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PREFACE 

This manuscript is the outgrowth of a sequence of events that began in July 

1978. I had a very basic microcomputer with a very basic BASIC. Not the 

most exciting combination. What I really wanted at that point was a compiler. 

I had more or less decided that C looked like a reasonable language to imple¬ 

ment. My essential problem was how to bootstrap a C compiler. Clearly it 

could be booted in BASIC, but the very thought appalled my sense of 

rightness. 

At the July 1978 National Computer Conference (NCC) at Disneyland, I 

picked up a copy of Dr. Dobb's Journal of Computer Calisthenics & Or¬ 

thodontia that had an article on FORTH.* "Aha,” I said, "an extensible inter¬ 

preter." Clearly a much better approach than BASIC to bootstrap a compiler. 

The problem then was how to get my hands on FORTH. After a quick trip to 

Manhattan Beach for a copy of FORTH, Incs Microforth Primer for the Z80 

and a two-week wait for the DECUS (DEC User's Society) FORTH manual for 

the PDP-11, I had the ammunition for my own threaded interpretive language 

(TIL) design. 

By August 1978, six weeks after the NCC, I had an up and running version 

of a TIL called ZIP (Z80 Interpretive Processor) merrily extending itself in all 

directions. I had not built the initial C bootstrap compiler simply because ZIP 

was so much fun to play with. 

Because there was so much controversy about languages for microcom¬ 

puters during this time period, I decided to join the fray with a short article on 

TILs and their advantages for small microcomputers. A call to BYTE magazine 

resulted in a request for a 200-page book manuscript rather than an article! 

Months later, a 500-page manuscript resulted. TILs are not the only extensible 

things in this world. 

The main point is that TILs are fun. They are easy to write, easy to use, and 

very useful tools for the small computer user. I have built several versions of 

*FORTH is a registered trademark of FORTH, Inc, 2309 Pacific Coast 

Highway, Hermosa Beach CA 90254. 
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ZIP, some in as little as twenty hours. All have been fun and all have been 

used. When I bought UCSD Pascal for my system, I used ZIPD (a disk-based 

version of ZIP) to examine the Pascal files, specialize the I/O for my system, 

and generate the disks to boot the compiler. The simple utility of threaded in¬ 

terpretive languages is one of their nicest attributes. 

There's no need to be a software guru to write and code a TIL. I certainly 

don't fit in the guru class, and yet I managed. I hope that others will also 

manage, and on something other than a Z80-based system. I have attempted to 

explain what I did as well as how. When using the system, be inventive. That's 

precisely how ZIP evolved. 

As a final note, special thanks go to Shirley Kalle, Carol Lee, Vicki Haas, 

and Velva Hinkle for typing the manuscript. 

Dayton, Ohio 

August 1979 
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OVERVIEW 1 

1 I Overview 

This text is intended for people owning either a microcom¬ 

puter or minicomputer with minimal peripherals, those who 

write software for these types of systems, and those who are 

interested in learning about such systems. 

1.1 Introduction 

The topic of this book is the design of TILs (threaded interpretive 
languages). The goal is to reverse the trend toward language standardization 
advocated by the users of large computer complexes. Using FORTRAN to 
write a program is fine if the compiler fits on the machine you own and pro¬ 
duces efficient code. In general, this is not true for microcomputers and is only 
marginally true for most minicomputers. If you have a real-time application, 
you may have trouble. A threaded interpreter can solve your problem without 
resorting to assembly language programming. 

A threaded interpreter approach is a way of developing a standard, 
nonstandard language. This is not quite as strange as it sounds. Embedded in 
the language is a compiler which allows the user to extend the language and 
redefine operators and data types. If you know what someone else's program 
does, you can simply modify your existing language to encompass the defini¬ 
tions of the other program and then directly execute it. The modifications may 
be done by using either existing language constructs or machine language. In 
either event the extensions are done using the existing language. 

One point must be stressed. There is no right threaded interpretive language 
and no right way to implement the language. It is strictly applications- 
dependent. TILs can be used to write a program for a microcomputer monitor, 
a general-purpose language, an editor, or a real-time program for sorting 
widgets. I shall concentrate on developing an interactive interpreter which will 
include some of the above as a subset and will support the generation of the 
others. 
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This text is tutorial in nature. It presumes a nonextensive familiarity with 

computers and programming terminology. It is not for the rank amateur, nor 

is it for the PhD in computer science. The former will not find it easy going and 

the latter will not find anything new. 

The examples in the text are directed toward the Zilog Z80 instruction set 

simply because I own a Z80-based microcomputer. Any other microcomputer 

would serve as well for illustration purposes. 

1.2 What is a TIL? 

To define a TIL, it is necessary to view it in the context of translation. A 

translator is a computer program which converts source language into target 

language. Each language has well-defined semantic and syntactic constructs. If 

the source language is FORTRAN or Pascal and the target language is 

assembly language or machine language, the translator is known as a com¬ 

piler. If the source language is assembly language and the target language is 

machine language, the translator is known as an assembler. 

An interpreter for a source language accepts the source language as input 

and executes it directly. It does not produce a target language but translates 

directly to an action. A pure interpreter will analyze a source language state¬ 

ment each time it is executed. Fortunately, these beasts are rare. Most inter¬ 

preters actually employ two phases. The first phase translates the source 

language to an intermediate language or internal form. The second phase then 

interprets or executes the internal form. The internal form is designed to 

reduce subsequent analysis and execution times. Most BASIC interpreters do 

exactly this, with the first phase occurring during program input/edit and the 

second phase occurring at run time. 

A threaded code interpreter produces a fully analyzed internal form. The in¬ 

ternal form consists of a list of addresses of previously defined internal forms. 

The list is threaded together during the first translation phase. This first phase 

is remarkably similar to that of a compiler and is generally called the compile 

mode. During execution the interpreter executes consecutive internal forms 

without performing any analyses or searches, since both were completed 

before execution was evoked. 

If the concept is extended to include a broad class of internal forms and a 

method of interacting with the interpreter, a threaded interpretive language 

(TIL) results. TILs are characterized by extensibility since they have the full 

power of the compile mode to augment their existing internal forms. Our TIL 

will also allow pure interpretation directly from the input line. Most TILs 

resort to stacks and reverse Polish notation to achieve an acceptable level of ef¬ 

ficiency. I shall consider this class of threaded interpretive languages. 

If the full scope of the desired TIL is known, the compile mode may be 

deleted (since all internal forms are known), producing a threaded interpretive 
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program. This type of program is useful for real-time, fixed process controllers 

and system monitors with a fixed scope. These types of programs are generally 

placed in read-only memory but require a minimal amount of programmable 

memory to support system variables and stacks. It sounds impressive. Let's see 

if it is! 

1.3 The Elements 

There are certain elements that characterize any language implementation. 

The elements that characterize threaded interpretive languages will be extend¬ 

ed to include those of an interactive terminal-directed implementation. The 

presumptions will be based on a minimum system consisting of a keyboard, a 

video display, a microcomputer with at least 8 K bytes of programmable 

memory and some type of mass storage. An operating system or monitor 

which supports program generation and modification is presumed to be 

available. 

The visible attribute of any language is the man-machine interface. The 

keyboard and display device are critical since they are the means of interacting 

with the system. The inputs to the system will be tokens separated by spaces. 

A token may be composed of any sequence of ASCII (American Standard 

Code for Information Interchange) characters that your system supports. A 

token may be any of the following: 

• a number (integer, real, etc) 

• an operand (constant, variable, etc) 

• an operator (logical or arithmetic, such as +, —, < , > , etc) 

• a function (fixed subprogram that returns a result) 

• a subroutine (subprogram which performs some action but does 

not necessarily return a result) 

• a directive (system control command) 

• a program (desired operation or action) 

Examples of tokens could include @, +, TOKEN, Rumplestiltskin, <R, or 

Token lengths are only limited by the line length of your input device or 

your own personal preference. The only token separator is an ASCII space (■ 
in this text). 

Consider a line-oriented I/O (input/output) scheme. An input line consists 

of a sequence of tokens (separated by spaces) terminated by a carriage return. 

In order to correct input errors, the I/O routine must recognize a rubout or 

backspace to erase the last character on the line and a line delete command to 

erase the entire input line and return to the input mode. The input is im¬ 

plemented using an input line buffer. Output is also line-oriented. Successful 

completion of an input operation is usually followed by the system echoing a 

message to the operator. The usual "OK" may be used, or any other sequence 
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you wish to use. If the system does not recognize a token, it will echo the token 

followed by a question mark (?). I prefer this to the somewhat ubiquitous 

'"WHAT?" employed by others. A simple question mark seems less threaten¬ 

ing. Internal errors detected by the system result in an error message after 

which control reverts to the operator. 

This is about as simple an operator's interface as can be devised. It is also ex¬ 

tremely effective and flexible. Several extensions to the above I/O scheme can 

be implemented. I usually allow lowercase alphabetic characters as input, but 

they are stored in the input buffer as uppercase. All system responses are in up¬ 

percase. This clearly separates commands from responses. I also display a 

marker at the end of any line that has been deleted. These are niceties that 

make life easier. 

A central element that characterizes our TIL is a dictionary. Almost all of 

the language is composed of dictionary entries. There is an entry for every 

token defined in the system. Tokens other than input numbers are called 

keywords. The dictionary is the medium that allows the system to locate 

keywords. The dictionary is segmented into vocabularies that contain 

keywords associated with a particular function. A core vocabulary exists that 

contains the primary language keywords. The core coexists with any specific 

vocabulary such as an assembler or an editor vocabulary. 

This TIL will contain defining words which create new dictionary entries. 

The keyword attributes may be specified using machine or assembly code or 

may be defined in terms of previously defined keywords using the compile 

mode. The TIL will also contain defining words which create dictionary entries 

of a generic type. Examples of these include constant and variable defining 

words and other more complex operations. 

Defining words are defined using more primitive defining words. Defining 

words always create dictionary headers for the keyword being defined. The 

headers form a linear linked list to facilitate identifying a specific keyword 

when the dictionary is searched. One or more vocabularies may be searched 

during a given dictionary search. I will consider several header forms and 

search policies in greater detail later in the text. 

Another central element in this TIL will be the use of stacks. These are the 

standard LIFO (last-in, first-out) push-down stacks supported by many 

microcomputers and minicomputers. Specifically there are two stacks used to 

implement the TIL. A data stack is used to store numbers and addresses of 

operands. Operators generally expect data on the stack in a predefined order 

and return results to the stack. A second stack called the return stack is used to 

store program flow-control parameters. This stack can also be used for tem¬ 

porary data storage (carefully). Two stacks are used to separate data from 

control parameters. The data stack, commonly called just the stack, is always 

16 bits wide. The return stack will always be called just that and is usually 16 

bits wide. Sometimes the return stack is only 8 bits wide. 

The element which is most unusual is the use of RPN (reverse Polish nota¬ 

tion) to represent arithmetic or logic expressions. RPN specifies simply and ex¬ 

actly the order in which expressions are to be evaluated. The operators come 

after the operands. The general rules are: 
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• The identifiers, operands or numbers appear in the same order 

in both infix notation and reverse Polish notation. 

• The operators appear in the same order (from left to right) as 

they are to be applied. 

• The operators appear immediately after the identifiers. 

For example: 

7X6/4 - 7B 6BXB4B/ 

3 + (4 X 6—2)/7 - 3B4B6BXB2 B-B7B/B + 

The use of the data stack and reverse Polish notation allows an easy left-to- 

right scan of an input line. As each number is scanned, its value is pushed onto 

the stack. Binary operators pop two values from the top of the stack and push 

the result onto the top of the stack. Unary operators simply replace the top 

stack value. 

One of the most common programming errors is mismanagement of the 

stack because operators expect values on the stack. During interactive pro¬ 

gram execution, stack underflow should be checked by testing for underflow. 

Stack overflow can be tested using the keyword. This keyword displays the 

top stack value, destroying its value in the process. If the stack is empty, it 

results in a stack underflow message. If a value should be on the stack, this 

makes it available for verification. Gross stack overflow can cause the pro¬ 

gram to self-destruct as I have proven many times. 

The most useful element of the TIL is its compile mode. Keywords may be 

defined in terms of previously defined keywords using the compile mode. This 

produces a threaded list definition of the new keyword. In point of fact, a pro¬ 

gram is nothing more than such a list produced by compiling the definition. 

When the program is compiled, ie: the program keyword is defined, the com¬ 

piler produces a list of the addresses of the previously defined keywords and 

stores them in a dictionary entry. This list may also include literal handlers 

followed by literals or program control directives followed by relative jump 

constants. Literals allow numbers and labels to be embedded in the program. 

Control directives allow program branches to be mechanized. Dictionary 

searches to locate keywords associated with tokens, handlers, and directives 

occur only during compilation. Execution of a program involves only a single 

dictionary search to find the program since the threaded list contains all the 

data required to execute the program. This also explains why a pure inter¬ 

pretive mode is required. Without this mode it is impossible to execute a pro¬ 

gram or keyword. 
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1.4 The Attributes 

There are several advantages to a TIL as well as several disadvantages. It all 

depends on whose side you are on. The general trade-offs will be discussed 

briefly. 

A threaded interpretive language is generally fast compared to most inter¬ 

preters available for microcomputers, and in some applications it is faster than 

compiled code. My current TIL is about three times as fast as an integer 

BASIC. TILs are slow relative to optimal assembled code. The very best com¬ 

pilers are about 10 to 15 % inefficient given a reasonable processor instruction 

set. The very best microcomputer compilers are probably 15 to 50% inefficient 

if they are cross-compilers hosted on a large computer and if significant code 

optimization is included. Microcomputer compilers are not as efficient, par¬ 

ticularly if they are hosted on the microcomputer. The instruction sets of most 

microcomputers do not support easy code optimization. Depending on the ap¬ 

plication, a 100% inefficiency is not unusual in a microcomputer compiler. 

This is roughly the inefficiency of a TIL. In a purely number crunching ap¬ 

plication, however, a threaded interpretive language is nearly as efficient as 

assembled code. 

A major advantage of a TIL is the memory required to implement the 

language. The core language can be contained in less than 4 K bytes, and an 

assembler, editor, and virtual memory system requires an additional 2 or 3 K 

bytes. Compare this to the 24 to 32 K bytes required to host a compiler on a 

microcomputer or minicomputer. Once the core language is available, an ap¬ 

plication keyword can be added in an incredibly small space because the full 

power of the core language is available. For example, a keyword to evaluate 

an expression of the form A*2 + B;t + C normally requires less than 40 bytes. 

If a real-time, stand-alone program is required, the program can be 

developed and tested in an interactive mode. Then the program can be cross- 

compiled to leave only the keywords needed for the application in the cross- 

compiled version. All dictionary search bytes (the headers) may be removed, 

leaving a minimal set of code. The resulting program can be placed in read¬ 

only memory for dedicated machine hosting. 

One of the nicest features of a TIL is the simplicity with which programs can 

be developed and tested. A top-down approach is assumed since the TIL is 

fully structured. Each function or subroutine is a keyword. In the interactive 

mode, numbers in the input line are pushed to the stack. The keyword follows 

and expects its parameters on the stack. The keyword leaves its results on the 

stack where they can be popped and examined by the user with the 

keyword. A separate driver program is never needed to test a TIL keyword. 

TIL coding ease is somewhere between that of a higher-order language and 

an assembly-language—more difficult than the former and easier than the lat¬ 

ter. The only difficult feature is tracking the order and number of items on the 

stack. Checkout is so easy, however, that the total time to develop and test a 

program is shorter than the time needed for either a higher-order language or 

an assembly-language program. 
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It should be noted that designing and implementing a TIL is quite simple. 

My first design took about six weeks of evenings to implement in machine 

code. Don't panic! My preference is to hand-assemble and machine-code short 

routines. A TIL is nothing more than a sequence of very short routines. Few of 

the keyword routines, including the dictionary headers, are longer than 20 

bytes. 

1.5 Implementation Notes 

Technically, the type of threaded interpretive language considered here is a 

tree-structured, threaded code interpreter. There are two types of keyword 

structures: primitives and secondaries. Primitives have code bodies that con¬ 

sist of the machine code which implements the action. Secondary code bodies 

are lists of addresses of previously defined primitives and secondaries. It is ob¬ 

vious that secondaries cannot be directly executed by the processor. 

Primitives are closely akin to subroutines. Secondaries are akin to a list of 

subroutines. The outer loop or executive of any TIL program is a secondary. 

Each call to a primitive from a secondary causes the machine code of the 

primitive to be executed and then control is returned to the next instruction in 

the secondary (ie: the next address in the threaded list). If the next instruction 

to be executed is a secondary, the following instruction's address is stored on 

the return stack as the return address. When this new secondary completes all 

of its threaded instructions, it retrieves the return address and returns to ex¬ 

ecute the next instruction following its call location. This effectively creates a 

tree structure, the end nodes of which are always primitives. This will be ex¬ 

plained in much greater detail later in the text, since it is central to the opera¬ 

tion of a threaded interpretive language. 

There are many ways to implement a threaded interpretive language. A 

typical TIL can be implemented using as few as forty to sixty primitives and 

defining all other keywords as secondaries using this minimal set of primitives. 

This is the technique used in FORTH, a typical TIL. A secondary does, 

however, require more overhead time to execute than a primitive. Using a 

minimal set of primitives results in a slower, less efficient language. It does 

produce a much more portable language. These types of implementations are 

also extremely memory conservative. Depending on the application, you may 

be interested in defining a minimal set of primitives. I tend to make all user- 

available operator definitions primitives. This results in faster programs at a 

slight memory penalty. 

The heart of the TIL is the inner interpreter. The inner interpreter contains 

the routines which step from address to address in the threaded list of instruc¬ 

tions, saving return addresses when a secondary is encountered, and retrieving 

return addresses when a secondary completes. The inner interpreter code must 

take as little time as possible since it determines how quickly the TIL can 

operate. This is a case where time efficiency is far more important than 
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memory minimization. 

The outer interpreter is the system executive used to implement the interac¬ 

tive, terminal-directed operator's interface. The outer interpreter supports 

both a pure interpretive mode similar to a BASIC calculator mode and a com¬ 

pile mode to extend the language. The outer interpreter will be written, oddly 

enough, in TIL. Several variations on the outer interpreter theme will be con¬ 

sidered, but all will be endless loops. How else can we return to the operator? 

Some dictionary entries need not be contained in any vocabulary. These en¬ 

tries fall into two general catagories. Certain system routines used to imple¬ 

ment the outer interpreter are of absolutely no earthly use to the operator. 

Other routines such as the literal handlers and program-control directives are 

available to the operator only indirectly. These routines are invoked by the 

system only in the compile mode. It makes little sense to include header bytes 

to locate something which cannot be used. 

There are several ways to handle different data types. FORTRAN, for exam¬ 

ple, treats all variables starting with I, J, K, L, M, or N as integers unless the 

variable is specifically declared to be a real type. The operators then resolve 

the data types based on a predefined precedence rule. The philosophy adopted 

for the TIL will be substantially different. All operators will presume operands 

of a given type. For example, the operator " + " presumes two 16-bit integers 

on the stack and will replace the top two elements by their sum. If floating¬ 

point addition is desired, an operator such as F+ must be used and it will 

presume two floating-point number arrays on the stack. This places the 

burden of data type resolution squarely on the programmer. What could be 

simpler? 

The threaded interpretive language I will investigate will be fully structured. 

It supports branching and loop structures but not an unconditional jump 

(GOTO). An experienced programmer can defeat this structured goal, but not 

easily. I have no intention of telling anyone how this can be done. 

The implementation will be directed toward defining a minimum threaded 

interpretive language that supports self-generation of the remaining language. 

Since the language contains a compiler, only a minimal amount of the 

language need be hand-coded. The rest can be coded using the TIL itself. 

About 2 K bytes of code are usually sufficient to allow this self-generation 

capability. 
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2 I How a TIL Works 

A fundamental difficulty in explaining how a threaded in¬ 
terpreter works is the interdependence of the various 
language elements. If there is a single unifying explanation, 
it has escaped me. My approach is simply to draw sabers 
and charge — not elegant, but usually effective. 

2.1 Operators View 

The system operator has a rather myopic view of the inner workings of any 

program, but the operator has the only seat in the house for interacting with 

the system. All of the operator's input to the system consists of input lines, 

generally composed of as many characters as the display will support on a 

single display line. In the input submode, the system will indicate the input 

point on the video display by a cursor symbol. I often use a blinking 

underscore (an ASCII "_" alternating with a ■) as a cursor. Since my editor 

insists that the typesetter does not have a blinking character font, I will ignore 

the input point and only consider entire lines of input in the text. Any subse¬ 

quent system response will be underlined. 

The input submode is called a submode because the system is devoting its 

full resources to filling an input buffer. The system mode may be in either the 

execute or compile mode during the input submode. Until the carriage return 

key is pressed, the system will stay in the input submode. The system will 

recognize three distinct commands in the input submode: 

Backspace — This command will enter a space (■) at the cursor point and 

move the cursor left one character position. If the cursor is at the first 

character position of the line it will remain at the first position and not move. 

Line Delete — This command will enter a line delete symbol at the current cur¬ 

sor point, output a carriage return and line feed, and leave the cursor at the 

first position of the next line. 
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Carriage Return — This command causes the system to enter a space at the 

cursor point, move the cursor right one character, and exit the input submode. 

Any other character entered by the operator is simply displayed on the 

video display at the current cursor location and the cursor is moved right one 

character place. Concurrently, the character is moved to the line buffer which 

is a one-for-one duplication of the display line (with one exception) up to the 

point where the carriage return key is pressed. The exception is, of course, the 

lowercase alphabet. Lowercase alphabetic entries are displayed as lowercase 

but stored in the line buffer as uppercase. As previously mentioned, this allows 

separation of commands from any later system response which will always be 

in uppercase. 

One other point is worth mentioning. When the last available character 

place of the display line is entered, the input submode remains in effect. The 

next entry will simply replace the last character on the line. The cursor will not 

advance. Only a carriage return terminates the input submode. 

Although this line buffer and display line scheme may seem complex, it is 

well worth the trouble. It allows easy editing of the line. The line delete func¬ 

tion, for example, eliminates the need to enter multiple backspaces to reach the 

left end of a line in which there is an input error when the current entry point is 

on the right end. It is easier to start over. My first microcomputer had a read¬ 

only memory monitor without a line delete, backspace, or carriage return. The 

last character in a command caused immediate execution of the command. 

This crazy scheme required pressing the system master reset button to recover 

from input errors and almost destroyed my index finger. Worse still, I occa¬ 

sionally hit the power button instead of master reset, totally destroying the 

resident programs. Be advised! 

Consider that the execute mode and input submode are in effect, and the 

cursor is at the first character position of a display line. The carriage return 

key is pressed. The system will respond: 

■OK 

The cursor will then advance to the first entry position of the next line. 

The line buffer is cleared (filled with blanks) until a keyboard printing 

character key is depressed. In the example, depressing the carriage return key 

causes the system to enter the execution mode. The system then scans the input 

buffer from left to right looking for a token: a sequence of ASCII characters 

terminated by a space. Finding nothing in the buffer in the example, it displays 

a message to the operator indicating successful completion of all requested ac¬ 

tions and returns to the input mode for the next command. Any time you see 

■ OK. you know the line buffer is empty. 

Now consider the following input and response: 

IB. MlfiBOK 
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In this case, the system will first find the token "1" in the buffer. Its first 
response is to presume the token is a keyword. It searches the dictionary look¬ 
ing for the keyword named 1. It finds such a keyword (since regardless of the 
number base a 1 is a 1). The keyword 1 is a primitive which pushes a 1 to the 
data stack. Since the system is in the execution mode the system executes the 
keyword to affect its action, tests for stack errors, finds none, and returns to 
scan the next token. The next token it finds is the This token is a second¬ 
ary keyword which pops the top data stack, converts it to a string of ASCII 
characters that represent the number in the current system number base, and 
echo displays these characters followed by a space to the operator. The system 
executes the keyword, which results in the IB action. Again, no errors 
are detected, so the system returns to scan the next token. Finding nothing fur¬ 
ther in the line buffer, it displays BOK and returns to the input mode. 

In the following sequence a slightly more complex action occurs: 

DECIMAL ■ 10 ■ HEX ■. BAB BOK 

The keyword DECIMAL is the keyword which sets the system number base to 
the decimal (or base 10) mode. This token is scanned and executed. The token 
"10" ASCII will not be found in the dictionary. Since it is not a dictionary 
keyword, the system will attempt to convert it to a number. Because all 
characters in the token are in the valid decimal character set (0 thru 9) and the 
execution mode is in effect, the system will convert the input from ASCII to a 
string of binary numbers equivalent to the values of each character and then 
convert this string to a single binary number using the current system number 
base. The result is pushed to the stack. The system returns to scan the token 
HEX. The keyword HEX sets the system number base to the hexadecimal or 
base 16 mode. The token is scanned, located, and executed. The "." token, 
when executed, uses the hexadecimal number base to convert the top stack 
value resulting in AB . The character A in hexadecimal is exactly equal to 
the character 10 in decimal. 

If the system detects a stack error, it will advance one display line and echo 
some message, such as BSPBERROR (or BSTK , or whatever you like) 
instead of BOK . It will then proceed to reset the stack pointer and system 
variables to evoke the execute mode under operator control (ie: it enters the in¬ 
put submode, where the operator must respond). 

