are advocates of flowcharts,

structure charts, ALGOL-like languages, HIPOs, Wamier-Orr diagrams, and

numerous other techniques, all of which are advertised as being the technique

for top-down design. Use whatever technique you feel comfortable with.

Whatever design approach you use, if it isn't straight-out TIL code, a conver¬

sion to TIL code format is necessary before a real design exists. I shall concen¬

trate on the TIL code format.

8.3.1 Vertical Design

The top-down design of a TIL program or procedure (ie: a keyword) should

ideally result in both a syntactically and semantically correct design. Although

there are no quick and easy rules for determining the total correctness of a

given definition, there are some guidelines that help during the design phase.

The TIL entry format of tokens separated by spaces does not readily indicate

240 THREADED INTERPRETIVE LANGUAGES

the underlying structure of the definition. During the design phase, I use a ver¬

tical format with setbacks to more clearly indicate the structure. For example:

: ■ JOB BBEGIN ■ WORD1 ■ WORD2 BTEST ■
IF BTASK1 ■ ELSE BTASK2 ■ THEN ■ FLAG ■ END ■;

: IJOB

BEGIN

WORD1

WORD2

TEST

IF

TASK1

ELSE

TASK2

THEN

FLAG

END

Although both definitions are precisely the same, clearly the vertical format

with setbacks is far more informative of the keyword structure than the

horizontal format. In the vertical format it is much more obvious that the syn¬

tax of the constructs is complete. Simple syntax completeness will not prove

program integrity, but the lack thereof will assure problems.

Given that the top-level form of the main program keyword is defined, the

local (stack) data at the completion of each keyword in the definition is noted

to the right of each keyword used in the definition. This is a fairly simple way

to display the stack input/output requirements. The changes to the global data

are every bit as important, but not as evident at any given stage in the program

design. It is clear, however, that local data disagreements are fatal. In noting

the keyword stack data I/O requirements, I distinguish between flags,

numbers, addresses, pointers, and other data types. It is important that the

stack depth and types be in agreement with the keyword I/O needs. If the

keyword is undefined at the next lower level, the I/O requirements are in¬

dicative of the algorithmic transfer function needed to define the keyword. If

the keyword is defined, the I/O and computational functions must match the

keyword definition.

The identification of the I/O and processing requirements of all the unde¬

fined keywords in the main program completes the top level design of the pro¬

gram. The total design of the program is not complete until all of the keywords

have been completely detailed. This involves exactly the same techniques as

used on the top-level keyword.

At the top-level design stage, the use of macroinstruction secondary

keyword definitions greatly simplifies the overall design. A macroinstruction

secondary keyword is simply a keyword that serves as an alias for a group of

keywords (ie: a subroutine or subprogram). The outer interpreter of Section 5

has several examples of macroinstruction secondaries (eg: 7NUMBER, ?EX-

ECUTE, etc).

LIFE WITH A TIL 241

The identification of global data requirements is among the more difficult

tasks in program design using any language. A threaded interpretive language

will not make this aspect any easier. The subject of data structures is so impor¬

tant that many texts are devoted solely to the data structure aspects of pro¬

gram design. A list of the keywords which initialize, use, or change each global

parameter is very helpful. This is aided by noting, to the right of the stack I/O

for each keyword in the total program, a list of the global parameters used

directly by the keyword. Unfortunately there is no ready way for the system

itself to aid in the documentation of the global data changes.

8.3.2 Program Executives

A TIL program does not necessarily use the outer interpreter as the control¬

ling executive. It is perfectly feasible to design a TIL program which, when

evoked, never returns control to the outer interpreter. This implies that the en¬

tire I/O protocol for a TIL program can be redefined and need not follow the

interactive protocol established by the outer interpreter for program genera¬

tion and execution. In short, the TIL is only a resources base for the design of a

program and does not constrain the program/user interactions.