If the operator enters a keyword which is neither an existing keyword nor a 
valid number in the current number base, the system will advance one display 
line, echo the token followed by "7" and revert to the input submode. Any er¬ 

ror of this type detected in the compile mode will result in the partially com¬ 
piled keyword being deleted from the dictionary. The upshot of this is that for¬ 
ward references are not allowed. A keyword cannot be referenced before it is 
defined. 

Obviously there is more to the operator's interface than has been illustrated 
to this point. All of the essential features of the interface have been described. 
What is lacking is a complete syntactic and semantic description of the 
language. This is the subject of Chapter 4, 'The Tower of Babel Revisited." At 
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this point, I will pursue the subject of how the TIL works, not what it does. 

2.2 Dictionary Format - 

Since approximately 90% of a threaded interpretive language consists of 

dictionary entries, an explanation of their general form is in order. Most dic¬ 

tionary entries consist of a header and a body located in consecutive memory. 

The header is optional. The header is used by a search algorithm to locate the 

address of the first word in the body of a specific keyword. This address 

(where the keyword is located) is called the word address of the keyword. The 

headers form a linear linked list to facilitate location of the word address in a 

reasonable length of time. 

Several alternate header formats can be realized. The form I use for a 

microcomputer consists of 6 bytes: the number of characters in the keyword 

name (1 byte), the ASCII code for the first three characters in the keyword 

name (3 bytes), and a pointer to the first header location of the preceding dic¬ 

tionary entry (2 bytes). The pointer is called the link address or link. A typical 

dictionary organization for this type of implementation is shown in figure 2.1. 

Note that 3 bytes are always allocated in this format for keyword names. If 

there are fewer than three characters in the keyword name — < R, for example 

— the unused characters can be anything since the search algorithm will be 

designed to test only the length plus the number of characters specified by the 

length up to a maximum of three. If there are more than three characters in the 

keyword name, those characters in excess of three are not used to identify the 

keyword. Thus DROP and DROX identify the same keyword but DROP and 

DROPIT identify different keywords because their lengths are different. 

The link address allows the search algorithm to step to the preceding header 

if the current header does not match the token scanned from the input buffer. 

The link address of the last dictionary entry has a value of zero. This is an easy 

value to test for and indicates that the search has terminated unsuccessfully. 

The zero value is unlikely to prove restrictive. 

Some dictionary entries do not have headers. A typical example of this type 

of entry is the literal handler for numbers. The system knows the word ad¬ 

dress, but the operator does not. If a number is input to a keyword being de¬ 

fined in the compile mode, the system will automatically load the word ad¬ 

dress of the number literal handler to the threaded-code listing and then the 

number. The operator has no reason to know the word address of the literal 

handler. Header bytes are superfluous in this case. 

Clearly, alternate header formats are possible. A common extension is to 

allocate storage for up to five characters of the keyword name. This increases 

the header requirements from 6 to 8 bytes. Although this does not appear to 

cost much in terms of memory, it does. A 4 K- byte TIL usually contains about 

150 keywords with headers. At 2 bytes extra per header, a 300-byte memory 

penalty occurs. (For the more mathematically inclined, the answer is 
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END OF THE LIST 

START OF THE LIST 

I 
I 
I 
I 

I 
I 

7 
E 
X 
E 
0 000 

4 
D 
R 
0 
LINK 

R 

LINK 

3 
D 
U 
P 
LINK 

HEADER FOR EXECUTE 

WORD ADDRESS OF EXECUTE 

HEADER FOR DROP 

WORD ADDRESS OF DROP 

HEADER FOR <R 

WORD ADDRESS OF <R 

HEADER FOR DUP 

WORD ADDRESS OF DUP 

Figure 2.1: Typical dictionary organization. 

4 K-bytes/150 keywords = 27 bytes/keyword. Few keywords exceed 20 bytes 

in length, including the header bytes. The less than 30-byte average keyword 

length is correct. The difference is due to a few long routines used to mechanize 

the outer interpreter and the headerless routines.) 

The 2-byte link is standard as is the single token-length byte. Since the 

keyword names are rarely over ten characters long, one bit of the length 

character can be used to identify immediate keywords (keywords that are ex¬ 

ecuted in the compile mode). I will expand my comments on this when 

vocabularies are discussed. 

The body of the dictionary entry contains the implementation details of the 

keyword. The body may be active or passive. An active body produces an ac- 



14 THREADED INTERPRETIVE LANGUAGES 

tion and is associated with operands, directives, programs, and similar func¬ 

tions. A passive body contains data of some type. The first word (16 bits) of 

the code body (ie: the contents of the word address) implicitly specifies the 

code body type. This word is called the code address of the keyword, and it 

always points to executable machine code. This routine either initiates the ac¬ 

tion of an active body or manipulates the data of a passive body. 

Active keywords (primitives or secondaries) have a body which consists of a 

code address, a code body, and a return address. The code body of a primitive 

always consists of machine code. The code body of a secondary always con¬ 

sists of a list of word addresses of previously defined primitive or secondary 
keywords. Embedded in this list may be literal handler word addresses fol¬ 

lowed by literal data, or program-control directive-word addresses followed 

by relative jump constants. Literals may be numbers or lists of ASCII data. 

The relative jump constants allow the program sequence to be modified so that 

loop and branch constructs can be mechanized. 

The code address and return address of the code bodies control the tree- 

structured nature of the language via the inner interpreter. The controlling 

program or executive for the threaded interpretive language or program must 

be a secondary. The code address of a primitive points to the first byte of the 

code body of the primitive. The return address of the primitive transfers con¬ 

trol to an inner interpreter routine which extracts the next word address of the 

current secondary. 

The consequence of this sequence is that a primitive is analogous to a 

subroutine with a return terminating the machine code that implements the 

keyword action. The code address of a secondary points to an inner interpreter 

routine which saves the address of the next word address of the current sec¬ 

ondary on the return stack and makes the first word address of the new sec¬ 

ondary current. In effect, this is nesting down one level: looking for a primi¬ 

tive in the new secondary to execute. The return address of a secondary points 

to an inner interpreter routine which retrieves the word address on the return 

stack and makes it current. This is in effect de-nesting one level: returning to 

the next word address of the secondary that called the terminating secondary. 

If all of this sounds confusing, don't panic — it is. Actually, it will all be 

discussed again in this chapter when the inner interpreter is investigated and 

when an implementation scheme is considered. To add a sense of mystery, the 

passive code body discussion will be delayed until later. 

2.3 Outer Interpreter 

If the inner interpreter is the heart of a threaded interpretive language, the 

outer interpreter is its soul. The outer interpreter establishes the man-machine 

interface. All of the external attributes of the language are affected by the 

design of this routine. The outer interpreter is written in TIL. A simple flow 
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diagram of the outer interpreter will suffice at this stage. 

Figure 2.2 is one possible realization of an outer interpreter. The routines 

perform the following tasks: 

START/RESTART — Initializes the stack pointers and system variables to 

establish the execution mode under operator control. It is entered on start-up 

or in the event a system-detected error occurs. 

INLINE — This routine fills and displays the input line buffer via the input 

keyboard. It recognizes backspace, the line delete command and terminates on 

carriage return. 

MASS — Fills the input line buffer from a mass storage device. A virtual 

memory mechanization is usually used. 

TOKEN — Scans the next token from the input line buffer and moves it to the 

end of the dictionary space (the place where new routines will be added) in ex¬ 

tended header form. (It must include all token characters in case it is a number 

or cannot be recognized.) 

OK — If the line buffer is empty and the terminal is the input device, a suc¬ 

cessful end-of-line message is displayed to the operator. 

SEARCH — Searches the dictionary looking for a keyword header that 

matches the token. Returns the word address of the token, if it is located, by 

pushing it to the stack. Always returns a flag on the stack indicating success or 

failure. 

7EXECUTE — If the system is in the execute mode, the keyword is executed. 

Note that both active and passive keywords have code addresses that point to 

routines which perform some action. Control normally returns to 7EXECUTE 

unless an unconditional jump to the START/RESTART routine or system 

monitor is executed or unless the keyword itself contains an endless loop. If the 

system is in the compile mode, two events are possible. If the keyword is an 

immediate keyword, it is executed. Immediate keywords are either compiler 

directives which implement literals and program control directives or a com¬ 

pile mode termination directive. If the keyword is not immediate, its word ad¬ 

dress is added to the threaded list of the new keyword being compiled. 7EX- 

ECUTE tests for stack underflow or overflow errors before exiting. 

7STACK — If a stack error is detected following execution, an error message is 

displayed and control is passed back to the operator via the 

START/RESTART routine. If the error is detected while the compile mode is 

in effect, the partially completed keyword defintion being compiled is deleted. 

NUMBER — If the token is neither a carriage return nor a keyword, this 

routine attempts to convert the token to a binary number using the current 

system number base. (Number bases are in the set 2 thru 9, A thru Z with A = 

10, B = 11, etc.) If a successful conversion occurs, one of two events can 

result: if the compile mode is in effect, a literal handler followed by the number 

is added to the keyword threaded list being compiled. If the execution mode is 

in effect, the number is pushed to the stack. 

QUESTION — If the token is not a carriage return, an existing keyword, or a 

number, somebody goofed. The offending token is echo displayed to the 
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It is obvious from the description of the routines that two separate system 

modes exist, a compile mode and an execution mode. In the execution mode, 

each token scanned from the input line is tested as follows: 

• If the line buffer is empty and the operator mode is in effect, an OK is 

printed. Control is returned to get the next input line. 

• If it is a keyword, it is executed. 

• If it is a valid number, it is pushed onto the stack. 

• If it is not recognized, it is echoed to the operator followed by "?". 

During the compile mode a slightly more complex scheme is used. The compile 

mode is building a new dictionary entry which may have branches or literal 

data embedded in the threaded code. Two classes of keywords are important. 

Immediate keywords are executed when encountered to allow the system to 

generate appropriate sequences of threaded code to append to the keyword be¬ 

ing defined or to terminate the compiler mode. That is, when an immediate 

keyword is encountered in the compile mode, it is executed immediately. All 

keywords which are not immediate are not executed. Their word addresses are 

simply added to the definition being compiled. In the compile mode, each 

token scanned from the input line is tested as follows: 

• If the line buffer is empty and the operator mode is in effect, an OK is 

printed. Control is returned to get the next input line. 

• If it is located and is an immediate keyword, it is executed. 

• If it is found and it is not an immediate keyword, its word address is 

added to the threaded list of the keyword being defined. 

• If it is a valid number, the number literal is added to the threaded list of 

the word being defined followed by the number. 

• If it is not recognized, it is echoed to the operator followed by "?" and the 

partially completed keyword being defined is deleted. 

Clearly, the method of re-establishing the execution mode is through the use of 

an immediate keyword which terminates the definition. 

The dictionary space for the system must be in programmable memory as 

must be the input line buffers and the stack areas. The inner and outer inter¬ 

preter and the core language may be in read-only memory, but normally they 

are also in programmable memory. One possible system configuration is 

shown in figure 2.3. The dictionary pointer points to the next available 

memory area where language extensions can be added. As definitions are 

added, the language grows upward in memory. 

As each token is scanned from the input buffer, its length plus all of its 

characters are moved to the dictionary space. This is a convenient place to 

hold temporary data. The use of an extended dictionary format to hold tokens 

is designed to allow easy enclosure of the characters to form a dictionary 

header, but all characters must be moved in case it is a number or cannot be 

located. 

The data stack area builds downward and the language builds upward in the 
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free memory area. When the two meet, the ball game is over. Stack overflows 

are fatal since they inevitably overwrite the language. Not much can be done 

about this situation since a runaway stack will eventually overwrite the pro¬ 

gram no matter where you initially hide the stack pointer. 

SYSTEM MONITOR READ-ONLY MEMORY 

SYSTEM MONITOR RANDOM-ACCESS MEMORY 

> UNUSED ADDRESS SPACE 

T DATA STACK POINTER 

> FREE DICTIONARY SPACE 

1 DICTIONARY POINTER 

THREADED INTERPRETER LANGUAGE 

DICTIONARY AREA 

INTERRUPT VECTOR AREA 

Figure 2.3: Typical memory configuration. 

2.4 Inner Interpreter 

The crux of a threaded interpreter is the inner interpreter. The inner inter¬ 

preter controls the order of execution of the machine code which mechanizes 
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the language. It is composed of three short, fast routines, one of which has 

three entrances as shown in figure 2.4. The layout of the bodies of dictionary 

entries is predicated on the inner interpreter routines. The dictionary bodies of 

a primitive and a secondary are shown in figure 2.5 for a byte-addressed com¬ 

puter. 

All secondaries except the secondary which forms the outer loop of the 

threaded program have a code address and a return address. The outer loop of 

the program is a loop. The last word address of the outer loop causes a jump 

back to the first word address of the loop. In the threaded interpreter being 

discussed, this outer loop is the outer interpreter. A glance back to figure 2.2 

will verify this endless loop aspect of the outer interpreter. This outer loop is 

the executive for the program. 

COLON 

SEMI 

NEXT 

RUN 

EXECUTE 

WORD ADD. 

COLON IS A PRIMITIVE WITHOUT A CODE 

ADDRESS WHICH EXITS TO NEXT 

SEMI IS A PRIMITIVE WHICH EVOKES SEMI, 
NEXT AND RUN 

1 NEXT CAUSES NEXT AND RUN TO EXECUTE 

RUN EVOKES ONLY RUN 

EXECUTE IS A PRIMITIVE WITH A HEADER 

WHICH EXITS TO RUN 

Figure 2.4: Inner interpreter routines. 

The code body of the outer loop is a list of the word addresses of previously 

defined keywords. The inner interpreter maintains a register called the instruc¬ 

tion register. It contains the address of the next secondary instruction to be ex¬ 
ecuted. Since the outer loop is a secondary, there will always be a next second¬ 

ary address to be executed. The inner interpreter routine which will execute 

the next secondary instruction is called NEXT. 

The routine NEXT extracts the word address of the next instruction pointed 

to by the instruction register, places it in a word address register and in¬ 

crements the instruction register by two. In figure 2.5 if the instruction register 

contained WA + 2, the routine NEXT would extract WA#1 and leave the in¬ 

struction register containing WA + 4. It is desired to run the routine WA#1 



20 THREADED INTERPRETIVE LANGUAGES 

which is now the current instruction. WA#1 is the word address of the routine 

to be executed. WA#1 may point to either a primitive or a secondary. 

PRIMITIVE SECONDARY 

- CODE ADDRESS 

= CODE BODY 

=RETURN ADDRESS 

Figure 2.5: Code body descriptions. 

WA WA+2 = CODE ADDRESS WA COLON 

WA+2 M WA+2 WA# 1 

A WA + 4 WA# 2 

C WA + 6 WA #3 

H 
I 

• 

N 

E 
= CODE BODY 

• 

• 

C 

0 

D 

E 

WA + N NEXT - RETURN ADDRESS WA +2n SEMI 

When NEXT completes, it falls through to the routine called RUN to run the 

routine. The routine RUN extracts the code address pointed to by the word- 

address register (WA#1 in our example), increments the word-address register 

by two, and loads the code address to the program counter in the central pro¬ 

cessing unit. The next machine code instruction to be executed will be the con¬ 

tents of the word address of routine WA#1, ie: its code address. The code ad¬ 

dress of both primitives and secondaries must point to executable machine 

code. 

If the word address was that of a primitive, the code address extracted by 

RUN points to the first instruction in the code body of the primitive. Thus, the 

primitive's machine code will be executed. The return address of the primitive 

is an instruction which jumps back to the routine NEXT. In the example, if 

WA#1 was the word address of a primitive, it will return to NEXT after the 

primitive executes. The instruction register now contains WA + 4 so that the 

next secondary instruction to be run will be WA|2. 

If the word address was that of a secondary, the code address extracted by 

RUN points to the inner interpreter routine COLON. Note that the RUN 

routine incremented the word address by two so that it points to WA#l+2. 

The routine COLON pushes the instruction register contents onto the return 

stack and moves the word address register to the instruction register. In our ex¬ 

ample, WA + 4 would be placed on the return stack and WA#l+2 would be 

placed in the instruction register. COLON then jumps to NEXT. The address 

WA#l+2 is the first secondary instruction address in the now-current 

keyword WA#1. COLON effectively nests down one level to begin execution 

of the lower-level routine WA#1. 
The return address of a secondary is a primitive called SEMI. SEMI simply 
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pops the top address from the return stack and loads the address to the instruc¬ 

tion register. In our example, it would pop the address WA + 4 and load it to 

the instruction register. SEMI exits to NEXT so that in the example, WA#2 will 

be the next secondary instruction. SEMI de-nests one level to begin execution 

of the next instruction of the higher-level routine (WA#2 in the example). 

In all of the above, the only machine codes actually executed are primitives 

and inner interpreter routines. Secondaries may call secondaries that call 

secondaries, but the bottom of the chain is always a primitive which actually 

executes program machine code. Structurally the procedure forms a tree, the 

end nodes (end branches) of which are always primitives. 

All of this is well and good, but how does the outer interpreter ever execute 

a keyword? Actually it is simple. The search algorithm in the outer interpreter 

locates the word address of a valid keyword and pushes it to the data stack. If 

the routine is to be executed, the routine 7EXECUTE calls the primitive called 

EXECUTE. EXECUTE pops the word address from the data stack, loads it to 

the word address register and jumps to RUN. Note that the instruction register 

contains the address of the instruction following EXECUTE in the 7EXECUTE 

routine so that after the execution of the token, control reverts to the outer in¬ 

terpreter. 

EXECUTE is the only inner interpreter routine with a header. The word ad¬ 

dresses of SEMI and code address COLON are known by other routines within 

the language, as are the entrances for NEXT and RUN. The routines SEMI, 

NEXT and RUN are generally a single routine with three entrances while EX¬ 

ECUTE and COLON exist as separate entities. 

Several points are important. The instruction register is the effective pro¬ 

gram counter for the interpreter. It must be carefully preserved by primitive 

machine-code routines. Similar caution must be exercised with regard to the 

return stack. When SEMI pops the top entry from the return stack, it had best 

be a valid word address and not some temporary value inadvertently left on 

the return stack. Finally, note that the word address register always points to 

the first location of the code body when RUN has been completed. This is not 

only important in the routine COLON but also will be important when passive 

code bodies are considered. 

If this is confusing, do not despair. It will be considered in great detail in 

Chapter 3, "Hup, Two, Three, Four." 

2.5 Defining Words and the Compile Mode 

Writing a threaded interpretive program consists of defining new keywords. 

These definitions may be coded in machine code, assembly language, or com¬ 

piled using previously defined keywords to create more complex keywords. 

The final program is simply another keyword. 

The language contains a number of predefined defining words. Defining 
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words always create a dictionary header. All defining words are evoked in the 

execution mode. The keyword that initiates the compiler mode (ASCII :) is a 

defining word (ie: it is evoked in the execution mode and creates a dictionary 

entry). All defining words except return the system to the execution mode 

on completion. The compile mode is established by the keyword and ter¬ 

minated by the keyword or ;CODE, both of which re-establish the execu¬ 

tion mode among other things. These latter two keywords are immediate 

keywords and are executed only in the compile mode. 

All defining words create a dictionary header from the token following the 

defining word in the input buffer. (Note that the defining words must be 

defined themselves before they can be evoked. Predefinitions of some routines 

are necessary.) 

The simplest defining word is CREATE. For example: 

CREATE ■ GODZILLA ■■OK 

This sequence will create a primitive header for a keyword named GOD¬ 

ZILLA. The keyword CREATE first parses the token GODZILLA from the in¬ 

put buffer and moves it to the dictionary space as 8GODZILLA. Next, it ad¬ 

vances the dictionary pointer contents (a system variable called DP) by four to 

enclose 8GOD in the dictionary. It extracts the address of the last keyword 

header from the current vocabulary, encloses it in the dictionary as the link ad¬ 

dress, and then replaces the current vocabulary address with the address of the 

8 in the 8GODZILLA header. Finally, CREATE encloses the address of DP+ 2 

(the code address) at the DP address location (the word address). 

CREATE simply creates a primitive dictionary header but does not reserve 

any bytes in the code body of the word being defined. Creating GODZILLA is 

far simpler than foreign film makers could possibly imagine. Basically, all 

defining words evoke CREATE to form the dictionary header and then replace 

the code address as appropriate. The compiler word calls CREATE and 

then replaces the code address with the address of the inner interpreter CO¬ 

LON routine. Now you see why that funny name was selected for this inner in¬ 

terpreter routine. 

Although CREATE appears to be useless by itself, this is not true. For exam¬ 

ple, a word could be defined to drop the top value from the data stack using 

the sequence: 

HEX ■ CREATE ■ DROP ■ El ■ C, ■ NEXT BBOK 

First HEX establishes the system number base as hexadecimal. CREATE 

creates a primitive keyword named DROP. The El is a valid hexadecimal 

number and is pushed to the data stack since the execution mode is in effect. 

The C, pops the data stack and encloses the low-order byte in the dictionary 

(the El). Finally, NEXT encloses the jump to the inner interpreter NEXT 

routine in the dictionary. When DROP is evoked, the machine instruction El 

is executed, which pops the top of the data stack to the HL register pair and 

then executes a jump to NEXT. The value popped to the HL register pair is 
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never used. The value is simply dropped from the data stack.This is a simple 

example of extending the language using machine code to create a new 

primitive keyword. 

An example of a compiling word is: 

: ■ 2DUP ■ DUP ■ DUP ■; ■■OK 

Here a keyword DUP has already been defined. This keyword duplicates the 

top stack value leaving two copies of the value on the stack. The keyword 

2DUP is designed to leave three copies of the previous top stack value on the 

stack by calling DUP twice. Here creates a 2DUP keyword dictionary entry 

with the COLON routine code address in its word address (ie: it creates a 

secondary dictionary header and then sets the system mode to the compile 

mode). The next token scanned is DUP. The search routine will locate its word 

address since it is already defined. The outer interpreter routine 7EXECUTE 

will enclose the word address of DUP in the dictionary since the compile 

mode, not the execute mode, is in effect. This will occur again when the second 

DUP in the input buffer is scanned. The keyword is an immediate keyword 

which will be executed in the compile mode. It encloses the word address of the 

inner interpreter primitive routine SEMI in the dictionary and sets the system 

mode to the execute mode. Here the language extension is a new secondary 

keyword created from existing keywords via the compile mode. 

A typical defining word is CONSTANT. CONSTANT defines a passive 

keyword which, when evoked, will push a constant value to the data stack. 

An example of its use is: 

DECIMAL ■288 ■ CONSTANT ■ 2GROSS 

Here the keyword DECIMAL sets the system number base to the decimal (10) 

base, the 288 is pushed to the stack as a binary number and CONSTANT 

creates the dictionary entry for the keyword 2GROSS with a code body whose 

contents are 0120, the hexadecimal equivalent of 288 decimal. When 2GROSS 

is evoked it will always push hexadecimal 0120 to the data stack. 

Obviously a definition of CONSTANT is required before 2GROSS can be 

defined. A formal definition of CONSTANT is: 

HEX ■: ■ CONSTANT ■ CREATE ■, ■; CODE ■.... 

Here "..." indicates machine code that will be entered following ;CODE. First 

the creates a secondary dictionary header for CONSTANT and sets the 

compile mode. The CREATE and word addresses are then placed in the 

code body of CONSTANT. The ;CODE keyword is an immediate keyword 

which places the word address of a routine called SCODE in the code body of 

CONSTANT and sets the system mode to the execute mode. The machine 

code that follows ;CODE in the definition is machine-specific, but the action it 

is to implement is universal. The code will extract the word pointed to by the 

word-address register and push it to the data stack and then jump to the inner 
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interpreter routine NEXT. Note that this code is not executed when CON¬ 
STANT is defined, but is added to the dictionary definition of CONSTANT. 

There are three levels of action: one when CONSTANT is defined, one 
when 2GROSS is defined, and one when 2GROSS is evoked. When 2GROSS 
is defined, the keyword CONSTANT is called. CONSTANT first creates a 
primitive header called 2GROSS by the call to CREATE. The keyword in 
CONSTANT will pop the data stack and enclose the value in the dictionary. 
In the example, it pops the hexadecimal 0120 (288 decimal) from the stack and 
places it in the body of 2GROSS. The keyword SCODE in CONSTANT 
replaces the code address of the word being defined by the address of the word 
following its location and then returns to the inner interpreter routine NEXT. 
The result is diagrammed in figure 2.6. 

CONSTANT 

LINK 

COLON 

CREATE 

NEXT 

2 GROSS 

LINK 

CA 

0120 

Figure 2.6: 2GROSS defined as a constant. 

When 2GROSS is evoked, its code address points to the machine code 
following the SCODE in CONSTANT. This code will be executed. However, 
the inner interpreter routine RUN will leave the word-address register contents 
at the address of the 0120 following the code address of 2GROSS. The machine 
code, as explained, will extract the word located at the word-address register 
location and push it to the stack (ie: it pushes hexadecimal 0120 to the stack). 
All constants defined using CONSTANT have code addresses which point to 
the machine code in CONSTANT. 

The keyword ;CODE is the critical factor in defining generic data types. It 
allows the specification of actions (machine code) that allow the creation of 
data types. The machine code that follows ;CODE is a generic primitive con¬ 
sisting of a body and a return. The address for this primitive is always stored 
in the word-address location of the word being defined. 

So far, examples of defining new keywords directly in machine code by 
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compiling new definitions and using defining words have been presented. Even 

more examples will be given in Chapter 4, 'The Tower of Babel Revisited." 

2.6 Vocabularies 

Although it has been mentioned that the dictionary is segmented into 

vocabularies, no rationale for this has been presented. There are several 

reasons for this segmentation. Fundamentally it presents a functional separa¬ 

tion of the language. A full-blown text editor may be desirable sometimes, but 

a modest editor may be resident in the core language. By vocabulary control, 

keyword names that could be in contention are resolved. Another reason for 

different vocabularies is that certain keywords can be hidden. Compiler direc¬ 

tives, for example, are only used in the compile mode. If the operator called 

these directives in the execution mode, stack errors would result and it is possi¬ 

ble for the program to consume itself. 

The basic vocabulary structure is a tree with the core language as the trunk. 

Each vocabulary is named and its location exists in a passive keyword in the 

core. This is illustrated in figure 2.7. Note that some vocabularies are normally 

hidden but may be linked to the core in special circumstances. Others may be 

lost by the simple expedient of not including headers. 

ASSEMBLER 

The vocabulary search order determines how keywords are located. Each 

vocabulary is a linear-linked list by virtue of its header format. Two keywords 

can have precisely the same identifying name. The first one located will ter¬ 

minate the search. It is this keyword that will be used by the outer interpreter. 

New definitions are always linked to the top of an existing vocabulary. 

Redefining an existing keyword will cause any subsequent reference to use the 

new definition. Any preexisting routine which calls the old definition will 

continue to use the old definition. This results from the fact that the word ad¬ 

dress of the old definition is extant in all preexisting routines. It has been com¬ 

piled and will not change. 
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A dictionary search begins at the address contained in the variable CON¬ 

TEXT. This variable is set when the name of a vocabulary is used. For exam¬ 

ple, the keyword CORE is the core language vocabulary name and its use sets 

CONTEXT to point to CORE which contains the address of the first dictionary 

header in the core language. New keyword definitions are linked to the 

vocabulary specified by the variable CURRENT. The keyword DEFINITIONS 

sets CURRENT to CONTEXT. Some defining words also affect CONTEXT. 

The keyword which establishes the compiling mode, sets CONTEXT to 

CURRENT while the defining word CODE, which evokes the assembler 

vocabulary, sets CONTEXT to ASSEMBLER. 

Keywords from different vocabularies can be interlaced in memory; they 

need not be contiguous. New definitions are always added to the top of the 

language. They build up in memory space and are linked to the CURRENT 

vocabulary. A keyword FORGET will cause removal of dictionary entries in a 

spatial sense. If the keyword name following FORGET is in the CURRENT 

vocabulary, the keyword and all subsequent keywords will be forgotten. 

FORGET sets CONTEXT to CURRENT, locates the keyword, resets CUR¬ 

RENT to the link address of the located keyword and resets the dictionary 

pointer DP to the first header byte of the located keyword. Care is advised in 

the use of FORGET. It is possible to forget the entire language. 

The use of the keyword IMMEDIATE causes the top entry of the CURRENT 

vocabulary to be made an immediate keyword (ie: can be executed only in the 

compile mode). 

Some comments are needed concerning immediate words, dictionary 

headers, and lost vocabulary words. A standard technique for defining an im¬ 

mediate keyword is to set a precedence bit somewhere in the header (generally 

the length-parameter, high-order bit). If this bit is set, the keyword is executed 

regardless of the mode. I do not like this technique. I usually establish a 

separate compiler vocabulary for immediate words. This vocabulary is 

searched only if the compile mode is in effect. This prevents compiler direc¬ 

tives from being executed in the execute mode. The compiler directives load 

the word addresses of program-control directives to the dictionary and muck 

around with the stacks. There is never a reason for executing a compiler direc¬ 

tive in the execution mode. The program control directives do not have 

headers and thus cannot be located by the search algorithm. The compiler 

directives know the word addresses of their associated program control direc¬ 

tives. No other keyword needs this information. The operator does not need to 

know this information either. 

2.7 Synthesis 

Synthesizing this chapter is essential to understanding the threaded inter¬ 

pretive language concept. All of the elements are interdependent. The die- 
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tionary formats, the interpreters, the stacks, the defining words, the compiling 

mode, and the vocabularies are all predicated on the form and function of each 

other. If you do not feel comfortable with some element, try rereading it. If 

this does not work, continue to the end. You may find the answer to what's 

bugging you. 
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3 | HUP, Two, Three, Four 

Some people have been audacious enough to claim that I 

march to a different tune. Regardless of the validity of that, 

I tell the truth when I claim that your TIL had best march 

quickly through your code. And tirelessly too! 

3.1 An Inner Interpreter For A Generic Computer- 

To fully illustrate the actions of an inner interpreter. I'm going to resort to 

the old generic computer trick. The generic computer I will construct is not 

very sophisticated: the inner interpreter code will be written, a primitive and a 

secondary will be written, and then we will execute some code — at least on 

paper. 

The computer to be built will have several registers. Registers are not all that 

important, but the principles are easier to understand this way. The same end 

results can be achieved using memory locations in machines with fewer 

registers. The registers are all 16-bit registers as follows: 

Register Description 
1 Instruction register. Contains the address of the next 

instruction in the threaded list of the current secon¬ 
dary. 

WA Word Address register. Contains the word address 
of the current keyword or the address of the first 
code body location of the current keyword. 

CA Code Address register. 
RS Return Stack register. 
SP Stack Pointer register. 
PC Processor Program Counter register. 
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The instruction set necessary to illustrate the inner interpreter is fairly sim¬ 

ple. A byte-oriented addressing scheme is presumed (ie: I + 2 is the next word 

in memory following memory word location I). All instructions are presumed 

to be one word in length. The following instruction set is assumed: 

Instruction 
@A—B 

A =A + n 

POP S—A 

PSH A—S 

A—PC 

JMP XX 

Description 
The contents of the memory location word whose 
address is in register A are loaded into register B 
(a 16-bit indirect fetch from A to B). 
The contents of register A are incremented by the 
constant n. 
The S push down stack top entry is loaded to 
register A and the stack pointer is adjusted. 
The A register contents are loaded to the S push 
down stack and the stack pointer is adjusted. 
The contents of the A register are loaded into the PC. 
The processor will fetch its next instruction from this 
location. 
Unconditional jump to the address contained in the 
word following the jump instruction. 

Note: — A and B are any of I, WA, or CA. 
— S is either RS or SP. 

The inner interpreter can be written as in listing 3.1. 

Location Mnemonic Instruction Comment 

0140 COLON PSH 1 — RS 
0142 WA—1 
0144 
0146 

JMP ) 
0104 J 

Jump to NEXT 

0100 SEMI 0102 Code address of SEMI 
0102 POP RS—1 
0104 NEXT @I-WA 
0106 1=1 + 2 
0108 RUN (3>WA—CA 
01OA WA = WA + 2 
010C CA-PC 

0050 
7E ) Dictionary 

0052 XE > header 
0054 LA J for EXECUTE 
0056 EXECUTE 0058 Code address of 

EXECUTE 
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0058 
005A 
005C 

POP SP-WA 
JMP 
0108 

Jump to RUN 

Listing 3.1: Pseudo-code implementation of inner interpreter. 

That's it! The entire inner interpreter is just 36 bytes long. 

All of this may appear hopelessly complex or ridiculously simple. Unless the 

details and beauty of the inner interpreter are appreciated, it is impossible to 

fully understand a threaded interpretive language. 

Some points about this inner interpreter implementation: 

• The I register is effectively the program counter for the threaded inter¬ 

pretive language. It must be preserved by all primitive machine code. 

• Only the inner interpreter machine code and primitive machine code are 

ever executed. 

• When the routine RUN completes, the WA register points to the address 

of the code body of the keyword. This fact is important in passive 

keyword definitions and in the COLON routine. 

• The word address of SEMI, the value that terminates all secondaries, 

contains a word address value equal to the address of SEMI. Thus SEMI 

is a primitive. 

• SEMI always executes NEXT and RUN; NEXT always executes RUN. 

• The word address of all secondaries contains the address of the COLON 

routine. When the PSH I —RS instruction is executed, it saves the word 

address of the next instruction of the current secondary on the return 

stack. The instruction WA^I actually loads the word address of the first 

instruction of the new secondary into the instruction register (see third 

remark above). 

• The routine EXECUTE is used by the outer interpreter to execute a 

keyword. The search algorithm returns the word address of a located 

keyword on the stack. EXECUTE pops this word address into WA and 

jumps to RUN. This causes the keyword to be executed but control 

returns to the outer interpreter at completion since the I register contains 

the word address of the keyword following the outer interpreter EX¬ 

ECUTE location. 

A modestly complex but fundamentally simple scenario will be developed to 

illustrate several aspects of the inner interpreter. Assume that a constant with 

value 288 has been defined as 2GROSS. A primitive routine called DUP that 

duplicates the top stack exists. A secondary that duplicates the top stack value 

twice is desired. It is defined as: 

: ■ 2DUP ■ DUP ■ DUP ■; ■■OK 
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A routine named FUNNY is needed that leaves three values of 288 on the stack 
for some funny reason. It is defined as: 

: ■ FUNNY ■ 2GROSS ■ 2DUP ■; ■■OK 

Finally FUNNY will be executed as: 

FUNNY ■■OK 

The resulting memory contents after this sequence will be presumed to be as 

shown in listing 3.2. 

Location Contents Comments 

1000 0056 EXECUTE location in 
1002 XXXX outer interpreter 

3D \ Dictionary header 
UP > for the 
LA J primitive DUP 
2008 DUP's word address 
POP SP—CA Code that duplicates 
PSH CA—SP the stack 
PSH CA—SP 

1 Jump to NEXT 
0104 ) K 

2100 8C Dictionary header 
2102 ON for the secondary 
2104 LA defining keyword CONSTANT 
2106 0140 COLON Address 
2108 CREATE ) Actually addresses but 
210A not important for 
21OC SCODE J the example 
21OE @WA —CA Code to extract a 
2110 PSH CA-SP constant and push it 
2112 
2114 

JMP ) 
0104 I 

Jump to NEXT 

2050 62 ) Dictionary header 
2052 GR > for the constant 
2054 LA ) 2GROSS 
2056 210E Pointer to CONSTANT code 
2058 0120 Decimal 288 in hexadecimal 

2200 42 ) Dictionary header for 
2202 DU > the secondary 
2204 LA ) 2DUP 

2000 
2002 
2004 
2006 
2008 
200A 
200C 
200E 
2010 
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2206 0140 
2208 2006 
220A 2006 
220C 0100 

220E 5F 
2210 UN 
2212 2200 
2214 0140 
2216 2056 
2218 2206 
221A 0100 

COLON Address 
DUP Address 
DUP Address 
SEMI Address 

Dictionary header for 
the secondary FUNNY 
linked to 2DUP 
COLON Address 
2GROSS Address 
2DUP Address 
SEMI Address 

Listing 3.2: Memory contents after routine FUNNY has been compiled. 

In the dictionary header for FUNNY, the link address points to 2DUP since 

consecutive definitions were entered by the operator. 

The scenario will begin with the word address of FUNNY (2214) on the stack 

and the outer interpreter just about to execute the EXECUTE word address (I 
contains 1000). The step-by-step march of the processor through the code is 

given in table 3.1. 

While a careful examination of the code illustrates the principles, the exam¬ 

ple is not exactly tiptoeing through the tulips. Stomping, maybe, but tiptoeing 

— no. This is partially due to some not-too-neat scenario definitions. For in¬ 

stance, the definition of 2DUP as a primitive requires one more instruction 

than a DUP, or two more instructions than the 2DUP secondary form. If this 

were done, a NEXT-RUN-COLON, NEXT-RUN-DUP and NEXT-RUN-SEMI 

set of instructions would be replaced by the extra PSA CA—A instruction 

needed to implement a primitive 2DUP keyword. FUNNY is a funny definition 

simply because it is incomplete and does not do very much. If it were really re¬ 

quired, a primitive machine-code keyword routine could be defined to both 

generate the hexadecimal 0120 and push it to the stack three times. This is far 

more efficient than the scenario definitions. 

The code illustrated here uses post-indexing of the word and instruction 

registers. In processors with pre-indexing indirect memory fetches, or in most 

microcomputers, the indexing increments can occur before the fetches. This 

will affect the inner interpreter code and other routines which access the word 

and instruction registers. 

3.2 An Inner Interpreter For the Z80 

In implementing any inner interpreter, careful consideration should be given 
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ROUTINE PC INSTRUCTION 1 WA CA RS SP 

NEXT 0104 @I-WA 1000 0056 2214 
0106 1=1+2 1002 0056 - - 2214 

RUN 0108 @WA-CA 1002 0056 0058 - 2214 
01 0A WA = WA + 2 1002 0058 0058 - 2214 
010C CA-PC 1002 0058 0058 - 2214 

EXECUTE 0058 POP SP-WA 1002 2214 0058 - ) 
005A JMP 0108 1002 2214 0058 - ) 

RUN 0108 @WA-CA 1002 2214 0140 - — \ 
01 0A WA = WA + 2 1002 2216 0140 - \ 
010C CA-PC 1002 2216 0140 - s 

COLON 0140 PSH l-RS 1002 2216 0140 1002 ) 
0142 WA — 1 2216 2216 0140 1002 s 
0144 JMP 0104 2216 2216 0140 1002 s 

NEXT 0104 (S)l —WA 2216 2056 0140 1002 - \ 
0106 1=1+2 2218 2056 0140 1002 ) 

RUN 0108 (SJWA-CA 2218 2056 21 0E 1002 
01 0A WA = WA + 2 2218 2058 21 0E 1002 l 
010C CA-PC 2218 2058 21 0E 1002 

CONSTANT 21OE (SJWA-CA 2218 2058 0120 1002 
/ 

2100 PSH CA-SP 2218 2058 0120 1002 0120 i 
2112 JMP 0104 2218 2058 0120 1002 0120 S 

NEXT 0104 (S)l —WA 2218 2206 0120 1002 0120 \ 
0106 1=1+2 221 A 2206 0120 1002 0120 1 

RUN 0108 (SJWA-CA 221 A 2206 0140 1002 0120 > 
01 0A WA = WA + 2 221 A 2208 0140 1002 0120 | 
010C CA-PC 221 A 2208 0140 1002 0120 / 

COLON 0140 PSH l-RS 221 A 2208 0140 221 A, 1002 0120 ) 
0142 WA— 1 2208 2208 1040 221 A, 1002 0120 } 
0144 JMP 0104 2208 2208 0140 221 A, 1002 0120 ) 

NEXT 0104 (SJI-WA 2208 2006 0140 221 A, 1002 0120 \ 
0106 1=1+2 220A 2006 0140 221 A, 1002 0120 1 

RUN 0108 (SJWA-CA 220A 2006 2008 221 A, 1002 0120 \ 
01 0A WA = WA + 2 220A 2008 2008 221 A, 1002 0120 i 
010C CA-PC 220A 2008 2008 221 A, 1002 0120 J 

DUP 2008 POP SP-CA 220A 2008 0120 221 A, 1002 \ 
200A PSH CA-SP 220A 2008 0120 221 A, 1002 0120 1 
200C PSH CA-SP 220A 2008 0102 221 A, 1002 0120,0120 ? 
200E JMP 0104 220A 2008 0120 221 A, 1002 0120,0120 J 

NEXT 0104 (SJI-WA 220A 2006 0120 221 A, 1002 0120,0120 \ 
0106 1=1+2 220C 2006 0120 221 A, 1002 0120,0120 1 

RUN 0108 (SJWA-CA 220C 2006 2008 221 A, 1002 0120,0120 \ 
01 0A WA = WA + 2 220C 2008 2008 221 A, 1002 0120,0120 1 

010C CA-PC 220C 2008 2008 22 1 A, 1002 0120,0120 / 
DUP 2008 POP SP-CA 220C 2008 0120 221 A, 1002 0120 

200A PSH CA-SP 220C 2008 0120 221 A, 1002 0120,0120 

200C PSH CA-SP 220C 2008 0120 22 1 A, 1002 0120,0120,0120 

200E JMP 0104 220C 2008 0120 221 A, 1002 0120,0120,0120 

NEXT 0104 (SJI-WA 220C 0100 0120 221 A, 1002 0120,0120,0120 

0106 1=1+2 220E 0100 0120 221 A, 1002 0120,0120,0120 

RUN 0108 (SJWA-CA 220E 0100 0102 221 A, 1002 0120,0120,0120 

01 0A WA = WA + 2 220E 0102 0102 221 A, 1002 0120,1020,0120 

010C CA-PC 220E 0102 0102 221 A, 1002 0120,0120,0120 

SEMI 0102 POP RS-I 221 A 0102 0102 1002 0120,0120,0120 

NEXT 0104 (SJI-WA 221A 0100 0102 1002 0120,0120,0120 

0106 1=1+2 221 C 0100 0102 1002 0120,0120,0120 

RUN 0108 (SJWA-CA 221 C 0100 0102 1002 0120,0120,0120 

01 0A WA = WA + 2 221 C 0102 0102 1002 0120,0120,0120 

01 0C CA-PC 221 C 0102 0102 1002 0120,0120,0120 

SEMI 0102 POP RS-I 1002 0102 0102 - 0120,0120,0120 

NEXT 0104 (SJI-WA 1002 XXXX 0102 - 0120,0120,0120 

Table 3.1: Stepping through the pseudo-code for routine FUNNY. 

Set up to 

run EXECUTE 

Run EXECUTE 

Set up to run 
FUNNY 

Nest down 

one 

level 

Set to 
run 2GROSS 

Run CONSTANT 

code to get 
the value 

Set up to 
run 

2 DUP 

Nest 
down 

one level 

Set up to 

run the 

first DUP 

Run the 

first 
DUP 

Set up to 
run the 

second 

DUP 

Run the 

second 

DUP 

Set up to 

run SEMI 

in 2DUP 

Denest 1 level 

Set up to 

run SEMI 

in FUNNY 

Denest 1 level 

Set up to run 

outer interpreter 

routine following 

EXECUTE 

to maximizing the efficiency of the code in terms of execution speed. The faster 

the routines, the more efficient the TIL. The Z80 is not an ideal microcomputer 

for implementing a TIL. Fundamentally it does not have a high-speed, 16-bit, 

indirect memory-addressing mode. It does have an 8-bit, implied memory¬ 

addressing mode which can be used with a slight degree of difficulty to imple¬ 

ment the inner interpreter. 
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To mechanize the inner interpreter, the Z80 registers are assigned as in table 

3.2. 

Register Pair Usage 

AF 8-bit accumulator and program status word 
BC Instruction register 
DE Word address register and 

scratch register 
HL Scratch register 
IX Return stack pointer 
IY Address of NEXT 
SP Data stack pointer 
AF' x 
BC' f 
DE' ( 

Scratch 

hl' y 

Table 3.2: Z80 register assignment. 

The HL register pair is also used as a 16-bit accumulator. The use of IY to con¬ 

tain the address of NEXT provides a quick way to perform a 2-byte jump to an 

absolute memory location (NEXT) via a JP (IY) instruction: an implied jump to 

the address contained in IY. 

The particular method of arranging the data and return stacks affects the 

code used to implement the inner interpreter. The top 4 K bytes of my Z80 

system are arranged as shown in figure 3.1. The system monitor uses the 

system 1 K bytes of programmable memory for stacks and variable storage. 

The threaded interpreter also uses this same area for its stacks. 

VIDEO REFRESH MEMORY AREA (IK) 

IK SYSTEM RAM (USER MEMORY) AREA 

2 K EPROM SYSTEM MONITOR 

Figure 3.1: Memory 

map of top 4 K bytes 
on typical Z80 system. 

The system programmable memory map is shown in figure 3.2. The first 128 

bytes are reserved for input line buffers. The area immediately above the buf¬ 

fer area is reserved for the system monitor and TIL system variables. The data 

stack pointer is initialized to the top of this memory area and the return stack 
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pointer to the middle of the memory. This implementation allocates 512 bytes 

to the data stack and about 300 bytes to the return stack with both stacks 

building downward in memory. Actually, I am cheating. The system monitor 

is a threaded interpreter which explains why the TIL system variables are 

located here in my system. It is more typical to locate the TIL system variables 

with the TIL code. The stack areas are more than adequate for any problem I 

have ever encountered, even though only 1 K was allocated. The data stack is 

used for temporary parameter storage. If great numbers of user variables are 

required, the top of the low-order memory should be partitioned into blocks 

for this data storage. (A TIL will not "create" memory. A 4 K-byte TIL and a 

4 K-byte BASIC leave the same free memory space — in any given system — 

for programs and variables. TIL programs tend to use less memory, leaving 

more room for variables.) 

FC00 

FB00 

F A 00 

F 900 

F 800 

DATA STACK POINTER 

I 
Figure 3.2: System Memory map. 

RETURN STACK POINTER 

1 

SYSTEM VARIABLES 

-128 BYTE LINE BUFFER PLUS TERMINATORS 

Assume the inner interpreter is to be located in low memory. One 

mechanization of the inner interpreter is given in table 3.3. Several interesting 

features can be learned from this specific mechanization as opposed to the 

generic computer inner interpreter. 

The Z80, as many other microcomputers, accesses the low-order byte in the 

first memory location and the high-order byte as the second location when an 

address (word) is accessed from memory. This order is maintained when the 

return stack is accessed. This is obvious in both the SEMI and COLON 

routine, as in table 3.3. It is clear from these routines that the implied, 8-bit ad¬ 

dress scheme requires at least twice the number of instructions as the generic 

computer with its single, indirect, 16-bit addressing instruction. Furthermore, 

the use of the IX register for implied addressing is substantially slower than us¬ 

ing the main Z80 registers as may be noted from the "T" state or timing states 

associated with each instruction. 

The time efficiency of a TIL keyword can be computed from knowledge of 

the inner interpreter timing and the keyword timing. Stepping from primitive 
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LOCATION CONTENTS ASSEMBLY CODE "T" STATES 

0100 0201 SEMI: * +2 
0102 DD4E00 LD C,{IX+0} 19 
0105 DD23 INC IX 10 
0107 DD4600 LD B,{IX+0} 19 
01 0A DD23 INC IX 

0
0

 
L

D
 

II 

o
 

010C 0A NEXT: LD A, {BC} 7 
01 0D 6F LD L,A 4 
01 0E 03 INC BC 6 
01 OF 0A LD A, {BC} 7 
0110 67 LD H,A 4 
01 1 1 03 INC BC 

0
0

 

ll 

C
D

 

0112 5E RUN: LD E,{HL} 7 
0113 23 INC HL 6 
0114 56 LD D# {H L} 7 
0115 23 INC HL 6 
0116 EB EX DE,HL 4 
0117 E9 JP {HL} 4 = 34 

0118 DD28 COLON: DEC IX 10 
01 1 A DD7000 LD {IX + 0},B 19 
01 ID DD2B DEC IX 10 
01 IF DD7100 LD {IX+0},C 19 
0122 4B LD C,E 4 
0123 42 LD B,D 4 
0124 FDE9 JP {IY} 8 = 74 

0126 07455845 DATA 7,E,X,E 
012A 0000 DATA 00 
012C 2E01 EXECUTE: * + 2 * +2 
012E El POP HL 
012F 1 8E1 JR RUN 

Table 3.3: A Z80 inner interpreter. 

to primitive within a secondary always requires an execution of NEXT, RUN, 

the primitive code body, and the return to NEXT for each step. A primitive 

always terminates with a JP (IY) instruction as its return. Thus, for the Z80 in¬ 

ner interpreter: 

"T" Primitive = NEXT + RUN + body + JP (IY) 

= 34 + 34 + body + 8 

= 76-1- body 

Primitive primitives are extremely inefficient. The primitive DROP requires 
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a single POP HL instruction in its code body with a "T" state requirement of 

ten states. If the primitive code was simply strung together (that is, truly com¬ 

piled), this keyword would require ten states rather than the eighty-six states 

required of the TIL definition. The "inefficiency" of the TIL is then: 

% Inefficiency = tQta^ kody x 100 
body 

DROP is thus 760% inefficient relative to compiled code. The arithmetic 
multiply routine requires 384 to 464 T states to complete. Thus has an 

inefficiency of 16 to 20% relative to compiled code. 

The timing inefficiency of secondaries is more difficult to assess. It is clear, 

however, that each call to a secondary requires a NEXT-RUN-COLON and a 

NEXT-RUN-SEMI on entrance and exit. If we return to the 2DUP example of 

table 3.3, a DUP keyword costs thirty-two T states and a primitive 2DUP costs 

forty-three T states. Thus for 2DUP: 

Secondary = NEXT + RUN + COLON + NEXT + RUN + DUP 

+ RET + NEXT + RUN + DUP + RET + NEXT 

+ RUN + SEMI 
= 34 + 34 + 74 + 34 + 34 + 32 + 8 + 34 + 34 

+ 32 + 8 + 34 + 34 + 58 

= 420 + 64 = 484 

Primitive = NEXT + RUN + 2DUP + RET 

= 34 + 34 + 43 +8 

= 76 + 43 = 119 

The secondary form of 2DUP requires about four times as long to execute as 

does the primitive form. The inefficiency of the 2DUP forms are: 

AQA — AT. 