A more useful situation involves a program executive which will return con¬

trol to the outer interpreter only if a specific event occurs. The design of such

an executive is not difficult. The fundamental program executive is designed as

a loop with a jump out of the loop embedded within an IF construct. Escape

code such as this is desirable particularly during the program checkout phase.

A program executive serves as the main program in most designs. This outer

executive can cause a lower-level executive to be called as the result of some

event. This nesting of executives commonly occurs to cause changes to I/O

protocols. As an example, the EDIT command of the EDITOR evokes a lower-

level command structure in which a subset of the ASCII control codes is

recognized. The CNTL-E (ENTER) command in this structure then evokes a

still lower-level executive with an entirely different set of I/O protocols. In

both the EDIT mode and the ENTER submode of the EDIT mode, the code

design uses the primitive keyword KEY to access the I/O device: the keyboard.

The existence of primitive I/O keywords such as KEY is the attribute of the

TIL which allows designs of this type to be mechanized.

8.4 Entry and Test

Entering the code really involves more than typing in the keywords. I use a

more complex approach in that keyword testing is intermixed with keyword

242 THREADED INTERPRETIVE LANGUAGES

entry. Although the design was top-down, the coding and testing will occur in

a bottom-up fashion.

8.4.1 Keyword Contention -

The very first step in any program entry after the establishment of the

vocabulary linkage is a test for keyword duplication. The proposed keyword

names are tested using the sequence ■' ■ < name > ■. ■. If the keyword is

present in the vocabularies, the word address of the keyword will be displayed

to the operator. At this point the choice is to rename the keyword or to allow

the definition in the new program to take precedence. This latter course will

eliminate use of the older keyword in the current program. If the keyword is

not present, an error message will be echoed to the operator and the name is

known to be acceptable. This simple test avoids grief. More than once I have

discovered duplicate keywords and/or contending keyword names simply by

not following this procedure.

8.4.2 Keyword Testing

Each keyword is tested as it is entered. If the program is being built on a

screen, keyword definitions are added one at a time. After each new definition

is added, the current program is deleted from the system using FORGET, and

then the screen is reloaded for testing using the LOAD command. The newest

keyword is then tested and debugged before the next definition is added to the

screen.

Keyword testing is unusually simple for any TIL. First, any global data

manipulated by the keyword is initialized. Input stack parameters are then

typed in while in the execute mode, followed by the name of the keyword be¬

ing tested. Any results left on the stack can then be examined using the

keyword. Always attempt to output one more stack item than is expected. If a

stack error message does not result, a problem exists with the definition. Any

global data manipulated by the keyword is then examined to confirm data in¬

tegrity. All keywords are tested including the global parameters.

The most difficult part of keyword testing is the design of the local and

global data values needed to completely test the keyword. All possible paths

through the keyword code should be exercised and the various extremes of all

algorithms should be tested. This usually requires a good deal of thought on

the part of the programmer/designer and may explain why most "tested" code

comes asunder at embarrassing moments.
When approached in this rather methodical manner, most, but not all.

LIFE WITH A TIL 243

errors of oversight and negligence are revealed. This level of testing will not

uncover all possible programming errors. A bad algorithm carefully coded and

tested is still a bad algorithm. Further, an exhaustive test of all possible paths

through a program may not be feasible. At this point you might as well resort

to prayer beads because I can guarantee that if you don't test them all, an error

will occur in a path you did not check.

8.5 Tricks of the Trade

As in any programming language, operating system, or other substantial

chunk of code that interacts with a user, a degree of familiarity is required to

become truly comfortable with the operator protocol. An advantage to de¬

signing your own language is that you have complete control over the pro¬

tocol. There is absolutely nothing sacred about any part of a TIL. If you really

want to emulate the operator protocol of some system you are familiar with,

do it. It may require a substantial amount of work to design the parser, but it

can be done. The capabilities of a TIL are in how ingeniously you can define

what you need for your problem, given your environment.