Secondary = - = 1026% 
43 

Primitive = 77 =177% 
43 

This explains why I prefer all operator-available keywords to be primitives. 

The nice feature about a TIL is that the primitives can be as complex as 

desired. In a truly time-critical application, it is possible to resort to machine 

code. In applications that are not time-critical, the ease of defining keywords 

as secondaries is available. The speed of the outer interpreter is never a prob¬ 

lem. Believe me, it is much quicker than the operator. 
As should be clear from the Z80 inner interpreter example, care must be ex¬ 

ercised in designing an inner interpreter. Not only must the register allocation 

be optimized for inner interpreter speed, but the stack location and mechaniza¬ 

tion must also be considered. 
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3.3 Double Time 

Almost inevitably, the first thought that enters a programmers mind about 

any program is: "How can I speed it up?" There are several ways to speed up a 

TIL. Most fundamental is to select a processor with an optimal set of address¬ 

ing modes. For instance, compare my Z80 with an indirect, 16-bit, addressing 

machine. Naturally it helps to operate the chip at its maximum possible speed. 

(I run a Z80A processor at 2.5 MHz rather than its 4 MHz limit to insure 

reliability.) Almost all attempts to "speed up" a given processor and program 

combination result in the "times 2" phenomenon — careful "tuning" may in¬ 

crease the speed of an average routine by two. There are limits to how much is 

gained by optimization. 

The next question almost always involves microcoding a particular machine 

to optimize its execution relative to a particular language. Microcode has 

nothing to do with microcomputer code — it is a means of implementing a 

usable processing instruction set through the use of a faster and more primitive 

internal processor. This internal processor executes microcode to implement 

the functions necessary to emulate the instruction set. The instruction set 

which the processor executes can be changed by changing the microcode. 

If this approach is used to mechanize the instructions required to implement 

the inner interpreter, a faster TIL could result, one possibly twice as fast as the 

same processor without the specialized instructions. Taking things one step 

further, the inner interpreter and the primitives necessary to create all other 

keywords (say forty to sixty primitives) could be microcoded. The inflexibility 

of the instruction set is the disadvantage of this approach. Speed is gained in 

the primitives themselves, but there is no option to use "machine code" since 

the only "machine codes" are the primitives. 

Among the 8-bit microcomputer chips available today, the Signetics 2650 

probably has the best instruction set for TIL implementation. The RCA 1802 is 

also reasonable. The more popular Z80, 8080, 6502 and 6800 are not the best 

but they are viable. Integer TILs based on these microcomputers are only three 

to four times as fast as integer BASICs. The expected upgrades to the 8-bit 

microcomputers such as the 6809 should cure the speed problem. Most 

minicomputers are fundamentally 16-bit machines and usually have more ad¬ 

dressing modes than microcomputers. Minicomputers are generally far more 

efficient than microcomputers in a threaded interpreter environment. 
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4 | The Tower of Babel 
Revisited 

A plethora of keyword actions is possible. I shall explore 

a subset of the more common actions. Like a menu in a 

Chinese restaurant, you have a choice from column A, col¬ 

umn B, etc. Tea and fortune cookies will not be provided. 

The typesetter does not have those fonts either. 

4.1 Naming Conventions 

Keyword names in this text were selected arbitrarily and capriciously, and 

sometimes simply plagiarized from existing language standards. The main pur¬ 

pose of the keyword names is to provide a degree of cohesiveness to the text. 

Feel free to create your own language by creating your own names. 

The action produced by the keyword name is the important point, not the 

name itself. One, "uno," and "ber" (Turkish) are all cognates. Some 

mathematical terms such as + and — are more widely used but are still not 

universal. The fundamentally English keyword names I use are designed to 

trigger a personal internal recognition of the associated action. A French-, 

German-, or Turkish-based TIL is just as viable and just as easy to generate. 

After all, isn't that what Babel was about? 

Several relatively simple standards are used in my names for keywords. For 

example, all of the keywords associated with bytes (as opposed to words) 

prefix the equivalent word length keyword with the letter "C". This C is bor¬ 

rowed from FORTH, not C. (FORTH? SiI) 

Keywords that always occur in pairs in a fixed order and may have other 

keywords between their occurrence generally start with < if they are the left 

keyword and end with > if they are the right keyword. I also use < if 

something is entering the stack. This just keeps the water muddy. 

A routine that has no dictionary headers but whose word address is known 

by another keyword generally starts with *. The remaining characters are the 

same as the calling keyword. Thus, IF knows the word address of the "lost" 

keyword *1F. 
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Finally, subroutines used by several keywords start with a $. Some of these 

subroutines, such as the I/O (input/output) routines, are presumed to exist in 

your system's software. 

4.2 Data Types 

In the following paragraphs, an integer language will serve as the baseline. 
This is not to imply that floating-point threaded interpreters are not viable — 
they are. An integer baseline language is easier to explain and implement on a 
microprocessor that does not have floating-point hardware. Integer versions 
take maximum advantage of the inherently limited computational capabilities 
of a microprocessor. 

4.2.1 Numbers - 

There are innumerable ways to handle numbers in a threaded interpreter. 

The method I shall propose is a very flexible, general method. Simpler schemes 

are possible. 

All number tokens in the input buffer are converted to binary integers for in¬ 

ternal usage. This conversion takes place in the outer interpreter routine 

NUMBER. Internally the integers may be 8 or 16 bits wide (byte or word) and 

occasionally 24 bits wide, except when they are on the data stack. All data 

stack numbers are 16 bits wide. 

Numbers are converted to binary form from their input form using a system 

variable called BASE. The number base must be in the set 2 thru 9, A thru Z, 

with A = 10, etc. (BASE controls both input and output.) Keywords named 

BINARY, OCTAL, DECIMAL, and HEX preset the variable BASE to 2, 8,10, 

and 16, respectively, since they are the most commonly used bases. Note that a 

leading " —" may be the first character in a number token but all other 

characters must be in the set {0, ..., BASE —1}, ie: decimal numbers or base 10 

numbers are in the set {0, ..., 9}. The numbers 0, —1, and 1 are usually de¬ 

fined as constants with keyword names 0, —1, and 1, respectively, since they 

exist in all allowable number bases. 

The internal forms of the binary number are first generated as 16-bit integers 

by the outer loop routine NUMBER. The integers may be signed or unsigned, 

depending on the application. Signed integers have the range: 

-32768<n< 32767 

Unsigned integers have the range: 

0<n< 65535 
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A leading minus sign causes the two's complement of the number to be taken 

after conversion to the internal binary form. A leading plus sign is not allowed 

in a number. 

When stored in memory as constants, variables, etc, or when stored in a 

definition as a number literal (preceded by the number literal handler), the full 

16-bit range capability is not always required. Signed and unsigned numbers in 

the ranges: 

— 128<n< 127 

0 < n < 256 

only require 8 bits. Memory utilization is minimized by storing these numbers 

as bytes rather than words. This does require that the routines which place 

these numbers on the stack have a predefined technique for expanding 8-bit 

numbers to 16-bit numbers. The routines that do this expansion are established 

by defining byte constants, byte variables, etc, and a byte-number literal 

handler. 

There are two ways to handle the predefinition. One is to treat numbers in 

the range 0 to 256 as bytes and treat all negative numbers as word length in¬ 

tegers. This is consistent with allowing only positive byte constants, etc. 

Although I have occasionally implemented this technique, an alternate form is 

also available. By defining byte numbers as having the range —128 to 127, all 

byte forms can be defined consistently. When byte forms are pushed to the 

stack, all bits of the most significant byte are set equal to the MSB (most 

significant bit) of the number byte. This is the standard two's complement con¬ 

vention. 

Care must be exercised when using byte numbers. It is possible to leave a 

number on the stack that exceeds the predefined range. These numbers cannot 

be correctly stored into a byte variable. System error messages are generally 

not included for this type of error since the tests to discover them adversely af¬ 

fect execution speed. The burden is on the user to insure numeric correctness. 

All of the attributes of the input number conversion are controlled by the 

outer loop routine NUMBER. Caution must be used in naming tokens to insure 

that this routine can be executed. It is possible on number entry to name a 

keyword "2". Any attempt to input the number two would result in the search 

algorithm finding the keyword "2" and performing the indicated action. As 

long as "2" is defined as the constant two, the system is safe. Any other defini¬ 

tion would effectively eliminate all number bases other than binary. The 

number conversion routine is never reached if an existing keyword name pre¬ 

empts a number. For this reason it is wise to include a character not in the set 

{0 thru 9, A thru Z} in all keyword names of length two or less and to include 

high-end alphabetic characters in keyword names of length three. This allows 

large number bases before a collision occurs between a keyword and a poten¬ 

tial number. 

The outer loop NUMBER routine either pushes the converted binary 

number to the stack if the execute mode is in effect, or adds a literal handler 

word address and the number to the dictionary if the compile mode is in effect. 
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The literal-handler word address may specify either a byte number (*C#) or a 

word number (*#). All of this is transparent to the programmer. 

When the number literal handler *C# or *# is executed, the instruction 

register points to the location of either the byte or the first byte of the word 

where the number is stored (ie: its address in the list of "instructions"). The 

literal handler extracts the number from the instruction list, pushes the number 

to the stack, and increments the instruction register to the instruction 

following the number in the threaded list. 

Using the literal format, byte-length numbers require 3 bytes and word- 

length numbers require 4 bytes within the keyword being defined. The selec¬ 

tion of the format needed is done by the system, based on the actual number 

entered in the definition. 

In purely integer TILs, an extension to this baseline can be included to fake 

out the populace. Periods (decimal points) can be allowed in the input number. 

The number conversion routine must be designed to ignore periods but this 

allows "real" numbers. 

4.2.2 Logical Flags 

A logical flag is a parameter with two possible states. True or False. A com¬ 

puter cannot directly recognize these states, so the standard convention is to 

define True as 1 (non-zero) and False as 0 (zero). Certain relational testing 

keywords return logical flags which are always a zero or a 1. A constant or a 

variable may sometimes be treated as a logical flag. In this event any non-zero 

number is by definition True. Care must be used in designing keywords that 

expect a logical flag as an input parameter. Any non-zero number should be 

treated as True, so that all bits of a flag must be examined, not just the LSB 

(least significant bit). Flags are defined and stored in memory as variables. 

4.2.3 Strings and Things 

All systems that display data to the operator must have at least a rudimen¬ 

tary form for handling strings of ASCII data. Displaying messages to the 

operator implies some method of outputting an ASCII string. Displaying 

numbers implies converting the numbers to a sequence of positional numbers, 

converting these numbers to their equivalent ASCII number code, and display¬ 

ing the resulting string. 
In our threaded interpretive language, the tokens are ASCII strings. When 

the outer interpreter moves a token to the dictionary space, it appends the 

token length to the string as the first character of the string. This particular 

string foinnat is convenient for dictionary header formation as well as for input 
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number conversion. If the system does not recognize the token, an error 

message is created from the data located at the DP (dictionary pointer) con¬ 

tents (the location of the unknown token in extended header format). This 
string format has a lead number equal to the number of characters in the 

string, and it is followed by the string itself. 

When an output number conversion is requested, an alternate method of 

string handling is used. In this circumstance, the unused high-order bit (except 

for parity in some input/output transfers) of the ASCII code format is 

employed to mark the last character in the string. This bit is one set in the last 

character of the string. For number output, the terminating character is always 

a space with the higher-order bit 1 set, which is pushed onto the stack. 

Numeric data is always converted by pushing successive ASCII numbers 

characters to the stack. During number output, the string values are displayed 

a character at a time as popped off the stack until the character with the high- 

order bit set is output. 
Strings of ASCII data may be embedded within a word being compiled as a 

literal. The system keyword that performs this action is the immediate 

keyword "[". 

[ — This keyword adds the ASCII literal handler word address to the dic¬ 

tionary and encloses it in the definition being compiled. It changes the token 

separator to "]" from the normal ■ and scans the next token from the input 

buffer. Finally it encloses the scanned token in the word being defined. 

This procedure encloses the ASCII literal handler, the length of the string, and 

all characters (starting with the character following the ■ separator for "[") 

until the occurrence of "]" in the word being defined. This format is very 

similar to the first format introduced. When the literal handler is executed, the 

instruction register points to the length of the string. The literal handler will 

echo-display the string, leaving the instruction register pointing to the next in¬ 

struction in the threaded code. 

Obviously the "[" keyword is very convenient for defining labels and 

operator messages. Other string variables and operators are not part of the 

core language. You can add strings and string operators if you need them for 

your application. 

4.2.4 Constants 

Constants are named passive keywords that push the integer value of the 

constant to the stack when evoked. Constant values may be internally stored 

as bytes or words. Constants are defined in the execute mode using defining 

words as follows: 
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n ■ CONSTANT ■ name 

m ■ CCONST ANT ■ name 

where: 

-32768 < n < 32767 

-128 < m < 127 
} = the value 

and where name is any valid token. CONSTANTS require 10 bytes of storage 

and CCONSTANTs require 9 bytes of storage including the header (see figure 
2.6). The numbers n and m are converted using the BASE in effect when they 

are defined. 

Constants may be compiled into other keyword definitions using one of two 

techniques. For example, the sequence: 

DECIMAL ■288 ■ CONSTANT ■ 2GROSS ■■OK 

:■.■2Grossb.m-mmoK 

or: 

DECIMAL ■: ■ B288 ■ ■; ■■OK 

are two techniques for compiling a keyword that contains an instruction to 

push the integer 288 to the stack. In the first case a CONSTANT is defined 

which requires 10 bytes for the dictionary entry and 2 bytes for each usage in 

any subsequently defined keyword that includes the constant keyword. In the 

second case the occurrence of a 288 in the input buffer causes the constant 

literal handler (2 bytes) and the number (2 bytes) to be added to the threaded 

code list of the word being defined rather than the word address of a constant 

(2 bytes). 

At first it would appear that a constant which is used less than five times 

within a program need not be defined as a CONSTANT. For example, using 

2GROSS four times in subsequent definitions costs 18 bytes total, but using 

288 four times only requires 16 bytes total. There is, however, a subtle dif¬ 

ference. The constant definition can be changed at one place (the word 

following its word address) and it will change the value pushed to the stack in 

all occurrences of its invocation. The literal handler method requires that each 

occurrence of the constant be located within each threaded code definition and 

changed. This latter procedure is much more difficult than the former. The 

constant forms are ideal for usage where occasional value changes are desired 

or where the same constant is used five or more times within a program. The 

values 0,1, and —1 are actually defined as CCONSTANTs since they occur so 

often. 
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4.2.5 Variables 

Variables are named passive keywords that push the address of the variable 

to the stack when evoked. Variables may be internally stored as bytes or 

words. Variables are defined in-line in the execute mode using defining words 

as follows: 

n ■ VARIABLE ■ name 

m ■ C VARIABLE ■ name 

where: 

-32768 <n < 32767 

-128 <m < 127 ) the initial value 

and where name is any valid token. VARIABLES require 10 bytes of storage 

and CVARIABLES require 9 bytes of storage including the header. The 

variable dictionary entries are similar to the constant forms. The initial values 

n and m are converted using the BASE in effect when they are defined. 

4.2.6 Arrays 

Arrays are named passive keywords that allocate blocks of dictionary 

memory for data types following a dictionary header. Arrays are actually 

application-specific but are based on variables since variables return the ad¬ 

dress of the first location in the array. For example, the sequence: 

DECIMALB0BCVARIABLEBnameB99BDPB + IBBOK 

will reserve 100 bytes of storage under the keyword name. In the example, the 

sequence through "name" simply creates a CVARIABLE keyword and ini¬ 

tializes the first byte to zero. The sequence 99BDPB + ! advances the dic¬ 

tionary pointer by 99 so that 100 bytes following the header are reserved. Only 

the first byte is initialized. The other 99 bytes contain garbage. 

If the problem under consideration requires arrays, then create the arrays. 

Operators to manipulate the arrays can also be defined to produce a language 

specifically tuned to the array problem. In general, specific entries in arrays 

are accessed by addressing them relative to the first address in the array. This 

first address is the address pushed to the stack when the array keyword is 

evoked. 
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4.2.7 User Parameters 

If a program is to be placed in read-only memory, a section of program¬ 

mable memory must be available for user parameter storage. The variable 

defining words cannot be used in the generation of parameters within the pro¬ 

gram definition. The variable defining words compile the definition in-line. 

This would intermix code and variables. After the program is placed in read¬ 

only memory, the variable could not be changed. It would always return the 

value contained in the read-only memory (ie: the "variable" would become a 

virtual constant). 

The above problem of in-line variables could be circumvented by always 

referencing the programmable memory address of the parameter in the 

keyword definitions of the program. This generally requires 4 bytes per 

reference: 2 bytes for the number literal handler plus 2 bytes for the variable 

address, unless the variable area is within the first 256 bytes of memory. An 

alternate approach is to define an immediate keyword called USERS. This im¬ 

mediate keyword expects a number in the range 0 < n < 255 as the next token 

in the input buffer following its invocation. USERS encloses the user literal 

handler in the definition, extracts the next token, converts it to an unsigned 

byte constant, and encloses the number in the definition. 

When executed, the user literal handler forms the address of the variable by 

adding the number to the base address of the users parameter area in program¬ 

mable memory. This resulting address is pushed to the stack. This is usually 

the method used to access system variables. 

In effect, the keyword USERS allows relative addressing within a 256-byte, 

users-memory parameter block. The block can be anywhere in the address 

space and still be accessed by a 3-byte reference. This is obviously not as effi¬ 

cient as a 2-byte in-line variable (which won't work in read-only memory), but 

is better than a 4-byte absolute reference. If more than the 256 bytes are needed 

for user variable storage, simply define 1USER, 2USER, etc. Each form has 

its individual base address allowing multiples of 256-byte blocks. 

4.2.8 System Parameters 

There are a number of parameters that the system must have available to 

operate. These contain the critical system data. Depending on the central pro¬ 

cessing unit architecture, certain of these parameters may be stored in pro¬ 

cessor registers. Those system parameters not stored in registers are stored in 

programmable memory as variables. An area of programmable memory must 

be allocated for these variables. 

For the interactive terminal-directed TIL being considered, the following 

system parameters are used: 
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IR — The Instruction Register contains the word address of the next keyword 

(instruction) in the current secondary keyword that the inner interpreter will 

execute. It is the effective program counter for the TIL machine. 

WA — The Word Address variable contains the word address of the current 

keyword to be executed before the keyword code address is extracted by the 

inner interpreter. It contains the address of the keyword code body just after 

this event. This variable is important only for a short time following code ad¬ 

dress extraction. If the code called via the code address does not need the ad¬ 

dress of the code body, the WA variable can be overwritten. WA is most often 

contained in a processor register. 

SP — Data Stack Pointer. 

RSP — Return Stack Pointer. 

MODE — The system parameter MODE is a logical flag with False (0) equal to 

the execute mode and True (1) equal to the compile mode. MODE is True set 

by the keyword and False set on start/restart or by the keyword or 

;CODE. 

STATE — The system parameter STATE is a logical flag used to control ex¬ 

ecution of immediate keywords. In the compile mode (MODE=True), the 

compiler vocabulary is searched and STATE is set True if the keyword is 

found in this vocabulary. Keywords are executed by the outer interpreter 

routine 7EXECUTE if, and only if, MODE equals STATE. 7EXECUTE always 

sets STATE false before it completes. 

DP — The Dictionary Pointer is a variable containing the address of the next 

free location in the dictionary space. 

CONTEXT — The variable CONTEXT contains the address of the vocabulary 

which will be searched to locate keyword word addresses. 

CURRENT — The variable CURRENT contains the address of the vocabulary 

to which new keyword definitions will be linked. 

START — The variable START contains a flag which is True if the TIL is 

being entered for the first time and False otherwise. It is used to distinguish a 

start from a restart. 

LBP — The Line Buffer Pointer is a variable containing the address where 

token scans will begin. When the input submode completes, LBP will point to 

the first location of the line buffer. As each token is scanned, LBP is reset to 

point to the location following the token separator of the token scanned. 

BASE — The variable BASE contains the current number base for input from 

the keyboard and output to the display. 

There are several other system parameters that may be contained within the 

system. These are associated with virtual memory mechanizations. The 

parameters will be introduced in Chapter 7 where extensions to the basic 

mechanization will be considered. 

The system MODE and STATE parameters have the following states: 
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Mode 

0 
0 
1 
1 

State Action 

0 Execute keyword 

1 Not allowed 

0 Compile keyword 

1 Execute immediate keyword 

The MODE parameter is also used by the outer loop number routine to decide 

whether to compile a number or push it to the stack. 

Accessing system parameters will be considered in later sections. 

4.3 Operator Keywords 

The operators are active keywords selected for inclusion in the threaded in¬ 

terpretive language. The actual list depends on what you want to do with the 

language. It is not smart to include operators to manipulate data types that are 

not used. I will present a fairly hefty cross-section of operator types. No 

presumptions will be made about their utility. After all, I am not the designer 

of your language — you are. 

4.3.1 Stack Operators 

The stack operator keywords are among the more important in a stack- 

oriented language such as our TIL. Their usage is so pervasive that these 

operators are almost always coded as primitives. 

The stack operators always manipulate stack words. The operators imple¬ 

ment the following actions: 

DROP — Pops the top stack entry and discards it. 

DUP — Duplicates the top stack entry and pushes it to the stack. 

2DUP — Duplicates the top stack entry and pushes it to the stack twice. 

SWAP — Interchanges the order of the top two stack entries. 

OVER — Duplicates the second stack entry and pushes it to the stack (copies it 

over the top stack element). 

RROT — Rotates the top three stack elements to the right. In infix notation 

A B C — C A B. 

LROT — Rotates the top three stack elements to the left. In infix notation 

A B C — B C A. 

20VER — Duplicates the third stack entry and pushes it to the stack. 

2SWAP — Interchanges the order of the first and third stack entries. 

CSPLIT — Pops the top stack word and creates two 16-bit numbers from the 2 

bytes which compose the word. The high-order byte is expanded to 16 bits and 

stored as the second stack entry. The low-order byte is the top stack entry. 
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CJOIN — Pops the top two stack entries and forms a 16-bit word. The high- 

order byte of the new words is the low-order byte of the second entry, and the 

low-order byte is the low-order byte of the top entry. The resulting word is 

pushed back on the stack. 

As may be imagined, stack operators are useful in a variety of applications. 

The effects of some can be produced by a sequence of other operators. The 

ones you include in your language depend on the utility derived by their inclu¬ 

sion. 

4.3.2 Memory-Reference Operators 

The memory-reference operator keywords always presume that the address 

of a parameter is the top stack entry. As a general rule, the parameters must be 

in programmable memory since most of the operators specifically change the 

numerical value of the parameter. As with stack operators these operators are 

usually primitives. 

The memory reference operators are as follows: 

! — Stores the second stack word at the address specified by the top stack en¬ 

try. Removes both entries from the stack. 

C! — Stores the low-order byte of the second stack word at the address 

specified by the top stack entry. Removes both entries from the stack. 

+! — Adds the word stored at the second stack entry to the word whose ad¬ 

dress is the top stack entry. Removes both entries from the stack. 

C+! — Adds the low-order byte of the second stack entry to the byte whose 

address is the top stack entry. Removes both entries from the stack. 

OSET — Sets the word whose address is the top stack entry to zero (False). 
Removes the top entry. 

1SET — Sets the word whose address is the top stack entry to one (True). 

Removes the top entry. 

COSET — Sets the byte whose address is the top stack entry to zero (False). 

Removes the top entry. 

ClSET — Sets the byte whose address is the top stack entry to one (True). 

Removes the top entry. 

@ — Replaces the address at the top stack entry by the word stored at that ad¬ 

dress. 

C@ — Replaces the address at the top stack entry by the byte stored at that 

address but expanded to 16 bits. 

All of the keywords except @ and C@ are applicable only to programmable 

memory. These two keywords can be used to access any type of memory ex¬ 

cept write-only memory — unoccupied address space. Even this works, 
although the results are uninteresting. 
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4.3.3 Interstack Operators 

The data stack is usually used to store parameters. The return stack is usual¬ 

ly used to store return addresses. The return stack is also used by the system to 

store loop parameters (which I will explore in Section 4.4.4) and may be used 

by the programmer for temporary data storage (carefully). Any data stored on 

the return stack must be removed in the same keyword definition. Primary 

and secondary calls can occur between the storage and removal, but there 

must be a net change of zero in the return stack pointer before the definition 

ends. If there is a net change in the return stack pointer within a definition, the 

inner interpreter SEMI routine (which terminates the definition) will not ex¬ 

tract the valid return address. This can lead to the self-consuming program 

phenomenon mentioned earlier in which the program counter gets loaded with 

fluff. 

With these cautions in mind, the following primitive interstack operators 

are suggested for careful usage: 

< R — Pops the top data stack word and pushes it to the return stack (a 16-bit 

push). 

R> — Pops the top return stack word and pushes it to the data stack. 

C < R — Pops the top data stack word and pushes the low-order byte to the 

return stack (an 8-bit push). 

CR> — Pops the top return stack byte, expands it to 16 bits and pushes the 

word to the data stack. 

The keywords I>, CI>, J>, CJ>, K>, and CK> duplicate loop indices 

from the return stack and push the index numbers to the data stack. These 

words will be considered in Section 4.4. 

It should be pointed out that the interstack operators should not be used 

within a loop construct that stores indices on the return stack. This can lead to 

the infamous, inadvertent DO...FOREVER loop. 

4.3.4 Arithmetic Operators 

The arithmetic operators include some fairly common types and some rather 

unusual types. The core language does not contain a great number of 

arithmetic operators. There is sufficient power in the core language set to work 

the more commonly encountered problems. Your ingenuity is required to add 

additional operators for your specific problem. 

All the numbers on the stack are presumed to be 16 bits wide, two's comple¬ 
ment numbers. All byte-length numbers are presumed to be expanded to this 

form. Some functions use intermediate values or generate values that are 24 

bits wide. The multiply and divide operators evoke signed operations. 
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Divisors are restricted to the set |n| <127. The numbers themselves may thus 

have 16, 8, or 7 significant bits. All arithmetic operators are coded as 

primitives. 

Because of the unusual operator designs, the explanations of the operator 

functions will be fairly detailed. The arithmetic keywords are as follows: 

ABS —A unary operator which leaves the absolute value (a positive integer) 

of the top stack value on the stack. That is, in infix, |N|. It is applicable to 

signed numbers. 

MINUS — A unary operator which leaves the two's complement of the top 

stack entry on the stack: in infix notation, — N. It is applicable to signed 

numbers. 

+ — A binary operator which replaces the top two stack entries by their two's 

complement sum. Neither overflow nor carry are tested. Here N2(16)-I-Nl(16) 

= Nl(16). 

— — A binary operator which replaces the top two stack entries by their two's 

complement differences. Neither overflow nor carry are tested. Here N2(16) — 

Nl(16) = Nl(16). 

S* — A binary operator which multiplies the low-order bytes of the top two 

stack entries and leaves a 16-bit product as the top stack entry. It is equivalent 

to N2(8)*Nl(8) = Nl(16). The high-order bytes of the original stack entries 

are not tested to insure that valid 8-bit numbers are on the stack prior to execu¬ 

tion. 

* — A binary operator which multiplies the second stack entry word by the 

low-order byte of the top stack entry and returns a 16-bit product as the top 

stack entry. It is equivalent to N2(16)*Nl(8) = Nl(16). No validity test is 

made on the high-order byte of the original top stack entry and no test is made 

on the result to verify 16 bits or less in the product. 

D* — A binary operator that multiplies the second stack entry word by the 

low-order byte of the top stack entry and returns a 24-bit product. The least 

significant 16 bits are returned as the second stack entry and the 8 most signifi¬ 

cant bits are expanded to a 16-bit word and returned as the top stack entry. D* 

is equivalent to N2(16)*Nl(8) = N2,l(24). No validity test is made on the 

high-order byte of the original top stack entry. 

/MOD — A binary operator which divides the second stack entry word by the 

low-order byte of the top entry. It returns the 8-bit quotient expanded to 16 

bits as the second stack entry and the positive remainder expanded to 16 bits as 

the top entry. The low-order byte of the original top stack entry must be in the 

range — 128<n<127. /MOD is equivalent to N2(16)/N2(7) = N2(8) and 

N2(16)mod ati[7] = Nl(8). No test is made to insure that an 8-bit quotient will 

result from this operation. 

MODU/ — Exactly the same operation as /MOD except the return order of 

the top two stack elements is reversed. The quotient is the top stack entry and 

the remainder is the second entry. 

MOD — Exactly the same operation as /MOD except only the remainder is 

returned as the top stack entry. 

D/ — Presumes a 24-bit number for the second and third stack entries with the 
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most significant 8 bits as the second entry word. It divides this number by the 

low-order byte of the top entry ( —128<n<127). C/ returns a 16-bit quo¬ 

tient as the second stack entry and an 8-bit positive remainder expanded to 16 

bits as the top entry. It is equivalent to N3,2(24)/N1(7) = N2(16) and 

N3/2(24)modati[7] =Nl(8). No validity tests are made on the original stack en¬ 

tries to insure a valid 16-bit quotient. 

/ — Exactly the same routine as D/ except only a 16-bit number as the second 

stack element and an 8-bit ( — 128<b<127) top entry are presumed. The 8 

most significant bits of the dividend are zero set and only the 16-bit quotient is 

returned. It is equivalent to N2(16)/Nl(7) = Nl(16). All other constraints are 

the same as with D/. 

* /MOD — Multiplies the third stack entry word by the low-order byte of the 

second stack entry yielding a 24-bit intermediate product (exactly as with D*). 

It divides the 24-bit intermediate product by the low-order byte ( —128 <n 

<127) of the top stack entry (exactly as with D/). */MOD returns the 8-bit 

positive remainder expanded to 16 bits as the second stack entry and the 16-bit 

quotient as the top entry. It is equivalent to (N3(16)*N2(8))/Nl(7) = N2(16) 

and (N3(16)*N2(8))mod nw] = Nl(8). The constraints of D* and D/ apply. 

*/ — The same operation as */MOD except only the 16-bit quotient is re¬ 

turned. 

MAX — A binary operator that leaves the larger of the two top stack entries 

on the stack. It assumes signed integers on the stack. 
MIN — A binary operator that leaves the smaller of the two top stack entries 

on the stack. It assumes signed integers on the stack. 

2* — A fast multiply by two unary operators. It is actually a 1-bit left shift of 

the top stack value. Carry and overflow are not tested. 

2/ — A fast divide by two unary operators. Effectively a 1-bit right arithmetic 

shift of the top stack value. 

1 + — Increments the top stack entry by one. 

2+ — Increments the top stack entry by two. 

1 — — Decrements the top stack entry by one. 

2— — Decrements the top stack entry by two. 

The arithmetic operators are strange in a wonderful way. Operations such 

as V are extremely useful. With the 24-bit intermediate product, loss of preci¬ 

sion from truncation errors can be prevented in many operations. For exam¬ 

ple, 7r * 245/78 so that: 

DECIMAL ■ 10000 ■245 ■ 78 ■ * / ■. ■ 31410BBQK 

If a multiply by 7r is common, define a new keyword as: 

DECIMAL ■: ■ * PI ■245 ■ 78 ■ V: ■ ■ OK 

If the numerical accuracy is insufficient, a more complex algorithm can be 

designed to achieve even more accurate results. 

Those of you who are familiar with higher-order languages may sneer at the 
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unsophistication of a language without a full-blown, floating-point arithmetic 

set. In response let me point out that data input to the system by most interface 

equipment is almost never in floating point. The time penalty in converting 

inputs to floating point format is sometimes as costly as doing the entire prob¬ 

lem in scaled, fixed binary arithmetic. Finally, may I point out that for years 

most of our sophisticated military systems (including the present ICBM fleet) 

used scaled, binary fixed-integer arithmetic in their computer programs. High¬ 

speed, floating-point hardware exists only in modem medium-to-large size 

computers. Low-speed, floating point hardware is equivalent to software 

emulation in microcomputers. The only advantage to floating point is pro¬ 

gramming ease (and ridiculous superiority claims). After all, you are not 

afraid of fixed point — are you? 

4.3.5 Logical Operators 

The logical operators are simple. All except NOT presume two 16-bit words 
on the stack (the operands) and replace these words by a single word at the top 
of the stack. The keywords are: 

AND — Logically ANDs the operands on a bit-for-bit basis, ie: 
0 and 0 = 0 
0 and 1=0 
1 and 0 = 0 
1 and 1 = 1 

OR — Logically ORs the operands on a bit-for-bit basis, ie: 
0 or 0 = 0 
0 or 1 = 1 
1 or 0 = 1 
1 or 1 = 1 

XOR — Logically Exclusive ORs the operands on a bit-for-bit basis, ie: 

0 xor 0 = 0 

0 xor 1 = 1 

1 xor 0 = 1 

1 xor 1 = 0 

NOT — Inverts the logical state of the flag at the top of the stack. 

The logical operator can be used to operate on flag data types as well as any 

logical data types defined for a specific application. 

4.3.6 Relational Operators 

The relational operators are unary or binary operators which return a flag. 
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where True is a 16-bit word with an integer value of 1 and False is a 16-bit 

word with an integer value of 0. The operators follow: 

= — Pops the top two stack entries and pushes a True if the entries are equal. 

It otherwise pushes a False. 

> — Pops the top two stack values and pushes a True if the second stack entry 

is greater than the top entry. It otherwise pushes a False. It assumes signed 

integers on the stack. 

< — Pops the top two stack values and pushes a True if the second stack entry 

is less than the top entry. It otherwise pushes a False. It assumes signed in¬ 

tegers on the stack. 

0= — Pops the top stack value and returns a True if the top stack entry is 
zero. It otherwise pushes a False. 

0< — Pops the top stack value and returns a True if the top stack entry is a 
negative two's complement number. It otherwise pushes a zero. 

A comment is in order about the use of = as a relational operator only. 

Some languages use = as both a relational operator and an equivalence (or 

replacement) operator. The use of RPN (reverse Polish notation) eliminates the 

use of = in arithmetic operations. The replacement operator becomes the "!" 

(store) operator and its usage is only required to free stack space or simplify 

stack management. 

4.3.7 Input/Output Operators 

The I/O operators considered here will be the most basic I/O operations. 

Fundamentally, the TIL can be interfaced to the keyboard and video display 

via the system-monitor utility subroutines or separate drivers can be included 

in the TIL. It is very dependent on the type of operating system your particular 

machine has. Systems that have disks and stand-alone serial terminals are dif¬ 

ferent from systems that use cassette mass storage and memory-mapped video 

refresh. 

I have probably vacillated more over I/O routines than any other aspect of 

program design. This is one area I would most like to ignore. Unfortunately, it 

is not an area that can be easily ignored in the hope that it will disappear. 

Thus, the following operators are presented: 

KEY — This keyword will push to the stack the next character entered from 

the keyboard. In my current system this keyword routine contains the soft¬ 

ware timing loop that controls the blinking underscore cursor. It also 

recognizes a non-ASCII keyboard-generated code that causes the system 

monitor to be entered, thus exiting any program currently in control. In any 

routine of this type, the keyboard should be reset on entry and before exit. 

ECHO — This keyword pops the top stack entry and outputs the low-order 
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byte to the display driver. This displays a printing character at the cursor point 

and moves the cursor right one character position. 

CLEAR — This keyword outputs the control code to the video display that 

will clear the display screen and leave the cursor at the upper left (home the 

cursor). 

CRET — This keyword outputs the carriage return-line feed code sequence to 

the video display. This holdover from the teletypewriter convention simply 

leaves the cursor at the start of the next display line (which is blank). 

SPACE — This keyword outputs an ASCII space code to the display screen. 

TYPE — This keyword expects an address at the top of the stack that points to 

a memory location. This location will contain a byte count and is followed by 

a list of ASCII code characters of this length in the following memory loca¬ 

tions. The keyword pops this address, extracts the count, and outputs that 

many characters to the display from the subsequent memory locations. 

DISPLAY — This keyword expects a sequence of ASCII code characters on the 

stack in the low-order byte positions. The last character in the sequence will 

have the high-order bit in the code set to one. This keyword will pop suc¬ 

cessive entries from the stack, output the low-order byte, and repeat until the 

character with the high-order bit set has been output. 

< # — This keyword prepares the stack for number conversion by pushing to 

the stack an ASCII space code with the high-order bit set (AO hex) in the low- 

order byte of the word. It also copies the top stack entry to the return stack. 

(Note that both <# and #> must occur within a single definition.) 

# — This keyword pops the top stack entry, divides the unsigned number by 

the system variable BASE, converts the residual to an equivalent ASCII code 

in the set (0 thru 9, A thru Z), pushes the result to the stack, and then pushes 

the quotient to the stack. 

#S — This keyword executes successive # routines until a zero is at the top 

stack entry. It always executes at least one # routine. 

SIGN — The keyword pushes an ASCII minus sign to the stack if the top 

return stack entry is negative. 

# > — This keyword pops the top return stack entry, discards it, and displays 

the character string on the stack using the DISPLAY format. (Note that both 

<# and #> must occur within a single definition.) 

ASCII — The keyword expects a positive binary integer between zero and 36 

as the top stack entry. The number is converted to the equivalent ASCII 

number code 0 thru 9, A thru Z, and left in the low-order byte position of the 

top stack entry. 

. — This keyword pops the top stack entry, converts the signed value to a se¬ 

quence of ASCII characters representing the number, and displays the result to 

the operator followed by a space. 

.R — This keyword expects a print field width as the top stack entry and a 

signed number as the second entry. It converts the number just as with the 

keyword, but if fewer characters than are in the top stack entry number result 

(including the terminating space), additional ASCII spaces are output before 

the converted number is displayed. 

? — (C?) — This keyword pops the top stack entry, extracts the word (byte) 
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addressed by this entry, and displays the value to the operator using the 

keyword sequence. 

4.3.8 System Operators 

There is a class of operators which have a more system-oriented flavor. 

Some of the operators are used to implement the outer interpreter, the defining 

words, and the compiling words. However, they are so useful and necessary 

that they are directly available to the operator. Others are simply required for 

system operation. 

The system keywords include the following: 

, — Pops the top stack entry word and stores it at the DP (dictionary pointer) 

address. It then increments DP by two (ie: encloses the top stack entry word in 

the dictionary). 

C, — Pops the top stack entry word and stores the low-order byte at the DP 

address. It then increments DP by 1 (ie: encloses the top stack entry byte in the 

dictionary). 

HERE — This keyword pushes the address stored at the system variable DP to 

the stack. This is the address of the next available location in the free dic¬ 

tionary space. 

?SP — This keyword pushes to the stack the address which was the top stack 

entry address prior to its execution. A test for stack underflow is made and the 

stack is reinitialized before the address is pushed if an underflow condition ex¬ 

ists. 

?RS — This keyword pushes the address of the return stack to the stack. No 

validity test is made on the return stack address since the system usually goes 

bananas when the return stack is blown. 

TOKEN — TOKEN pops the top stack entry byte as the separator and moves 

the next token in the line buffer to the free dictionary space in extended header 

format (length plus all characters). It does not enclose the token in the dic¬ 

tionary. 

' — The tick keyword scans the next token in the input buffer following its oc¬ 

curence and searches the CONTEXT and CURRENT vocabularies for the 

keyword corresponding to the token. If the keyword is found, the word ad¬ 

dress of the keyword is pushed to the stack. If it is not found, the token is 

echoed to the operator followed by ■?. 

ABORT — This keyword causes an unconditional jump to the 

START/RESTART routine, which reinitializes the system, displays the restart 

message, and reverts to the operator in the input submode. 

ASP ACE — This keyword pushes an ASCII space code to the stack. It is usual¬ 

ly used to set the separator for a TOKEN call. 

ENTRY — ENTRY pushes to the stack the address of the first byte in the 

header of the latest keyword defined in the CURRENT vocabulary. This will 
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usually become the link address of a keyword being defined. 

CA! — This keyword pops an address from the stack and stores it at the word 

address of the latest keyword in the CURRENT vocabulary. It is used by de¬ 

fining words to change the code address of a keyword to the address necessary 

to implement the new defining action. 

SINGLE — If the top stack entry number is a valid byte-length number, this 

keyword will push a False flag to the stack. Otherwise, it will push a True flag 

to the stack. 

SEARCH — This keyword expects the address of a given vocabulary on the 

stack (a pointer to the first keyword header location of the vocabulary). The 

vocabulary is searched in an attempt to match a keyword with the length and 

characters of the token which is located in the free dictionary space. If found, 

the word address of the keyword is returned as the second stack entry and a 

False flag is returned as the top entry. Otherwise, a single True flag is returned 

on the stack. 

4.3.9 Utility Operators 

There exists a class of operators with great utility and no real home among 

the previous groups. These orphans are collected together here as follows: 

FILL — This keyword expects three keywords on the stack. The second stack 

entry is a starting address, the top stack entry is an ending address, and the 

low-order byte of the third entry is the entry number. The routine fills all 

memory between the address boundaries with the entry number. It removes all 

three entries from the stack. 

ERASE — Similar to FILL except only the memory boundaries are on the 

stack. The entry number is an ASCII space (20 hexadecimal). 

DUMP — This keyword expects two numbers on the stack. The second stack 

entry is a starting address and the top entry is the ending address of a memory 

area. The contents of this block of memory are displayed in hexadecimal. The 

format is: an address as four hexadecimal characters; a sequence of spaces plus 

two hexadecimal characters for the proceeding eight memory locations, a 

space, a sequence of spaces, plus two hexadecimal characters for the next eight 

memory locations. Thus an address plus up to sixteen memory location con¬ 

tents are displayed per line with an extra space between the first and last eight 

memory location contents. DUMP removes the two numbers from the stack. 

ADUMP — Similar to DUMP but the characters are displayed as the ASCII 

equivalent character corresponding to the lower 7 bits of each location rather 

than as two hexadecimal characters. To prevent collisions between the 

memory contents and display control characters, there are several alter¬ 

natives. Offhand, I can think of at least three. 

WAIT — WAIT is an operative keyword that expects nothing on the stack. 

On evocation, WAIT scans the keyboard to see if any key has been depressed. 
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If it has, the keyboard port is reset and the system enters a loop that scans the 

keyboard for its next entry. If the next entry from the keyboard is an escape 

code (either an existing non-ASCII key or a control-[, the ASCII escape code) 

the system enters the START/RESTART sequence to return to operator con¬ 

trol. If the next entry is not the escape code, or if a key was not depressed, 

WAIT simply terminates. WAIT is used, for example, after every DUMP or 

ADUMP line is output to allow the operator to stop and examine the display 

by pressing any key blindly. I usually need the blindly part as what I am 

looking for goes zipping past. 

MOVE — This keyword presumes three addresses on the stack. The third and 

second stack entries are the starting and ending addresses of a block of 

memory. The top address is the starting address of a second block of memory. 

The first memory block is moved to the second memory block. There are no 

restrictions on block overlaps. 

4.4 Loop and Branch Keywords 

The loop and branch keywords are system directives that are applicable on¬ 

ly in the compile mode. These keywords are all immediate keywords that exist 

in the COMPILER vocabulary. Most of the keywords load the word addresses 

of program control directives and relative branch constant to the threaded list 

of instruction being compiled. 

The loop and branch keywords are designed to yield a fully-structured 

language. There are no constructs such as the BASIC command GOTO XX 

where XX is some program line number. The threaded interpretive language 

does not support this type of construct. I have used a command of this type in 

a TIL system monitor but it simply transfers control out of the TIL. That's 

right folks, I actually run BASIC using a TIL-based system monitor with 

subroutined utility programs. 

All of the loop and branch program control directive are primitives to insure 

fast execution. All of the loop and branch keywords are secondaries for com¬ 

pactness. (The actual compilation process is so fast that the operator is rarely 

conscious of the delay between entering and the occurrence of the BOK 

response.) 

4.4.1 BEGIN . . . END 

The simplest and most primitive loop construct is the BEGIN . . . END loop. 

It is also usually the fastest loop. The syntax for the construct is: 
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False True 

i i n 
:■—■ BEGIN ■—■ flag ■ END ■—■:BBOK 

The keyword BEGIN marks the beginning of the loop and END marks the loop 

end. The flag just before END is an indication that a test value (a flag) must be 

on the stack. All code between BEGIN and END will be repeated until the flag 

goes True (^0) during execution. Endless loops are created by a OB END 

variation. 

There are two levels to consider: the actions that occur when the loop is 

compiled and the actions that occur when the definition is evoked. First con¬ 

sider the actions during the compile mode. 

BEGIN — This immediate keyword pushes the address of the next free dic¬ 

tionary location to the stack. This is the address where the word address of the 

next token that follows BEGIN in the definition will be stored in the dic¬ 

tionary. 

END — This immediate keyword adds the word address of the program con¬ 

trol directive *END to the threaded list and encloses it in the dictionary. It then 

pops the top stack entry (the address stored by BEGIN), subtracts it from the 

current address of the next free dictionary location and encloses the low-order 

byte of the result in the dictionary as the relative jump constant. 

Note that any immediate keywords between BEGIN and END must not leave 

values on the stack or END will not compute a valid relative jump constant. 

The relative jump constant is an unsigned byte constant with a range of 2 < n 

< 256. 

When the definition which contains the BEGIN . . . END loop is executed, 

the threaded code will be executed until the *END word address is en¬ 

countered. When *END is executed, it pops the top stack value (the flag) and 

tests it for zero. If the flag is zero, the routine extracts the byte at the address 

contained in the instruction register (the relative jump byte), subtracts it from 

the instruction register and exits to the inner interpreter routine NEXT. The in¬ 

struction register will then contain the address of the word address of the token 

that followed BEGIN in the original definition. This is the next instruction that 

will be executed. This sequence will be repeated until *END encounters a non¬ 

zero flag. In this case, it increments the instruction register by one and exits to 

NEXT. The instruction register then contains the 'address of the word address 

of the token following END in the original definition. This terminates the loop. 

BEGIN . . . END loops can occur within BEGIN . . . END loops several 

levels deep. The only restriction is the 256-byte relative jump limit in the outer¬ 

most loop. Caution is advised in stack management using loops. If n items plus 

the flag are placed on the stack within the loop and the loop is repeated m 

times, a stack depth of n*m items results. The stack space had best be capable 

of handling the data. 

The routine *END is an example of a dictionary entry with no header. The 

routine END must know the word address of *END, but the operator cares 
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less. The loop is available to the operator through the BEGIN and END 

keywords (but only in the compile mode). 

The keyword BEGIN requires no bytes within the definition. The keyword 

END requires 3 bytes within the definition compiled, 2 for the word address of 

*END and 1 for the relative jump constant. 

4.4.2 IF . . . ELSE . . . THEN 

The IF . . . ELSE . . . THEN constructs provide for conditional execution of 

code. The syntax for the constructs are: 

False 

l J 
: ■—■ flag ■ IF ■—■THEN OK 

Li i_r 
True Unconditional 

True Unconditional 

I flag! IF IELSEI 
1 

ITHENB— 

I_t 
IOK 

False Unconditional 

The flag just before IF indicates that a test value must be left on the stack (by 

the code preceding IF) during execution. If the flag is True ( = 0), the code 

following the IF will be executed. This code may end with either an ELSE or a 

THEN. In either event an unconditional transfer to the code following the con¬ 

struct occurs. If the flag is False (=0), the code following the termination 

keyword for the true code (an ELSE or THEN) will be executed. 

During compilation, the following actions occur: 

IF — This immediate keyword adds the word address of the program control 

directive *IF to the threaded code list being defined and encloses it in the dic¬ 

tionary. It then pushes the address of the next free dictionary location to the 

stack and advances the address by one to reserve 1 byte in the dictionary for a 

relative jump constant. This constant will be filled in by either the ELSE or the 

THEN keyword. 

ELSE — This immediate keyword adds the word address of the program con¬ 

trol directive *ELSE to the threaded code list being defined and encloses it in 

the dictionary. Then, it pushes the address of the next free dictionary location 

to the stack and advances the pointer by one to reserve 1 byte in the dic¬ 

tionary for a relative jump constant. Finally, it pops the top two stack entries, 

pushes the top entry back on the stack, subtracts the previous second entry 

from the address of the next free dictionary location and stores the low-order 

byte of the result at the address of the previous second entry. This rather com- 
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plex procedure leaves the address of the reserved byte following *ELSE on the 
stack and fills the reserved byte following *IF with the relative jump value 
necessary to reach the address following the *ELSE reserved byte. This is the 
address of the word address of the token following ELSE in the definition. The 
relative jump may be up to 255 bytes. 
THEN — This immediate keyword will load the relative jump byte reserved by 
either an IF or an ELSE. It pops the address at the top of the stack, subtracts 
this address from the address of the next free dictionary location and stores the 
low-order byte of the result at the address of the previous top stack entry. This 
relative jump may be up to 256 bytes. 

During execution of a definition containing the IF . . . ELSE . . . THEN con¬ 
struct, consider that *IF is to be executed next. The *IF routine pops the flag 
from the stack. If the flag is true, the routine increments the instruction 
register, which initially points to the relative jump byte following *IF and 
returns to the inner interpreter routine NEXT. The increment causes the in¬ 
struction register to point to the address of the word address of the token 
following IF in the original definition. If the flag is false, *IF jumps to the code 
body of *ELSE. The routine *ELSE is always entered with the instruction 
register pointing to a relative branch constant. *ELSE extracts this constant, 
adds its value to the instruction register and exits to NEXT. This causes a for¬ 
ward jump to the code following THEN in the original definition. 

Both IF and ELSE take 3 bytes in the definition being compiled. THEN re¬ 
quires no bytes in the definition. 

4.4.3 WHILE 

The basic loop and branch constructs may be combined using the operator 
keyword WHILE. The syntax for these constructs are: 

Unconditional 

I—■ BEGIN I 

True 

n IflagBIFB-- I WHILE I IOK 

False 

I—■ BEGIN I 

True 

ri 
Unconditional 

I 
--- B flag B IF B—B ELSE B- 
T I-1 

False 

—BWHILEI IOK 

Unconditional 
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The only new keyword in these constructs is WHILE. All of the other 

keywords are exactly as previously explained. 