244 THREADED INTERPRETIVE LANGUAGES

Bibliography and Notes

Part of the problem in writing a bibliography for a text of
this nature is the broad range of subjects one would like to
cover. This is much easier said than done. The other part of
the problem is the dearth of material on threaded inter¬
pretive languages.

Of the potential number of subjects which could be covered, a very limited

number will be considered. This is partially due to the vast amount of

computer-related literature and partially due to my own laziness. The selected

references cover most of the threaded interpretive language sources that I used

in the development of the TIL I use. I am aware that others exist, but I do not

have access to them. The other references are mostly background material or

material useful to extending a TIL in new directions.

Interpreters and TILs

The simple utility of interpreters is well-known. The use of interpreters is as

old as the art of computer programming. Gries, for example, devotes a chapter

in a compiler design text to the subject of interpreters and their utility. Almost

all BASIC languages are implemented as interpreters rather than as compilers.

Allison, et al, present a fairly simple method for generating an interpreter for

Tiny BASIC. It is relatively simple to extend this concept to other languages.

The interpretive language or y/onion" approach espoused is very similar to the

threaded code approach. Forsyth and Howard discuss trade-offs of inter¬

preters, threaded interpreters, and compilers on microprocessors, but con-

BIBLIOGRAPHY AND NOTES 245

elude that threaded code is "troublesome" to implement on an 8-bit

microprocessor. It might be well not to press this point with an experienced

FORTH programmer.

Most of the literature on threaded interpretive languages is very FORTH-

specific. Variations on basic FORTH semantics and syntax appear in languages

such as IPS and in STOIC, a language that I have not investigated. James gives

an excellent overview of FORTH and a brief description of how it is mechan¬

ized. There is not quite enough description to allow a variation of FORTH to

be implemented. The microFORTH PRIMER is also descriptive, particularly

with regard to register assignments, but does not come close to a full discus¬

sion of the language. I am sure that FORTH has fully descriptive documents,

but they are not publically available. The DEC Users' Society Program Library

document is available and contains a great deal of mechanization detail for a

PDP-11 version of FORTH. Still another version of FORTH is discussed by

Rather and Moore (the latter being the original developer of FORTH). The

reference gives timing comparisons between BASIC and FORTH, although it is

difficult to judge benchmarks when the absolute test conditions are unknown.

Background and Extensions-

The design of the screen keywords implies at least a basic understanding of

file structures. I have never been particularly enthralled with the screen

keywords I designed for ZIPD, my current TIL. Klein explains at least the fun¬

damentals of file structures and management, which could serve as a point of

departure for a screen keyword redesign. Files are not my strong point and I

can easily envision improvements being made by someone with a better

perspective on files.

The design of the assembler is somewhat primitive, mostly because of its in¬

tended use simply as a keyword extension tool. Extending the assembler to a

fully relocatable, macroassembler would be nice. Fylstra and Emmerichs are

references which introduce the assembler problems and offer solutions to some

of the more common problems. Both of the texts are tutorial, but present

useful approaches.

The extension that I most want is floating-point arithmetic keywords. Time

to design the keywords has been the problem. The essentials are available in

Hashizume and Rankin and Woziak. The former presents flowchart-level

designs for floating-point routines while the latter presents a code design for a

6502. A modest amount of conversion should yield a code design for some

other microcomptuer (such as my Z80).

Widget Sorters

The definitive reference to widgets is Kripke. This text depicts the conver-

246 THREADED INTERPRETIVE LANGUAGES

sion of lignite glop, anthracite glop, and hard glop into high-grade and low-

grade muckle by the Acme Muckle Mfg. Co., and the subsequent use of the

muckle by the Amalgamated Widget Works to manufacture widgets.

Although an overabundance of time is spent discussing the partial derivatives

involved in widget production, little thought is devoted to the problem of

sorting and grading the widgets produced. If anyone finds the definitive widget

sorting reference, please put it in a bottle addressed to the author.