During compilation, the action of WHILE is: 

WHILE — This immediate keyword expects two addresses on the stack. First 

the word address of the program control directive *WHILE is added to the 

threaded list being compiled and enclosed in the dictionary. The second stack 

entry (the address stored by BEGIN) is removed from the stack, the value is 

subtracted from the address of the next free dictionary location and the low- 

order byte is enclosed in the dictionary. This is the relative jump byte required 

to jump back to the word address of the token following BEGIN. It next 

removes the top entry, subtracts the address of the next free dictionary loca¬ 

tion from this value and stores the low-order byte at the address which 

previously was the top entry. This is the relative jump byte required by either 

an IF or an ELSE to jump forward to the word address of the token following 

WHILE. 

During execution of a definition that contains this construct, the *WHILE 

routine is entered with an instruction register content that points to the 

relative branch constant. *WHILE extracts this constant, subtracts this value 

from the instruction register and exits to the inner interpreter routine NEXT. 

This causes a backward jump to the code following BEGIN in the original 

definition. 

WHILE takes 3 bytes in the definition being compiled. 

4.4.4 DO . . . LOOP 

The DO . . . LOOP construct allows a code sequence to be executed a 

specific number of times. This type of loop can be implemented using the basic 

BEGIN . . . END loop but it is not as efficient as using the DO . . . LOOP form. 

There are four basic DO . . . LOOP constructs as follows: 

Count >0 

i-1 
: ■—■ end ■ start ■ DO ■ — ■ LOOP ■■ OK 

1_J 

Count <0 

Count >0 

I-1 
: ■—■ end ■ star t ■ CDO ■■ CLOOP OK 

I_t 
Count < 0 
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Count >0 

: ■—■ end ■ start ■ DO ■- ~ ■ inc ■ + LOOP ■--- ■; ■ ■ OK 
i_J 
Count <0 

Count >0 

;-1 
: ■—■ end ■ start ■ CDO ■—■ inc ■ C + LOOP ■—■; ■ ■ OK 

I_J 

Count <0 

The only difference between DO and CDO forms is that the latter forms use 

byte-length indices rather than word-length indices. 

The end and start preceding the DO indicates that DO expects two values on 

the stack at execution time: the ending argument and the starting index argu¬ 

ment for the loop. Each execution of the loop causes the index argument to be 

incremented by one after the loop code is executed. The loop code will be ex¬ 

ecuted as long as the difference between the ending argument and the index 

argument (the count) is greater than zero. The +LOOP forms are very similar 

except they expect an increment on the stack to be used to increment the index. 

The compilation events are as follows: 

DO — (CDO) — This immediate keyword causes the word address of the pro¬ 

gram control directive *DO (*CDO) to be added to the threaded list being 

compiled and enclosed in the dictionary. The address of the next free dic¬ 

tionary location is then pushed to the stack. 

LOOP — (CLOOP) — (+LOOP) — (C + LOOP) — This immediate keyword 

causes the word address of the program control directive *LOOP (*CLOOP, 

* + LOOP, *C + LOOP) to be added to the threaded list being defined and 

enclosed in the dictionary. The top stack value is popped, subtracted from the 

address of the next free dictionary location and the low-order byte of the result 

enclosed in the dictionary. This is the relative jump constant back to the token 

following DO (CDO) in the original definition. 

When executed, the *DO (*CDO) routine expects two 16-bit words on the 

stack. The top two stack entries are moved to the return stack as 16-(8) bit 

numbers with the second entry as the second return stack entry. The top return 

stack entry is the index value which initially is the start value. The *LOOP 

(*CLOOP) routine increments the loop index value by one. The *+LOOP 

(*C + LOOP) routine expects a value on the stack and pops this value to incre¬ 

ment the index. The index (the top return stack value) is subtracted from the 

end argument (the second return stack entry). If this count value is greater 

than zero, the relative jump value pointed to by the instruction register is 

added to the instruction register and the routine exits to the inner interpreter 

routine NEXT. This causes the word address of the token following DO 

(CDO) in the original definition to be executed next. If the count value is less 
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than or equal to zero, the instruction register is incremented by one, the top 

two return stack entries are popped and an exit to NEXT occurs. This causes 

the code following *LOOP (*CLOOP,* -I-LOOP,*C + LOOP) to be executed. 

The rather strange ordering of the loop arguments is purposeful. In variable 

length loops, it is more common to want to change the ending argument than 

the starting value. This ordering allows for definition of keywords that contain 

a starting argument plus the loop construct. The variable ending argument is 

then pushed to the stack before this keyword is evoked. 

The index is incremented in these constructs before being compared to the 

ending argument, thus: 

: ■ 2FOURS ■ 3 ■ 1 ■ DO ■ 4 ■. ■ LOOP ■: ■ ■ OK 

2FOURS ■4B4BBOK 

Only two fours are printed, not three. Further, the loop test occurs after the 

loop code so that the loop code must be executed at least once. The main pur¬ 

pose for providing the byte forms of the loop constructs is execution speed. If 

the loop arguments are in the range —128<n<127, the byte forms can be 

used to achieve a faster loop. 

If the basic loop formats disturb you, redesign them. The order of the inputs 

can be reversed, the test can be done before the code rather than after, or the 

end value may be incremented once by the DO construct to yield a more 

familiar loop. The choice is yours. 

The DO . . . LOOP constructs may be nested many levels deep. The con¬ 

straints are the 256-byte relative jump limitation in the outermost loop and 

sufficient return stack depth to hold the loop arguments. 

Several other words are available within the loop constructs. The keyword 

I > ( Cl > ) pushes the loop index of the innermost loop to the data stack. The 

keyword J > ( CJ > ) pushes the loop index of the second level loop and K > 

( CK> ) the third level. These constructs do not change the return stack but 

they presume only loop arguments of the same type are on the stack. 

Sometimes it would be nice to be able to leave a loop prematurely if some 

specific event occurs. A keyword is provided to do this in a controlled manner. 

LEAVE — (CLEAVE) — This immediate keyword causes the word address of 

the program control directive *LEAVE (*CLEAVE) to be added to the threaded 

list being compiled and encloses it in the dictionary. 

When *LEAVE (*CLEAVE) is executed, it changes the innermost loop index 

value to the end argument value. This will cause the loop to terminate on the 

next argument test. The keyword LEAVE (CLEAVE) is generally used within 

an IF construct to be conditionally executed if some specific event occurs 

within the loop. 
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4.4.5 Case Constructs 

There is no directly available ON . . . GOSUB construct in the TIL language 

as there exists in BASIC. The language will allow this type of alternate action 

to be defined for some specific application. It is best illustrated by example. 

Suppose that a function index (an integer) between zero and three is on the 

stack as the result of a computation, an operator input, or from some 

peripheral device. Depending on the value of the integer, one of four distinct 

functions (subprograms) is to be executed. The four functions are first defined 

as keywords: say, OCASE, 1CASE, 2CASE and 3CASE. A table (array) named 

NCASE of the word addresses of these functions is first generated as follows: 

' ■ OCASE ■ VARIABLE ■ NC ASE ■' ■ 1C ASE ■, ■' ■ 
2C ASE ■■■ 3C ASE ■, ■ MOK 

Each " ' " keyword returns the word address of token following its occurrence, 

so that an array of the word addresses has been compiled as the variable array 

keyword NCASE. A keyword CASE is then defined as: 

:BCASEB2* ■NCASE ■ + ■ @ ■ EXECUTE ■; ■ MOK 

The keyword CASE expects an integer between zero and three on the stack 

when it is evoked. It first doubles this value to achieve a word (2-byte) offset 

pointer. This pointer is added to the base address retrieved by NCASE and the 

contents of this address are fetched using @. This leaves the word address of 

the function corresponding to the integer on the stack. EXECUTE simply ex¬ 

ecutes this function, achieving the desired goal. 

The vectored case construct is easy to define and very flexible. It also con¬ 

tains the seeds of disaster. In our example, an integer not in the set (zero thru 

three) can be executed by CASE, leading to unknown results. Protective code 

is advised. 

4.5 Compiling and Defining Keywords 

Compiling new operators and defining new parameters is central to the 

threaded language concept of extensibility. Even more important is the ability 

to define new defining keywords. This is a feature that lends more utility to a 

TIL. A detailed look at the compiling and defining keywords should fill in the 

details of the process. 
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4.5.1 CREATE 

This keyword is central to all defining words: words that create dictionary 

headers for both active and passive keywords. All defining words use 

CREATE either directly or indirectly to form the dictionary header. CREATE 

forms the dictionary header and puts the address of the first byte of the code 

body in the word address location. This forms the header and code address for 

a primitive. 

CREATE — This keyword scans the token following the CREATE location in 

the input buffer and moves the next token length plus all of the token 

characters to the free dictionary space. It extracts the address of the last dic¬ 

tionary header in the CURRENT vocabulary and pushes it to the stack. It then 

replaces this address with the address of the next free dictionary location 

(which points to the length parameter of the header being formed). It advances 

the dictionary pointer by four to enclose the length plus the next three 

characters in the dictionary space in the dictionary. (If the header has less than 

three characters, the unused places can contain anything.) The top stack entry 

is popped and enclosed in the dictionary as the link address. Finally, the ad¬ 

dress of the next free dictionary location is accessed, incremented by two and 

enclosed in the dictionary at the next free dictionary location address. (This 

places a primitive code address in the word address.) 

4.5.2 Compiling Directives 

The compiling directives are central to the extensibility theme. The direc¬ 

tives are as follows: 

: — This defining keyword first sets the CONTEXT vocabulary to the CUR¬ 

RENT vocabulary. This allows new definitions added to the CURRENT 

vocabulary to be found during keyword searches. The token following in 

the input buffer is scanned and a primitive dictionary header is formed using 

CREATE. The code address of this keyword is then changed to form a second¬ 

ary keyword by placing the address of the inner interpreter COLON routine 

at the word address. Finally, the system MODE variable is set to True to 

establish the compile mode. 

; — This immediate keyword encloses the word address of the inner interpreter 

routine SEMI in the dictionary. It then sets the system MODE variable to False 

to establish the execution mode. 

;CODE — This immediate keyword encloses the word address of the SCODE 

routine in the dictionary. It then sets the system MODE variable to False to 

establish the execution mode. 
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The difference between and ;CODE is important. The ;CODE ending is 

used in compiling new defining words and is always followed by machine code 

which specifies the generic action of the defining word. 

4.5.3 Parameter Defining Words 

The parameter defining words always create named parameters of a par¬ 

ticular data type. Three distinct levels must be considered: one when the de¬ 

fining word is compiled (defined), one when the defining word is evoked, and 

one when the parameter name is evoked. 

When a defining word is defined, the sequence is always of the form: 

:■ defining name ■ defining code ■;CODE ■ generic code 

The defining name is the name of the keyword that will evoke creation of a 

particular data type. The defining code will always contain CREATE, either 

directly or indirectly, to create a dictionary header when the defining name is 

evoked, and to create optional code to initialize the code body of this passive 

keyword. The keyword ;CODE is executed, which stores SCODE in the defini¬ 

tion and establishes the execute mode. The generic code is then entered into the 

dictionary directly in machine code (using a sequence of numbers and or 

C,) or in assembly language (by evoking an assembler). The generic code is not 

executed; it is added to the dictionary. The generic code always ends with a 

call to the inner interpreter routine NEXT. 

When used to define a parameter of type defining name, the sequence is: 

data ■ defining name ■ parameter name 

This sequence is always evoked in the execute mode. The data is optional but 

is always stored on the stack. The defining name evokes the defining code, 

which creates the dictionary header for parameter name and initializes the 

code body with the data as appropriate. All data is removed from the stack. 

The secondary keyword SCODE is then evoked. This keyword pops the return 

stack and replaces the code address of the passive keyword being defined with 

this address. Since the return address of a secondary always points to the in¬ 

struction following its call in the threaded list of code, this address is the ad¬ 

dress of the generic code following SCODE in the definition of the parameter 

type. When SCODE completes, its original return address is no longer there. 

What is there is the return address stored when the secondary defining name 

was executed by the outer interpreter. Thus, when SCODE completes, return 

to the outer interpreter occurs. The generic code is not executed. 

When parameter name is evoked, its word address contains the code address 

stored by SCODE. This causes the generic code to be executed to manipulate 

the data contained in the code body of the passive keyword as appropriate to 

the data type. 
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The defining word CONSTANT is thus defined as: 

:■ CONST ANT ■ CRE ATE ■ ,■; CODE ■ constant generic code 

When evoked to define the constant name the sequence is: 

n ■ CONSTANT ■ name 

This creates a constant called name with a value of n. When name is evoked, 

the constant n will be pushed to the stack by the constant machine code. An 

equivalent byte form exists as CCONSTANT. 

Since a variable places an initial value in its code body, the defining word 

VARIABLE is defined as: 

: ■ VARIABLE ■ CON ST ANT ■; CODE ■ variable generic code 

This sequence actually results in the creation of the dictionary header first as a 

primitive, then as a replacement of its code address by that of a constant, and 

then as a second replacement of its code address by that of a variable, the ad¬ 

dress of the variable code. 

When evoked to define the variable name the sequence is: 

n ■ VARIABLE ■ name 

This creates a variable called name with an initial value of n. When name is 

evoked, the address of the variable is pushed to the stack. An equivalent byte 

form is available as CVARIABLE. 

4.5.4 Defining USER Blocks 

The USER block defining word is more literal-like than defining-like. Fun¬ 

damentally, the procedure leads to almost an indexed variable form except 

that blocks are available in 256-byte blocks and any byte within the block is 

available. The basic concept is relatively simple. 

USER — An immediate keyword that first adds the word address of the 

primitive *USER literal handler to the threaded list being compiled and 

encloses it in the dictionary. The next token following USER is scanned from 

the input buffer and converted to a number using the system base valid at the 

time it is executed. If valid, the low-order byte of the number is enclosed in the 

dictionary as the offset. If invalid, the definition being compiled is terminated. 

When *USER is evoked, the contents addressed by the instruction register are 

accessed (the offset) and added to a fixed number established when *USER was 
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defined. The result is pushed to the stack. The instruction register is then 

incremented by one. It exits to the inner interpreter NEXT routine. 

The base of the USER block is established by the *USER definition. The off¬ 

set is fixed at compile time and is cast in concrete. It does not matter what the 

system number base is when *USER is executed, only what the number base is 

when USER is executed. 

By adroit use of the definition of USER and *USER, a more index-like 

variable scheme is possible. For example, if data is known to exist as 4-byte 

units, USER can be defined to include a multiply by four following number ex¬ 

traction and before offset enclosure. The allowable offset numbers in a defini¬ 

tion are then 0 thru 63 and the system automatically computes the address 

of the first byte of each block of data. (Forcing the multiply at compile time is 

more time efficient than doing it at execution time in *USER.) 

Another method leads to an almost BASIC-like variable structure. In this 

scheme, *USER does not use a fixed number as the base, but uses a number 

stored in some variable, say *U. Keywords can be defined to set the *U 

variable when they are evoked. This is the old base address plus offset trick. 

Remember there are no fixed rules about "rightness" in a TIL. The right 

definition of the names of keywords and the right definition of their action is 

strictly applications and/or personal preference dependent. A TIL will support 

your idiosyncrasies, whereas most other languages demand that you support 

theirs. 

4.5.5 High-Level Defining Words 

The defining words considered to this point create single definitions of 

keywords. Generic classes of defining words can also be built with a TIL. Since 

the concept is more than passingly complex, a careful look at the details will be 

undertaken. 

Suppose I have decided to add an assembler to the basic TIL. I know there is 

a group of 1-byte machine code instructions that exists for my central process¬ 

ing unit, all of which have no parameters. There are fourteen or so of these in¬ 

structions for the Z80. I could straightforwardly define each of these instruc¬ 

tions as: 

HEX ■: ■ name ■ number ■ C, ■; ■ BOK 

Here name is the assembler mnemonic, number is the machine code instruction 

in hexadecimal, and C, stores the number in the dictionary. This requires 6 

bytes for the header, 2 for COLON, 3 or 4 for the literal handler and the 

number, and 2 each for C, and SEMI. At best this requires 15 bytes per defini¬ 

tion. A primitive definition requires even more memory per keyword. 

Two keywords, < BUILDS and DOES >, allow a more memory-conserva¬ 

tive approach to the problem by allowing definition of a generic defining 



70 THREADED INTERPRETIVE LANGUAGES 

keyword which can be used to define the 1-byte assembler mnemonics. First a 

keyword 1BYTE will be defined as: 

: BlBYTEB < BUILDS■ DOES> BC@ BC, ■; ■ BOK 

Each mnemonic is then defined using: 

HEX ■ IB YTE ■ name ■ number ■ C, ■ BOK 

Note that name was not compiled. The keyword 1BYTE is a defining word 

that creates a header named name. As with all defining words (except the 

execution mode is in effect. Obviously, the BnumberBC,B sequence stored 

the number in the code body of the keyword called name. 

In fact, the code body of the keyword contains the address of the C@ 

keyword in the 1BYTE definition followed by the single number stored when 

name was defined. This definition form requires a 6-byte header for each 

mnemonic, a 2-byte code address and a 3-byte code body, or a total of 11 

bytes per mnemonic. The definition of 1BYTE requires 18 bytes. Since the 

1BYTE form gains at the rate of 4 bytes per mnemonic, the break-even point in 

terms of memory usage is 5 mnemonics. 

All of this sounds neat, but you ask "How does it work?" Carefully! When 

the assembler mnemonic is evoked, the code address of the keyword points to 

code which will first push the instruction register to the return stack. This is 

similar to the start of the COLON nesting operation. The word address 

register points to the code body of the keyword where the address of the C@ 

following DOES> is stored. This address is placed in the instruction register. 

The word address register is then incremented twice so that it points to the 

third byte in the code body of the mnemonic, and then it is pushed to the 

stack. This is the address of the instruction hexadecimal code in our mnemonic 

definition. The code ends with a jump to the inner interpreter NEXT routine. 

Since the instruction register contains the address of the C@ following 

DOES> , this is the next instruction that will be executed. The C@ instruction 

replaces the address at the top of the stack with the contents of the address as 

the lower 8 bits of the top stack entry. The C, pops the stack and encloses the 

low-order byte in the dictionary. The SEMI routine stored by then de-nests 

one level to get the next instruction following the occurrence of the mnemonic. 

If this still does not satisfy you. I'll tell you how the mnemonic keyword was 

built. The keyword < BUILDS, when evoked, scans the next token from the 

input buffer, creates a dictionary header, reserves a code address and 2 bytes 

in the code body of the keyword, and completes. Note that < BUILDS is 

evoked when 1BYTE is executed so that it builds a keyword using the 

mnemonic name. The secondary DOES> pops the return stack or the address 

of the word following DOES > and stores it in the code body of the keyword 

in the location reserved by < BUILDS. It then executes a SCODE, which 

replaces the code address of the word being defined just as explained previous¬ 

ly. Since the SCODE has popped the return stack, the return address points to 

the outer interpreter return. The C@ and C, following DOES> is not executed 

when 1BYTE is evoked. 
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Formal definitions of < BUILDS and DOES> are: 

: ■ < BUILDS BOB CONSTANT ■; BOK 

: B DOES > B R > B ENTRY B 8 B + B! B; B — 

Here the "—" is machine code entered in the dictionary when DOES> is de¬ 

fined. It is this code that is executed to do the nesting operation when the 

mnemonic is evoked. For the Z80 the code for a return from a subroutine is 

hexadecimal C9. Thus: 

HEX B1BYTE B RET B C9 B C, B BOK 

A memory map of the results of this definition is given in figure 4.1. 

RET DOES > 

3 
R 
E 
T 

LA 

CA 

CODE 

C9 

Figure 4.1: High-level definition example. The machine 

code pushes the instruction register to the return stack, 
performs an indirect fetch from the word address regis¬ 

ter, places the address in the instruction register and 

pushes the doubly incremented word address register to 
the stack. 

1BYTE 

COLON 

<BUILDS 

DOES > 

C@ 

C, 

SEMI 

The general form of these high-level defining words is: 

:B defining name B < BUILDS B defining time codeB 

DOES> Brun time secondary codeB;B BOK 

Here defining time code is executed at definition time of the defining name. 

The run-time code is executed when a keyword defined using the defining 

word is evoked. When this code is executed, the stack contains the address of 

the third byte of the code body of the keyword on the first byte available for 

data storage. 
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To illustrate the defining time code utility, an alternate definition of 1BYTE 

is: 

: ■ IB YTE ■ < BUILDS ■ C, ■ DOES >BC@BC,B;B BOK 

With this definition, RET is then defined as: 

HEX ■ C9 ■ IB YTE ■ RET ■ BOK 

After < BUILDS constructs the constant header RET, the C, between 

< BUILDS and DOES > adds the C9 hex number to the dictionary following 

the 2 bytes reserved by the constant header form: that is, the third byte in the 

code of RET. DOES> then does its thing. 

4.5.6 Vocabulary Defining Word 

The vocabulary defining word is an example of a defining word that uses a 

high-level definition. The definition of VOCABULARY is: 

: B VOCABULARY B < BUILDS B ENTRY B, B DOES > B 
CONTEXT B! B; B BOK 

A new vocabulary called name is created by: 

VOCABULARY B name B BOK 

This evokes < BUILDS to create the dictionary entry for name and link it to 

the current vocabulary. The ENTRYB, actually retrieves the address of the 

first header byte of name aird enters this address as the third and fourth byte of 

the code body of name. DOES> then does its thing. 

When name is evoked the address of the third and fourth byte is stored in 

CONTEXT as the pointer to the last header in vocabulary name. Note that the 

keyword name exists in the vocabulary that was current when name is defined 

and the vocabulary name is linked where it is defined. Any extensions added 

to this vocabulary after name is defined are not linked to (included in) name. 

4.6 Vocabulary Keywords 

The vocabulary keywords are the system directives that allow management 

(or mismanagement) of the vocabularies defined in your TIL. Most of the 

keywords have been mentioned at one point or another. Just for drill, they will 

be repeated here. 
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VOCABULARY — A defining keyword used to define new vocabularies. See 

Section 4.5.6. 

IMMEDIATE — This keyword delinks the latest keyword entered in the CUR¬ 

RENT vocabulary from the CURRENT vocabulary and links it to the COM¬ 

PILER vocabulary. What was previously the second entry in the CURRENT 

vocabulary becomes the latest entry. 

DEFINITIONS — This keyword sets the system variable CURRENT to the 

value at the system variable CONTEXT so that new definitions will enter the 

correct vocabulary. 

FORGET — This keyword sets CONTEXT to CURRENT and searches the 

CONTEXT vocabulary for the token following FORGET in the input buffer. If 

the keyword is located, the keyword is delinked from the CURRENT 

vocabulary and the DP is reset to the first header byte of the located keyword. 

If not found, the keyword is echoed to the operator followed by "?". 

CORE — The core language vocabulary. 

COMPILER — The compiler vocabulary. 

4.7 Babblings 

Not all of the language elements have been presented here. I promise to pull 

some off-the-wall keywords out of my magic hat at some unexpected moments 

during the course of the remaining text. There are two reasons for this: forget¬ 

fulness and a desire to see if anyone is paying attention. What good is a magic 

hat if it can't be used occasionally? 
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5 | Routines, Routines, 
Routines 

There are not a large number of routines needed to imple¬ 

ment a TIL. However, the number of routines that can be 

created with a machine as simple as a computer is absolutely 

amazing. There are routine routines, obscure routines, 

clever routines, etc, etc, etc. I personally prefer lucid TIL 

routines, but these are very rare creatures indeed. 

5.1 Core TIL Design Notes 

The core of any threaded interpretive language is that set of code and 

routines necessary to achieve a self-generating language. Fundamental to 

designing the core is assessing the resources available to generate and support 

the proposed language. The available memory, peripherals and operating 

system have a tremendous impact on the design process. Similarly, the 

available support software can materially affect the generation process. 

To bring the problem down to earth, a certain level of software must exist in 

order to generate the TIL. A system monitor/software support system is 

presumed and must support program generation, display, debug, execution 

and storage on some mass media. It is impossible to bootstrap a language 

without some resources. The more sophisticated the support system, the easier 

the task. 

The very first step in the design process is to segment the available memory. 

Memory area is required for stacks, the input buffer, system variables and the 

language itself. Remember that the system variables must be initialized, either 

by loading them in conjunction with the TIL language load from the mass 

media or by an initialization routine. The 1 K-byte stack and input buffer 

area presented in figure 3.2 is more than generous. Actually, a 64-byte line 

buffer, a variable area, and the stacks could all be contained in a 256-byte area 

with few potential problems. But if you can afford the memory, use a 

1 K-byte configuration. 

The next step is to assess the I/O subroutines available in the system 

monitor/software support system. Usually these routines can be "borrowed," 
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either by accessing them as subroutines or simply by relocating the routines to 

the TIL area. Special care must be exercised to clearly identify the protocol 

used to pass data to and receive data from the I/O. 

The actual allocation of processor registers and the design of the inner inter¬ 

preter is the next step. This design must consider the interfacing of the 

primitives and secondaries to the inner interpreter. I urge you to spend suffi¬ 

cient time on this design process to convince yourself that a more time efficient 

design is not possible. Chapter 3 is the design guide for this activity. 

The next step in the design process is consideration of a machine code 

subroutine calling convention. Almost always there will be "functions" that 

are called by several primitives and may be exactly the same function per¬ 

formed by a keyword. All subroutines must preserve all registers except those 

used to return parameters and must always preserve the instruction register. A 

subroutine may use the stack as a means of saving registers for restoration 

when it completes. It may even return a value on the stack. The calling code 

must always expect the parameter in a specific return location. 

An example of a subroutine that may be called by a primitive and exists as a 

keyword is the display carriage return-line feed sequence. Suppose a 

subroutine called $CRLF that performs this function is written. This 

subroutine may be directly called by primitive machine code. The keyword 

CRET is then defined as a primitive which simply calls $CRLF and then returns 

to the inner interpreter NEXT routine. 

All subroutines are generally preceded by the symbol $ in this text. This is 

simply a personal holdover from some forgotten project. Choose a convention 

to suit yourself and then stick with it. 

Given the inner interpreter design, the subroutine calling convention and the 

register allocations, the input/output routines must be re-examined to verify 

that conflicts do not exist vis-a-vis the instruction register. Conflicts are re¬ 

solved in favor of the inner interpreter. The minimum set of I/O routines that 

must exist is: 

$KEY — An input subroutine in machine code that first resets the keyboard 

and then awaits the next keyboard input. The next input is returned in a 

known register or address and the keyboard is reset again before exit. This 

routine must preserve the instruction register. Additional possible functions 

were discussed in Section 4.3.7. 

$ECHO — An output subroutine in machine code that controls the display in¬ 

terface. The routine must recognize ASCII codes and implement display 

routines for carriage return, line feed, and backspace, and a control code to 

clear the screen and home the cursor. (Control of the cursor by this routine is 

assumed.) Printing ASCII codes are displayed and the cursor is moved right 

one character. This routine must preserve the instruction register. 

There are other functions that $ECHO could perform. One that I highly 

recommend is a variable, time delay loop following a carriage return. This 

allows routines such as DUMP and ADUMP to be slowed down sufficiently to 

allow leisurely viewing. Full cursor control (up, down, right, left, and home) is 
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also useful as is a reverse video function. Note that a line feed results in the 

next display line being cleared, whereas a cursor down command merely 

moves the cursor down one line with automatic last-to-first line wraparound. 

Since the display usually recognizes a subset of the control codes, protection 

from a function such as ADUMP (which could output characters that are 

within the display control set) is an excellent idea. One possible way to achieve 

this end is to set the high-order bit in general display output bytes passed to the 

$ECHO routine. Then $ECHO would automatically assume that any byte 

with a high-order bit set is to be displayed and take appropriate action to 

assure displayability. This latter function is display specific. 

If the I/O routines exist as subroutines within the system software, the inter¬ 

face task is generally easy. If not, these routines must be written before the ac¬ 

tual TIL design can proceed. This is also true for any software needed to sup¬ 

port the development of the TIL code. 

One note must be directed toward the line buffer, token separators, and the 

carriage return function of the input submode. There are several ways to han¬ 

dle the problem of deciding when all the tokens in the line buffer have been ex¬ 

tracted and the line buffer is empty. Obviously one way to handle the problem 

is to store a carriage return ASCII code in the line buffer at the point where it 

occurs. There are several reasons why this is not a good idea. 

Fundamentally, the token scan routine must be able to recognize any 

character as a token separator, not just the ASCII space code. This allows 

keywords such as the literal handler "[" to use characters other than the space 

as a separator since the literal may contain embedded space codes. Secondly, 

the token scan routine resets the line buffer pointer to point to the first 

character past the separator after extracting the token. This allows changing 

the separator for a single call but prevents the next call from returning the 

previous calls separator as the next token. Finally, there must be a way to 

recognize that the end of the line has been reached. 

The easiest way to handle the problem is to place a termination sequence at 

the end of the line buffer area. I usually use two terminator characters with 

their high-order bits 1 set. This implies that they are two's complement 

negative (easy to test) and not in the ASCII code set (no conflicts). Two 

characters insure that failure to properly enter an expected separator will not 

allow skipping over a single terminator. 

The input submode always fills the line buffer with ASCII space codes when 

it is entered. The carriage return simply outputs an ASCII space code to the 

display to move the cursor right one place before terminating the input sub¬ 

mode. 

The token scan routine TOKEN takes its separator from the stack. If it is the 

ASCII space code, leading spaces are ignored in extracting a token. The last 

character of any token is the character before either the separator or the ter¬ 

minator. In either case, the line buffer pointer is reset to point to the first 

character past the terminator character before the routine completes. 

The terminator character is not in the dictionary and cannot be a number. 

The invalid keyword handling routine can easily distinguish between an in¬ 

valid keyword and the terminator. Remember, though, that the terminator 
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characters must be set by the initializing sequence. 

Alternates to this technique are possible. I have used different ones. This 

particular approach, however, leaves the full display line available for input. 

Once the preliminary designs and the design decisions have been made, the 

task of actually designing the outer interpreter can proceed. 

5.2 Outer Interpreter Design- 

A standard approach I use to design a TIL program is the old, inscrutable, 

top-down structured programming method. I don't know anything about it, 

but I do like the divide and conquer words. After pursuing this attack to a cer¬ 

tain level, I then chuck the top-down and get on with the bottom-up coding. 

When the top-down meets the bottom-up, I have a checked program. 

To design the outer interpreter, I always start with a flow diagram. Figure 

5.1 is the example we will pursue. Each subprogram block in the diagram ex¬ 

cept for START/RESTART and $PATCH will be a dictionary entry. The only 

reason for this segmentation is that it allows easier checkout of the loop. Each 

decision block in the diagram implies that the preceding subprogram block has 

left a flag on the stack to allow the decision to be made. 

The general specification of what each routine is to do is written down. This 

includes a specification of its stack input and output along with its interaction 

with and control over system variables. The type of routine will also be deter¬ 

mined — primitive or secondary. 

A general specification for the START/RESTART routine is: 

START/RESTART — A machine code routine that initializes the system. If 

the system START flag is True, the address of the start message is placed in the 

word address register, the system number BASE is set to hexadecimal, and the 

START flag is set False. If the START flag is initially False, the restart message 

address is placed in the word address register. (An unconditional jump from 

the $PATCH routine or other error routines occurs to the code at this point 

and the address of the error message is expected in the word address register.) 

The data stack and return stack pointers are initialized and the word address 

register is pushed to the data stack as the parameter for TYPE. The system 

MODE and STATE flags are set False. The line buffer termination characters 

are set as appropriate. Other system registers are initialized as appropriate 
(design dependent), and a jump to the inner interpreter routine occurs to begin 

execution of the outer interpreter. 

Examples of the start and restart messages are: 
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WXHELLO ■ I'M ■ A ■ TIL 

The ASCII control code for the 

clear screen-home the cursor 

command. 

_ The number of characters to be 

output to the display (in hexa¬ 

decimal). 

YZTILB RESTART 

- The ASCII control code for the 

carriage return-line feed com¬ 

mand. 

- The number of characters to be 

output to the display (in hexa¬ 

decimal). 

Personalizing these messages is half the fun of the design of your own 

language. 

There are several methods to jump to the inner interpreter such that the 

outer interpreter begins execution. They all depend on initializing the instruc¬ 

tion register to correctly point to the threaded code for the outer interpreter. 

From the flow diagram the preliminary outer interpreter threaded code list is 

designed. For the diagram of figure 5.1, the threaded code list for the outer in¬ 

terpreter is shown in figure 5.2. For this example, the address of TYPE in this 

threaded list is put in the instruction register, and an unconditional jump to the 

inner interpreter routine NEXT is executed. 

The threaded code list of figure 5.2 was taken directly from the flow 

diagram of figure 5.1. Each YES in figure 5.1 corresponds to a True (T) in the 

control flow of figure 5.2; each NO to a False (F). The outer interpreter code 

does not show the jumps out of inner interpreter control (the dashed lines of 

figure 5.1). The keyword names are really the word address of the keywords 

when the actual threaded list of the outer interpreter is coded. 
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Figure 5.1: Outer interpreter flowchart. 

The outer interpreter threaded code list is somewhat deceptive. Buried in 

this list are several secondaries and large primitives needed to do the outer in¬ 

terpreter tasks. Few outer interpreter designs require very many bytes of code. 

Fundamentally this is because using complex secondaries in the outer inter¬ 

preter seldom leads to observable time penalties. The outer interpreter is in¬ 

teracting with the operator, who is orders of magnitude slower than the outer 

interpreter. 
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KEYWORD CONTROL TYPE 

TYPE-*- Primitive 
INLINE Primitive 
ASPACE *- Primitive 
TOKEN Primitive 
7SEARCH Secondary 
*IF OB III Primitive 
7NUMBER-*-p Secondary 
*ENDF3 |]I Primitive 
QUESTION * 1-1 Primitive 
•WHILE EA U- — Primitive 
7EXECUTE-*-—1 Secondary 
‘WHILE E9 U- Primitive 

Figure 5.2: Outer interpreter code design. 

BYTES STACK 

2 
2 
2 
2 
2 
3 
2 
3 
2 
3 
2 

_3_ 
28 

F,AD or T 
AD or T 
F,N or T or F 
— or N 

AD 

TYPE — A primitive with a header. This routine pops the address of a message 

in TYPE format on the stack (ie: a pointer to the message length followed by 

that many ASCII characters) and outputs the message to the display. These 

messages may contain embedded ASCII control codes to control the format of 

the display. The start message should contain a control code to clear the screen 

and home the cursor before the message. The restart message should contain 

control code to issue a 'carriage-return line-feed" sequence to the display line. 

The entrance from $EXECUTE via $PATCH will leave a stack pointer error 

message address on the address. This message will also contain the "carriage 

return-line feed" sequence. The entrance from QUESTION via $PATCH will 

only leave the address of the ■ ? message on the stack. The "carriage return¬ 

line feed" sequence and unrecognized token must be issued by QUESTION 

before the restart is executed. The direct QUESTION entrance will leave the 

address of the BOK message on the stack. It does not contain any control 

codes. TYPE does not alter any system variables or leave anything on the 

stack. 

INLINE — A primitive without a header that implements the input submode. 

It expects no stack inputs and returns none. This routine first executes a "car¬ 

riage return-line feed" sequence to leave the cursor at the first character posi¬ 

tion of the next display line, and clears the line buffer. It recognizes a 
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backspace command from the keyboard that outputs a space to the current 

cursor location and moves the cursor left one place, unless the cursor is at the 

first buffer position location. It recognizes a line-delete command from the 

keyboard that outputs a line-delete character to the current cursor location 

and then returns to the start of the INLINE routine. It recognizes a carriage 

return key and outputs a space to the current cursor location, moves the cursor 

right one place, sets the system line buffer pointer to the first address of the line 

buffer and exits this routine via a jump to the inner interpreter. All other 

keyboard input characters are echo displayed and moved to the line buffer 

(unless the last buffer place has been filled) with lowercase alphabetic 

characters changed to uppercase. When the last buffer location has been filled, 

the cursor is no longer advanced. Further entries simply replace the last 

character on the display line and in the line buffer. 

ASP ACE — A CCONSTANT with value hexadecimal 20. This routine simply 

pushes an ASCII space to the low-order byte of the stack. This is the token 

separator for TOKEN'S use in scanning the input line. No system variables are 

manipulated. 

TOKEN — A primitive with a header. This routine expects a token separator 

on the stack in the low-order byte location. It pops this terminator and also 

retrieves the line buffer pointer from the system variable area. If the separator 

is an ASCII space, all leading spaces are ignored (ie: the line buffer pointer is 

advanced to point to the first non-space character). This pointer value is saved 

and a b> count to the next occurrence of the separator or terminator is 

generated. This count is placed in the first location of the free dictionary space 

followed by all the token characters. The system dictionary pointer variable 

points to the start of the free dictionary area but is not advanced by TOKEN. 

The line buffer pointer is advanced to point to the character following the ter¬ 

minating separator. The routine leaves no parameters on the stack. 

7SEARCH — A secondary with no header. This routine will first search the 

context vocabulary — trying to locate a keyword whose header matches the 

token length and descriptor characters of the string moved to the dictionary 

space by TOKEN. The system variable CONTEXT contains the address of the 

appropriate context vocabulary. If the search is successful, the keyword word 

address is returned to the stack as the second stack entry, and a False flag is 

returned as the top stack entry. If the context vocabulary search is unsuc¬ 

cessful, the system MODE flag is tested. If the MODE flag is False (execute 

mode), a single True flag is returned at the top of the stack. If the MODE flag is 

True (compile mode), the COMPILER vocabulary is searched. If the search is 

successful, the word address of the located keyword is returned to the stack as 

the second stack entry, a False flag is returned as the top stack entry and the 

system flag STATE is set True. If the compiler vocabulary search is unsuc¬ 

cessful, a single True flag is returned as the top stack entry. The threaded code 

for 7SEARCH is shown in figure 5.3. A flag is always the top stack entry when 

7SEARCH completes. If this flag is False, the word address of a located 

keyword is the second stack entry as a parameter for 7EXECUTE. 
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KEYWORD CONTROL BYTES STACK 

COLON 
CONTEXT 

@ 
<® 

SEARCH 

2 
2 AD 
2 AD 
2 AD 
2 F,AD or T 
2 F,F,AD or T,T 
3 F,AD or T 
2 AD,T 
2 T/F,T 
3 T 
2 
2 AD 
2 AD 
2 F,AD or T 
2 F,F,AD or T,T 
3 F,AD or T 
2 0,T 
3 0,T 
2 1 ,F,AD 
2 AD,1 ,F,AD or AD,0,T 
2 F,AD or T 
2 F,AD or T 

48 

Figure 5.3: Code design for ?SEARCH. 

7EXECUTE — A secondary with no header. This routine tests the states of the 

system MODE flag and the system STATE flag. If the flag states are equal, the 

word address of the top stack entry is executed. If not, the word address at the 

top stack entry is enclosed in the dictionary. The system STATE flag is always 

set False before the possible execution of a keyword can occur. After each 

keyword execution, a test for stack underflow is made. If underflow occurs, 

the address of the stack underflow message must be loaded into the word ad¬ 

dress register and an unconditional jump to the $PATCH routine occurs. The 

threaded code for the 7EXECUTE routine is shown in figure 5.4. 
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KEYWORD CONTROL BYTES STACK 

COLON 
STATE 
C@ 
STATE 
COSET 
MODE 
C@ 

*IF 08 {j_ 
EXECUTE •*— 
•STACK 
•ELSE 03 U | 

SEMI* 

2 AD 
2 AD,AD 
2 FG,AD 
2 AD,FG,AD 
2 FG,AD 
2 AD,FG,AD 
2 FG,FG,AD 
2 T/F,AD 
3 AD 
2 
2 
3 
2 
2 

30 

Figure 5.4: Code design for 7EXECUTE. 

7NUMBER — A secondary with no header. This routine attempts to convert 

the token located at the free dictionary space to a binary number using the cur¬ 

rent system number base. If the conversion is unsuccessful, a True flag is 

pushed to the stack. This will occur if the token is the terminator or if the 

token is unidentifiable. If a successful conversion occurs, the system MODE 

flag is checked. If the MODE flag is True, a literal handler plus a number must 

be added to the dictionary. If the number is within the byte number range, the 

word address of the byte number literal handler *C# is added to the dictionary 

followed by the byte number. If the number is not within a byte range, the 

word address of the word number literal handler *# is added to the dictionary 

followed by the number. After the literal handler and number entry to the dic¬ 

tionary, a False flag is pushed to the stack. If the conversion is successful and if 

the system MODE flag is False, the number is pushed to the stack and a False 

flag is pushed to the stack. This can leave an excess number on the stack which 

is exactly the right answer in the execute mode. The thread code design for 

7NUMBER is shown in figure 5.5 
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KEYWORD CONTROL BYTES STACK 

COLON 
NUMBER 
*IF 25 
MODE«- 
C@ 
*IF 19 
SINGLE* 
*IF OC 
*#*# 

•ELSE 09 U—| 
- 

- 
‘ELSE 03 U—| 
1«- 

SEMH- 

2 
2 T,N or F 
3 N or - 
2 AD,N 
2 T/F,N 
3 N 
2 T/F,N 
3 N 
4 AD,N 
2 N 
2 
3 
4 AD,N 
2 N 
2 
2 F or F,N 
3 F or F,N 
2 T 
2 T or F or F,N 

47 

Figure 5.5: Code design for 7NUMBER. 

(A fundamentally circular definition is encountered in the design of 

7NUMBER. It fields literals but contains the word number literal handler as a 

literal number, which is itself the word address of the literal handler followed 

by its own word address. Thus, if the literal handler word address were XXYY 

hex, the *#*# of figure 5.5 is YYXX YYXX given the reversed address order of a 

microcomputer.) 

QUESTION — A primitive with a header. This routine tests the high-order bit 

of the second byte in the free dictionary space. If this bit is 1 set, all of the input 

buffer tokens have been scanned and a terminator is in the free dictionary 

space. The address of the BOK message is pushed to the stack and exit occurs 

to the inner interpreter NEXT routine. If the bit is zero set, an unidentifiable 

token has been scanned. In this event, a carriage return-line feed is issued to 

the display, the token in the free dictionary space is displayed, the address of 

the ■? message is placed in the word address register and an unconditional 

jump to the $PATCH routine occurs. 

SPATCH — A machine code routine that patches several system variables in 

the event a system error occurs during the compile mode. SPATCH resets the 

dictionary pointer and the current vocabulary link to the values that existed 
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prior to the attempt to compile the aborted definition. This also allows a con¬ 

venient way to abort a semi-completed definition. Simply entering a token 

which you know the system won't recognize does the trick. I usually use a se¬ 

quence of Xs to accomplish an abort. A line delete will do the same unless the 

definition extends over one line or has been partially entered via carriage 

return. A definition may extend over as many input lines as your mind can 

support, but remember that the TIL will do exactly what you ask. It doesn't 

forget unless you type FORGET. 

All of the outer interpreter secondaries have been detailed. They are com¬ 

posed of primitives only. The major reason for defining routines as headerless 

secondaries is simply to make testing easier. The total code count for the outer 

interpreter and all of its subroutine secondaries is: 

Outer Interpreter 28 
7SEARCH 48 
7EXECUTE 30 
7NUMBER 47 

153 bytes 

An 18-byte penalty is paid for defining the three headerless secondaries. 

This is a price well worth paying at checkout time. 

A complete list of the keywords needed to directly implement the outer in¬ 

terpreter is given in table 5.1. The rough size of each keyword (including 

headers) is given in this list. A byte count to this point yields: 

Inner Interpreter * 50 
Start/Restart * 50 
Secondaries * 150 
Primitives * 825 

1075 

This list of code is still deceptively small. It does not consider the I/O 

subroutines needed to support table 5.1 primitives, several system variables, 

and the defining and compiling keywords required both in support of the table 

5.1 keywords and in allowing a self-generating language. There are between 

400 and 700 bytes involved in these routines. 
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KEYWORD TYPE KEYWORD NAME « BYTES 

OPERATORS TYPE 25 
INLINE 95 
SEARCH 70 
TOKEN 60 
NUMBER 90 
@ 15 
C<® 20 
/ 20 
c, 20 
DUP 15 
DROP 10 
Cl SET 15 
COSET 15 
= 25 
SINGLE 20 
*STACK 20 
QUESTION 35 

CONSTANTS ASPACE 10 
0 10 
1 10 

VARIABLES CONTEXT 15 
COMPILER 15 
STATE 15 
MODE 15 

PROGRAM CONTROL DIRECTIVES *IF 10 
‘END 10 
‘WHILE 10 
‘ELSE 10 

LITERAL HANDLERS *# 15 
*C# 15 

SUBROUTINES $PATCH 35 
$CRLF 15 

SYSTEM MESSAGES 40 

Table 5.1: Outer interpreter keyword sizes. 

At this point I will abandon the pursuit of the exact keywords needed to 
complete the TIL design. After all, this is only one example of an outer inter¬ 
preter. There is no 'right" design and no "right" choice of a keyword as a 
primitive or a secondary. 

The design procedure to this point is really nothing more than identifying 
the functions to be performed and associating a keyword name with the func¬ 
tion. I highly recommend "headerless" secondaries as a method of segmenting 
larger code blocks as long as timing consideration allows. In the outer inter¬ 
preter for a terminal-directed TIL, the slower secondary nesting is acceptable. 
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This slower approach may not be feasible in a high-speed widget sorting pro¬ 

gram. 

5.3 Routine Routines 

There are obviously a number of routines, both primitive and subroutine, 

needed to mechanize the outer interpreter. These routines are really the heart 

of the system design. To present the designs both flowcharts and Z80 specific 

listings will be used. 

5.3.1 START/RESTART 

The start/restart routine really has two entrances: one that initializes the en¬ 

tire system and calls up either the start or restart message, and one that does a 

partial system initialization and presumes an error message has already been 

set up. 

A listing of equivalent Z80 assembly code is given in listing 5.1. This par¬ 

ticular mechanization presumes that the system variables MODE and STATE 

share adjacent memory cells, and the system variable BASE is initially stored 

as zero during system loading. The variable BASE may thus be used to 
distinguish a start from a restart. The abort entrance, like a restart, does not 

change the system base but performs all other initializations. 

START: 

ABORT: 

LD DE.RSTMSG 
LD A, {BASE} 
AND A 
JR NZ,ABORT 
LD A, 10 
LD {BASE}, A 
LD DE,SRTMSG 
LD SP, STACK 
PUSH DE 
LD HL,0 
LD {MODE},HL 
LD IY,NEXT 
LD IX,RETURN 
LD HL,8080 
LD {LBEND},HL 
LD BC,OUTER 
JP NEXT 

RESTART MESSAGE ADDRESS TO WA 
GET SYSTEM BASE 
TEST IT FOR ZERO 
IF IT'S ZERO, IT'S A START 
ELSE GET HEX BASE 
AND STORE IT AT BASE 
START MESSAGE ADDRESS TO WA 
SET SYSTEM DATA STACK 
PUSH MESSAGE ADDRESS 

SET MODE =0, STATE =0 
SET I2 NEXT ADDRESS TO IY 
SET RETURN STACK 
GET TWO TERMINATORS 
STORE TO END OF LINE BUFFER 
START OF OUTER INTERPRETER 
JUMP TO I2 NEXT CODE 

Listing 5.1: Assembly code for START/RESTART. Note that OUTER is the address of 

TYPE in the threaded list for the outer interpreter. 
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5.3.2 INLINE - 

The input submode is mechanized by the INLINE routine. Although INLINE 

could be implemented as either a primitive or a secondary, a primitive form 

will be presumed. 

A flowchart of the INLINE function is shown in figure 5.6. One point is 

worth stressing in this design. The routine controls the cursor location by 

issuing carriage return, line feed and backspace commands to the display 

device. The buffer pointer BP points to the line buffer position where the next 

character will be stored. An equivalent Z80 assembly code listing is given in 

listing 5.2. 

Figure 5.6: INLINE flowchart. 
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INLINE: * +2 
PUSH BC 

START: CALL $CRLF 
LD HL,LBADD 
LD {LBP},HL 
LD B,LENGTH 

CLEAR: LD {HL},20 
INC HL 
DJNZ CLEAR 

ZERO: LD L,0 
INKEY: CALL $KEY 

CP "LD" 
JR NZ,TSTBS 
CALL $ECHO 
JP START 

TSTBS: CP "BS" 
JR NZ,TSTCR 
DEC L 
JP M,ZERO 
LD {HL},20 

ISSUE: CALL $ECHO 
JP INKEY 

TSTCR: CP "CR" 
JR Z,LAST1 
BIT 7,L 
JR NZ,END 

SAVEIT: LD {HL},A 
CP 61 
JR C,NOTLC 
CP 7B 
JR NC,NOTLC 
RES 5,{HL} 

NOTLC: INC L 

JR ISSUE 
END: DEC L 

LD C,A 
LD A,"BS" 
CALL $ECHO 
LD A,C 
JR SAVEIT 

LAST1: LD A,20 
CALL $ECHO 
POP BC 
JP {IY} 

PRIMITIVE CODE ADDRESS 
SAVE THE IR 
ISSUE CR-LF 
GET START OF LINE BUFFER 
RESET LBP 
SET BUFFER LENGTH 
LOAD SPACE TO BUFFER 
BUMP BUFFER POINTER 
LOOP TO CLEAR BUFFER 
BACK TO FIRST BUFFER LOCATION 
INPUT A CHARACTER 
IS IT A LINE DELETE? 
IF NOT SKIP LD CODE 
ELSE ISSUE LINE DELETE 
AND START OVER 
IS IT A BACK SPACE? 
IF NOT SKIP BS CODE 
DECREMENT BUFFER POINTER 
RESET TO ZERO IF NEGATIVE 
LOAD SPACE TO THE BUFFER 
DISPLAY THE CHARACTER 
AND RETURN FOR NEXT 
IS IT A CARRIAGE RETURN ? 
IF SO, GO TO EXIT INLINE 
IF BIT SET, AT 1 29TH PLACE 
DO BUFFER END TASK AT 1 29 
SAVE CHARACTERS IN BUFFER 
IS IT LESS THAN LC A? 
IF SO, SKIP LC CODE 
IS IT MORE THAN LC Z ? 
IF SO, SKIP LC CODE 
ELSE MAKE LC UC IN BUFFER 
BUMP POINTER 

GO ISSUE CHARACTER 
BACK UP TO 1 28TH PLACE 
SAVE THE INPUT CHARACTER 
GET BACK SPACE CHARACTER 
MOVE CURSOR LEFT 
RESTORE ORIGINAL CHARACTER 
GO PUT IT AT 1 28TH PLACE 
REPLACE CR BY A SPACE 
AND ISSUE IT 
RESTORE IR 
RETURN TO I2 NEXT ROUTINE 

Listing 5.2: INLINE Z80 primitive. This routine presumes a 128 byte line buffer which 

starts on a page boundary. 
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5.3.3 Token Extracting 

The token-extracting routine is mechanized as the keyword TOKEN in the 

design presented. The TOKEN keyword can be either a primitive or a second¬ 

ary, although I usually design it as a primitive. This routine moves the next 

token in the line buffer to the free dictionary space in extended header format. 