References

Allison, D et al. "Build Your Own BASIC." Dr. Dobb's Journal of Computer

Calisthenics & Orthodontia, Volume 1, January 1976, page 7.

Allison, D and M Christoffer. "Build Your Own BASIC — Revised." Dr.

Dobb's Journal of Computer Calisthenics & Orthodontia, January 1976, page

8.

Allison, D et al. "Design Notes for Tiny BASIC." Dr. Dobb's Journal of Com¬

puter .Calisthenics & Orthodontia, January 1976, pages 8 thru 12.

Emmerichs, J. "Designing the Tiny Assember." BYTE, April 1977, pages 60

thru 67.

Forsyth, H and R Howard. "Compilation and Pascal on the New

Microprocessors." BYTE, August 1978, pages 50 thru 61.

Flystra, D.'Write Your Own Assembler." The Best of Byte, Morristown, NJ:

Creative Computing Press, 1977, pages 246 thru 254.

Gries, D. Compiler Construction For Digital Computers. New York: John

Wiley & Sons, 1971.

Hammond, H and M Ewing. FORTH Programming System For the PDP-11.

DECUS Programming Library, Numbers 11 thru 232, 1975.

Hashizume, B "Floating Point Arithmetic." BYTE, November 1977, pages 76

thru 78, 180 thru 188.

James, J."FORTH for Microcomputers." Dr. Dobb's Journal of COMPUTER

Calisthenics & Orthodontia, May 1978, pages 21 thru 27.

Klein, M."Files on Parade, Part 1: Types of Files." BYTE, February 1979, pages

186 thru 192.

BIBLIOGRAPHY AND NOTES 247

Klein, M.'Tiles on Parade, Part 2: Using Files." BYTE, March 1979, pages 32

thru 41.

Kripke, B. Introduction To Analysis. San Francisco: W.H. Freeman and Co,

1968.

Meinzer, K. "IPS, An Unorthodox High Level Language." BYTE, January

1979, pages 146 thru 159.

MicroFORTH Primer. Manhattan Beach, California: FORTH, Inc, 1976.

Rankin, R and S Wozniak. "Floating Point Routines for the 6502." Dr. Dobb s

Journal of COMPUTER Calisthenics & Orthodontia, August 1976, pages 17

thru 19.

Rather, E and C Moore. "The FORTH Approach to Operating Systems." Pro¬

ceedings of the ACM, 1976, pages 233 thru 239.

248 THREADED INTERPRETIVE LANGUAGES

SUBJECT INDEX

A

Address

Code 14

Return 7, 14

Word 12

Arithmetic Operators

Fixed Point 50

Floating Point 232

Array 45

ASCII 3, 10, 12, 42

Assembler

Definition 2, 181

Macroinstructions 195, 207

Real 208

Structured 201

Vocabulary 208

Z80 182

B
Backward Reference 182, 202

Base, System Number 40, 47

BEGIN....END

Assembler 203

TIL 59

Blocks 210

Branches

IF...ELSE...THEN 60

WHILE 61

Buffers

Block 211

Control of 213, 214

Line 3, 9

C

Case constructs 65

Code Address

Primitives 20

Secondaries 20

Code Body

Active 13

Passive 13

Primitive 14

Secondary 14

Code Keyword 208

COLON 20, 29, 36

Comment Keyword 217

Compiler 2

Compiler Directives 15, 66

Compile Mode

Definition 5, 17, 21

Termination Directive 22

Computer, Generic 28

CONSTANT 23

Constructs

Assembler 201

TIL 58

Context Vocabulary 26, 47

Core Vocabulary 4, 26

CREATE 22, 66

Cross-compiling 6, 224

CURRENT Vocabulary 26, 47

Cursor 9

D

Data

Constants 43

Flags 42

Strings 42

Users 46

Variables 45

Defining Words 4, 21, 67

DEFINITIONS 26

Dictionary 4

Format 12

Free Space 17

Headers 12

SUBJECT INDEX 249

Pointer 17

Searching 12

Directives

Program Control 5

System 58

Disk, Floppy 180

Disk Messages 219

DO...LOOP

Assembler 206

TIL 62

E

Editor

In a Line 222

Line by Line 221

Efficiency, Timing 6, 35

Error Messages 4, 11

EXECUTE 21, 29, 36

Execute Mode 10, 15, 17, 48

Executive 8

Extensible 2

Extensions

Assembler 182

Cross-Compiler 224

Editor 220

Floating Point 228

Supervisor 227

Virtual Memory 210

F

Files, Disk 181

Flag, Logical 42

Floating Point

Keywords 231

Formats 228

FORGET 26

FORTH 7

Forward Reference 182, 201

G

Global Data 237, 241

H

Headerless Keywords 12, 25

Headers

Creating 22

Description 4

Extended Form 15

Primitive 20, 22

Secondary 20

High Level Definitions 69

I
IF...ELSE...THEN

Assembler 204

TIL 60

Immediate Keywords 15

INLINE 88

Input/Output

Operators 54

Primitives 75

Stack 43

Input Submode 9

Instruction Register 19, 47

Integers 40

Internal Form 2

Interpreters 2

BASIC 2, 6

Inner 7, 18, 28, 32

Outer 8, 14, 77

Pure 2

Threaded Code 2, 7

Interstack Operators 50

K

Keywords

Definition 4

Descriptions 4

Headerless 12, 25

Immediate 15

Primitive 7

Secondary 7

L

LABEL 199, 202

Library, Subroutine 236

Line Buffer 3, 9

Linked List 4, 12

Literal Handlers 5, 12, 43

Literals 5, 14, 43

Local Data 237

Logical Operators 53

Loops

250 THREADED INTERPRETIVE LANGUAGES

BEGIN...END 58, 203

DO...LOOP 62, 206

M

Macros, Assembler 195, 207

Mask Patterns 183

Mass Memory 3, 15, 210

Memory Reference Operators 49

MODE 47

N

NEXT 19, 29, 36

Numbers

Floating Point 40

Integer, Byte 40

Integer, Word 40

Routine 40, 94

Subroutines 100

System Base 15

O
Operands 4

Operators 48

Arithmetic 50

Interstack 50

I/O 54

Logical 53

Memory Reference 49

Relational 53

Stack 48

System 56

Utility 57

P

PATCH 98

Polish notation, reverse 2, 4, 182

Procedures 237

Program

Control Directives 5

Design 239

Entry 241

Executives 14, 241

Structure 235

Testing 6, 242

Q
QUESTION 97

R

Records 238

Relational Operators 53

Return Address 7, 14

RPN 2, 4, 182

RUN 20, 29, 36

S
SCODE 23, 67

Screen 211

SEARCH 92

Secondaries 7

SEMI 20, 29, 36

Sizing

Assembler 201, 207

Editor 222

Self-generating TIL 85

Total TIL 6

Source Code 208

Stack

Data 4

LIFO 4

Operators 48

Return 4

Routine 98

Testing 5

STATE 47

Strings 42

Subfields 220

Subroutines 4, 14, 100

System

Operators 56

Parameters 46

T

Threaded

Code 2, 7

Interpreters 2

Interpretive Languages 2

Tokens

Definition 3

Separator 3

Translator 2, 182

U

Update Bit 213, 214

User

SUBJECT INDEX 251

Block 46, 68

Parameter 46

Utility Operators 57

V

Variables

Defining 45

System 46

Vertical Design 239

Virtual Memory 181, 210

Vocabulary 4, 25

CONTEXT 26, 47

Core 4, 25

CURRENT 26, 47

Defining Words 72

Linking 25

Lost 25

Object 224

Searching 12

W

WHILE

Assembler 206

TIL 61

Widget Sorters 1, 226

Word Address

Definition 12

Register 19, 47