A flowchart of the TOKEN routine is shown in figure 5.7. Note that LBP 

Figure 5.7: TOKEN flowchart. PI points 

to the line buffer; P2 points to the dic¬ 

tionary space; SEP is the separator. 
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and DP are system variables whose contents point to the line buffer and dic¬ 

tionary free space respectively. The LBP variable will point to the start of the 

line buffer the first time TOKEN is used to scan a token after a line entry. 

TOKEN will reset LBP to point to the first line buffer address following the 

token separator each time it is called. This particular design presumes that two 

terminators are stored immediately following the line buffer. These ter¬ 

minators act as permanent separators. Two terminators are required to allow 

the first to terminate the last token on the line and to insure that the next call to 

TOKEN will return a terminator. A listing of the Z80 assembly code to imple¬ 

ment TOKEN is given in listing 5.3. 

DATE #5,T,0,K 
DATA "LINK” 

TOKEN: *+2 

EXX 
LD HL,{LBP} 
LD DE,{DP} 
POP BC 
LD A,20 
CP C 
JR NZ,T0K 

IGNLB: CP {HL} 
JR NZ,T0K 
INC L 
JR IGNLB 

TOK: PUSH HL 
COUNT: INC B 

INC L 
LD A,{HL} 
CP C 
JR Z,ENDT0K 
RLA 
JR NC,COUNT 
DEC L 

ENDTOK: INC L 
LD {LBP},HL 
LD A,B 
LD {DE},A 
INC DE 
POP HL 
LD C,B 
LD B,0 
LDIR 
EXX 
JP {IY} 

TOKEN'S IDENTIFIER 
LINK ADDRESS 
PRIMITIVE CODE ADDRESS 
SAVES IR 
GET POINTER TO TOKEN 
GET POINTER TO DICTIONARY 
SEPARATOR IN C, B IS ZERO 
SPACE CODE TO A REG 
IS SEPARATOR A SPACE ? 
IF NOT, TOKEN START 
IS IT A SPACE ? 
IF NOT, TOKEN START 
BUMP THE POINTER 
TRY NEXT CHARACTER 
SAVE TOKEN START ADDRESS 
INCREMENT COUNT 
BUMP THE POINTER 
GET THE NEXT CHARACTER 
IS IT A SEPARATOR ? 
IF SO, TOKEN END 
BIT 7 TO CY 
IF CY =0, NOT AT END 
BACK UP 1 IF A TERMINATOR 
STEP PAST SEPARATOR 
UPDATE LBP FOR NEXT CALL 
MOVE COUNT TO A REG 
LENGTH TO DICTIONARY 
BUMP DICTIONARY ADDRESS 
GET TOKEN START ADDRESS 
GET COUNT TO BC 

Listing 5.3: TOKEN: Z80 primitive. 

MOVE TOKEN TO DICTIONARY 
RESTORE IR 
RETURN TO I2 NEXT ROUTINE 
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5.3.4. SEARCH 

SEARCH is the routine within $SEARCH which actually searches the 

vocabularies for a given keyword. It has a header since it will be compiled into 

other keywords after a self-generating language is achieved. I generally code 

this routine as a primitive to insure that keywords can be located as rapidly as 

possible. 

SEARCH is called with the address of the first keyword header in the linked 

list to be searched as the top stack entry (ie: the address of the three in the DUP 

header in the example of figure 2.1). The token being searched for is located in 

the free dictionary space in extended header format. The search routine will 

test the length and up to three characters of the keyword name. The first 

detected mismatch causes the next header in the linked list to become the next 

candidate for a match. This procedure will continue until either a match occurs 

or the bottom of the list is reached (a zero link address). If a match occurs, the 

word address of the located keyword is pushed to the stack followed by a False 

flag. If the bottom of the list is reached, a True flag is pushed to the stack. 

A flow diagram of the SEARCH routine is given in figure 5.8 and a Z80 

assembly code listing is given in listing 5.4. 

SEARCH: 

TESTIT: 

BEL04: 
NXTCH: 

DATA #6,S,E,A 
DATA "LINK” 
* +2 
EXX 
POP HL 
PUSH HL 
LD DE,{DP} 
LD C,0 
LD A,{DE} 
CP {HL} 
JR NZ,NXTHDR 
CP 4 
JR C,BEL04 
LD A,3 
LD B,A 
INC HL 
INC DE 
LD A,{DE} 
CP {HL} 
JR NZ,NXTHDR 
DJNZ NXTCH 
POP HL 
LD DE,6 
ADD HL,DE 
PUSH HL 
JR FLAG 

SEARCH'S IDENTIFIER 
LINK ADDRESS 
PRIMITIVE CODE ADDRESS 
SAVES IR 
GET 1ST HEADER ADDRESS 
SAVE START OF HEADER 
GET DICTIONARY POINTER 
USED WITH B AS A FALSE FLAG 
GET DICTIONARY TOKEN LENGTH 
SAME AS KEYWORD LENGTH ? 
IF NOT, GO TO NEXT HEADER 
IS LENGTH OVER 3 ? 
IF NOT, SKIP 3 SET CODE 
SET LENGTH TO 3 
SAVE LENGTH AS COUNT 
BUMP HEADER POINTER 
BUMP DICTIONARY POINTER 
GET NEXT DICTIONARY CHARACTER 
MATCH KEYWORD CHARACTER ? 
IF NOT, GO TO NEXT HEADER 
ELSE GO TEST NEXT CHARACTER 
START OF FOUND HEADER 
START OF HEADER PLUS 6 
EQUALS WORD ADDRESS 
PUSH WA; BC =0 FOR FLAG 
DONE AND KEYWORD FOUND 
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FLAG: 

POP HL 
LD DE,4 
ADD HL,DE 
LD E,{HL} 
INC HL 
LD D,{HL} 
EX DE,HL 
LD A,H 
AND L 
JR NZ.TESTIT 
LD C,1 
PUSH BC 
EXX 
JP {IY} 

GET START OF CURRENT HEADER 
PLUS 4 EQUALS LINK ADDRESS 
TO NEXT KEYWORD 
GET LINK ADDRESS OR THE 
START OF THE NEXT 
HEADER 

TEST LINK ADDRESS FOR ZERO 
OR LAST KEYWORD 
IF NOT 0, TEST NEXT HEADER 
FLAG = 1, IF NOT FOUND 
PUSH FLAG 
RESTORE IR 
RETURN TO I2 NEXT ROUTINE 

Listing 5.4: SEARCH: Z80 primitive. 

Figure 5.8: SEARCH flowchart. 
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5.3.5. NUMBER 

The NUMBER routine is a headerless primitive called by 7NUMBER to con¬ 

vert tokens to binary numbers. It is the single most complex routine in the 

design. On entrance there is a token, in extended header form at the free dic¬ 

tionary space, a length character followed by that number of ASCII 

characters. NUMBER will convert this token to a binary number if it is a valid 

number and push the number and a True flag to the stack. If NUMBER deter¬ 

mines that the token is not a valid number, it pushes only a False flag (zero) to 

the stack. 

The first character in a valid number token may be an ASCII minus sign 

(hexadecimal 2D). With this exception, all token characters are first tested to 

determine that they are in the set hexadecimal 30 thru 39 by subtracting hexa¬ 

decimal 30 from the character (remember that hexadecimal 30 is an ASCII 0 

and hexadecimal 39 is an ASCII 9) and testing to see that the result is between 0 

and 9. If the result is negative the character cannot be in the valid number set. 

If the result is more than hexadecimal 9 but less than hexadecimal 11, it is not 

in the valid character set since an ASCII A less hexadecimal 30 is 11 hexa¬ 

decimal. If the result is more than hexadecimal 10, an additional hexadecimal 7 

is subtracted which converts ASCII A,B,...F,G,... to 0A, 0B,...,OF, 10,... 

hexadecimals. The procedure to this point simply converts ASCII characters to 
binary numbers. The number is then tested to verify that it is in the set {0 thru 

(BASE —1)}. If all goes well the token is still in the acceptable number token 

set. 

The overall procedure is a sequential conversion process. The result is first 

set to zero. The process then tests to see if a leading minus sign is present. A 

flag is set to indicate this event. As each token character is scanned and con¬ 

verted to a number, the results are updated as: 

Result = Result * BASE + Number 

When all token characters have been input, the sign flag is tested. If the 

original token had a leading minus sign, the two's complement of the number 

is saved as the result. 

The procedure is depicted in the flowchart of figure 5.9 and a Z80 listing is 

given in listing 5.5. 
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NUMBER: 

SKIPSAV: 

NLOOP: 

NUMB: 

NOTNO: 

ANUMB: 

MLOOP: 

SKPADD: 

EXX 
LD HL, {DP} 
LD B,{HL} 
INC HL 
LD A,{HL} 
CP 2D 
LD A,0 
JR NZ,SKPSAV 
DEC A 
DEC B 
INC HL 
EX AF,AF' 
LD DE,0 
PUSH DE 
PUSH DE 
LD A,{HL} 
SUB 30 
JR C,NOTNO 
CP OA 
JR C,NUMB 
CP 11 
JR C,NOTNO 
SUB 7 
LD E,A 
LD A, {BASE} 
DEC A 
CP E 
JR NC,ANUMB 
POP HL 
EXX 
JP {IY} 
EX {SP},HL 
EX DE,HL 
PUSH BC 
PUSH HL 
LD BC,0800 
INC A 
LD L,C 
LD H,C 
ADD HL,HL 
ADC A 
JR NC,SKPADD 
ADD HL,DE 
DJNZ MLOOP 
POP DE 
ADD HL,DE 

NUMBER'S CODE ADDRESS 
SAVES IR 
GET POINTER TO DICTIONARY 
GET LENGTH OF TOKEN {COUNT} 
BUMP POINTER 
GET FIRST CHARACTER 
IS IT A MINUS SIGN ? 
SET SIGN FLAG TO FALSE 
IF POSITIVE, SKIP TO FLAG SAVE 
MAKE SIGN FLAG TRUE 
DECREASE COUNT BY 1 
BUMP PAST MINUS SIGN 
SAVE SIGN FLAG IN AF' 
ZERO DE REG PAIR 
SAVE AS FLAG 
SAVE AS RESULT 
GET NEXT CHARACTER 
SUBTRACT NUMBERS BIAS 
IF CY = 1, NOT A NUMBER {<0} 
LESS THAN 10 {A DIGIT} ? 
IF CY = 1, IT'S A DIGIT 
IF A UC LETTER, IT'S OVER 1 7 
ELSE IT'S NOT A NUMBER 
SUBTRACT ADDITIONAL LETTERS BIAS 
SAVE BINARY NUMBER IN E REG 
GET SYSTEM NUMBER BASE 
VALID SET IS {0,BASE - 1} 
IS THE BINARY NUMBER VALID ? 
CHEERS, IT'S A VALID NUMBER 
POP RESULT, LEAVING FALSE ON 
THE STACK; RESTORE IR 
RETURN TO I2 NEXT ROUTINE 
GET RESULT & SAVE POINTER 
RESULT TO DE AS MULTIPLICAND 
SAVE COUNT 
SAVE NEW BINARY NUMBER 
GET MULTIPLY COUNT 
RESTORE BASE IN A REG {MULTIPLIER} 
ZERO HL AS THE PRODUCT AREA 

SHIFT PRODUCT AND MULTIPLIER 
LEFT 1 BIT 
IF CY =0,SKIP ADD 
ELSE ADD MULTIPLICAND 
LOOP TO COMPLETE MULTIPLY 
GET BINARY NUMBER BACK 
RESULT = PRODUCT + NUMBER 
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POP BC 
EX {SP},HL 
INC HL 
DJNZ NLOOP 
POP DE 
POP HL 
EX AF,AF' 
AND A 
JR Z,DONE 
SUB HL,DE 
EX DE,HL 

DONE PUSH DE 
SCF 
PUSH AF 
EXX 
JP {IY} 

Listing 5.5: NUMBER: Z80 primitive. 

;RESTORE COUNT 
;GET POINTER & SAVE RESULT 
;BUMP THE POINTER 
;LOOP FOR ALL CHARACTERS 
;GET FINAL RESULT 
;THE FALSE FLAG {A ZERO} 
;GET SIGN FLAG FROM AF' 
;IS IT ZERO ? {ALSO CY=0} 
;SKIP COMPLEMENT IF POSITIVE 
;COMPLEMENT RESULT 
;FINAL FINAL RESULT TO DE 
;FINAL RESULT TO THE STACK 
;MAKE AF TRUE {*0} 
;PUSH TRUE FLAG 
;RESTORE IR 
;RETURN TO I2 NEXT ROUTINE 

5.3.6 QUESTION - 

The QUESTION keyword is a non-structured primitive. It has a single en¬ 

trance but may return to the inner interpreter or may exit to 

START/RESTART via $PATCH. The first character in the token at the free 

dictionary space determines which action will occur. If the high-order bit of 

this character is set, the token is a terminator. This implies that all operator re¬ 

quested actions are complete and the line buffer is empty. In this event the ad¬ 

dress of the BOK message is pushed to the stack arid the routine exits to 

NEXT. The outer interpreter will then jump to TYPE to display this message. 

If the token is not a terminator, it must be an unknown token since it could 

not be found in the dictionary or converted to a valid number. In this event, a 

carriage return-line feed is issued to the display and the unknown token is echo 

displayed to the operator. The address of the ■? message is then loaded to the 

WA register and the routine exits to $PATCH. The $PATCH routine will 

patch the system if the unknown token was discovered while the compile mode 

was in effect. 

A listing of the Z80 assembly code for this routine is given in listing 5.6. In 

this listing, note that the primitive TYPE is called as an in-line subroutine by 

changing the IY register to force a return to QUESTION. 

QUESTION: * +2 
LD HL, {DP} 
INC HL 

QUESTION'S CODE ADDRESS 
GET POINTER TO DICTIONARY 
STEP OVER TOKEN LENGTH 
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ERROR: 

RETURN: 

BIT 7,{HL} 
JR Z,ERROR 
LD DE,OK 
JP {IY} 
CALL $CRLF 
LD IY,RETURN 
DEC HL 
JP TYPE 
LD DE,MSG? 
JP $PATCH 

IF BfT SET, A TERMINATOR 
IF NOT SET, AN ERROR 
PUT OK MESSAGE ADDRESS IN WA 
RETURN TO I2 NEXT ROUTINE 
ISSUE CR-LF BEFORE UNKNOWN TOKEN 
SET IY TO RETURN TO THIS ROUTINE 
BACK-UP TO TOKEN LENGTH 
GO ECHO UNKNOWN TOKEN 
? MESSAGE ADDRESS TO WA 
GO PATCH SYSTEM BEFORE RESTART 

Listing 5.6: QUESTION: Z80 primitive. 

5.3.7 ‘STACK 

The ‘STACK routine is a primitive without a header. Like QUESTION, 

‘STACK is a nonstructured routine in that it has a single entrance but a dual 

exit. ‘STACK tests for stack underflow. If an underflow condition does not 

exist, a normal exit to NEXT occurs. If underflow is detected, the stack pointer 

is reset to point to the correct top of stack address, the stack error message ad¬ 

dress is loaded to the WA register and a jump to $PATCH is executed. This 

will patch the system and reinitialize the system before displaying the stack er¬ 

ror message and reverting to the input submode. A Z80 assembly code listing 

for this routine is given in listing 5.7. 

‘STACK: * + 2 
LD 
AND 
SUB 
JR 
ADD 
LD 
LD 
JP 

OK: JP 

;*STACK'S CODE ADDRESS 
HL,STACK ;GET TOP OF STACK ADDRESS 
A ;RESET THE CARRY FLAG 
HL,SP SUBTRACT CURRENT SP 
NC,OK ;IF CY =0, NO UNDERFLOW 
HL,SP ;ELSE RESTORE TOP ADDRESS 
SP,HL ;AND RESET STACK POINTER 
DE,STKMSG ;STACK ERROR MESSAGE ADDRESS TO WA 
$ PATCH ;GO PATCH SYSTEM BEFORE RESTART 
{IY} ;RETURN TO I2 IF NO UNDERFLOW 

Listing 5.7: *STACK: Z80 primitive. 

5.3.8 SPATCH 

The routine $PATCH is a machine language routine that is used to patch 

system variables in the event a system-detected error occurs during the com- 



ROUTINES, ROUTINES, ROUTINES 99 

pile mode. Any system-detected error that could occur during the compile 

mode should enter START/RESTART via $PATCH. System-detected errors 

that can occur only in the execute mode may jump unconditionally to 

START/RESTART. 

$PATCH resets the dictionary pointer DP and the CURRENT vocabulary 

link to the values that existed prior to the start of the aborted compile mode 

definition. If the MODE of the system is the compile mode on entry, $PATCH 

resets DP to the address that is the header address of the latest keyword in the 

CURRENT vocabulary. The link address in this header is then stored as the 

pointer to the latest entry in the CURRENT vocabulary. This delinks the par¬ 

tially entered keyword from the system and re-establishes the dictionary free 

space to its previous value. A Z80 assembly code listing for this routine is 

given as listing 5.8. 

$PATCH: LD 
AND 
JP 
PUSH 
LD 
LD 
INC 
LD 
EX 
LD 
LD 
ADD 
LD 
JR 
INC 

SKIP: LD 
LD 
DEC 
DEC 
LD 
LD 
POP 
JP 

A,{MODE} 
A 
Z,ABORT 
DE 
HL,{CURRENT} 
E,{HL} 
HL 
D,{HL} 
DE,HL 
{DP},HL 
A,5 
L 
L,A 
NC,SKIP 
H 
A, {HL} 
{DE},A 
HL 
DE 
A, {HL} 
{DE},A 
DE 
ABORT 

GET MODE VARIABLE 
IS IT ZERO {EXECUTE} ? 
IF SO, GO TO RESTART 
ELSE SAVE MESSAGE ADDRESS 
GET VOCABULARY ADDRESS 
IT POINTS TO THE LATEST 
ENTRY,WHICH WAS ABORTED 
THIS IS WHERE DP SHOULD 
POINT 
RESTORE DP 
BUMP POINTER TO THE 
LINK ADDRESS OF THE ABORTED 
KEYWORD BY ADDING 5 

MOVE LINK ADDRESS TO THE 
CURRENT VOCABULARY AS 
THE POINTER TO ITS 
LATEST ENTRY 

RESTORE MESSAGE ADDRESS 
AND EXIT TO RESTART 

Listing 5.8: SPATCH code. 

5.4 Doing It 

Given the design, the actual coding can begin. There are as many ways to 

program a TIL as there are computer/software combinations. My favorite 
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way involves hand-assembling and machine-coding the language until the self- 

generating phase is reached, but there are other methods. Almost all coding 

methods involve keeping track of the header addresses and word addresses of 

the individual keywords as well as their vocabulary linkage. One assembly 

listing of the entire TIL can be generated. This will keep track of all the ad¬ 

dresses using a symbol table. 

One neat trick for testing a TIL involves a register trapping scheme. My 

systems always support a trap routine that will display all registers and several 

levels of the stack. Defining a primitive that calls this trap routine results in an 

easy way to debug the TIL. I almost always start the TIL code by coding the 
system variables and their access routines: the start/restart routine, the inner 

interpreter, the system messages, and the TYPE keyword. The outer inter¬ 

preter is initially defined as just the TYPE word address followed by the trap 

primitive word address. Within half an hour of starting the actual code genera¬ 

tion, the system is happily saying: 

HELLO, I'M A TIL 

followed by the trap register and stack display. The registers, the stack, and 

the initialization of the systems variables can then be verified. 

As each new keyword in the outer interpreter is coded, its word address is 

added to the outer interpreter threaded list and the trap routine is moved to the 

next following location (or the next relative jump location). When the first 

secondary is called, it is first defined as just the trap primitive. The build and 

test then follows down this secondary. As each new keyword is added, the 

build and test extends, until a return to the outer interpreter occurs. 

A gentle build process allows a fairly thorough testing of the routines as they 

are added. A top-down testing approach has as many advantages as the top- 

down design approach. 

5.5 Arithmetic Subroutines 

Most microcomputers are noted for their lack of arithmetic machine-code 

instructions. Almost all have 8-bit addition and subtraction instructions; some 

even have 16-bit addition and subtraction instructions, but few have multiply 

and divide instructions. The multiply and divide keywords of Section 4.3.4 

must be implemented using algorithms, based on the addition and subtraction 

instructions. The keywords selected for inclusion in the TIL are based partially 

on constraints arising from the need to emulate multiplication and division. 

Multiplication of unsigned integers is fairly easy to emulate on most 

microcomputers. Division is usually more difficult and slower. The multiply- 

and divide-based keywords depend somewhat on how easy it is to define 

reasonably efficient algorithms. Execution speed is the primary design goal. 
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but memory utilization cannot be neglected. Depending on the instruction set 

available to the designer, a subroutine approach is usually most efficient. 

To emulate signed multiply and divide keywords, there are four steps (or 

subroutines) that can be isolated. The input numbers from the stack are first 

converted to positive integers after having computed and saved the sign of the 

result. The multiply or divide of the positive integers is then done resulting in a 

positive integer. The sign of the result is changed if the sign of the result com¬ 

puted during the input step calls for a negative result. Finally, the results are 

formatted and returned to the stack. The subroutines associated with these 

four steps need to be identified and designed. 

Table 5.2 lists the keywords of interest and associates each keyword with 

the appropriate root unsigned multiply and/or divide algorithm(s). The root 

algorithms are subroutined as follows: 

$US* — An 8 by 8 bit multiply with a 16-bit product. 

$UD* — A 16 by 8 bit multiply with a 24-bit product. 

$US/ — A 16 by 8 bit divide with a 8-bit quotient and 8-bit remainder. 

$UD/ — A 24 by 8 bit divide with a 16-bit quotient and 8-bit remainder. 

These subroutines expect positive input integers in pre-defined registers (or 

memory locations) and return result in pre-defined locations. 

INPUT KEYWORD OUTPUT SUBROUTINE 

N1(8)*NO(8) S* 
N1(16)*NO(8) 
N1(16)*NO(8) D* 
N1 (1 6)/NO(8) /MOD 
N1 (1 6)/NO(8) / 
N1 (1 6)/NO(8) MODU / 
N1 (1 6)/NO(8) MOD 
N2(16)1,N1(8)*/NO(8) D/MOD 
N 2 (1 6)*N1 (8)/NO(8) */ 
N 2 (1 6)*N$(8)/NO(8) */MOD 

NO(16) $US* 
NO(16) $UD* 
NO(8)*,N1(16)i$UD* 
NO(8)r,N1 (8), $US/ 
NO(8), $US/ 
NO(8)„N1(8)r $US/ 
NO(8)r $US/ 
NO(8)r,N1 (1 6),$UD* 
NO(16), $UD*,$UD/ 
NO(8)r/N1 (16),$UD*,$UD/ 

Table 5.2: Multiply and divide operations. 

All of the keywords, except D/MOD, "*/" and */MOD, expect two stack 
numbers on entry. Even in the case of an expected 8-bit number, the inputs are 

on the stack as 16-bit signed numbers. Except for the three keywords noted, a 

common routine can be defined to compute and save the sign of the result and 

convert any negative input integer to positive. The products or quotients 

returned are always pushed to the stack as signed 16-bit numbers except for the 

results of D*. Note that remainders are always positive. A common routine 

can be used to correct the results if they are negative for all of the keywords ex¬ 

cept D*. Two subroutines can then be defined as: 
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$ISIGN— The signs of the input numbers are exclusive-OR'ed and the result is 

saved as the result sign bit. Both input members are converted to positive in¬ 

tegers as required. 

$OSIGN — Retrieves the result sign bit and two's complements the result if 

the bit is 1 set. 

It should be realized that $ISIGN also expects the input numbers in a known 

location and not on the stack, otherwise the input numbers are below the 

subroutine return which is pushed to the stack when $ISIGN is called. 

These six subroutines are then used to implement the ten keywords 

associated with the multiply and divide keywords. The decision to use 

subroutines results in slower keywords than if in-line code routines had been 

defined. However, subroutines are very memory-efficient and the speed 

penalty is slight. The definition of the root algorithms as subroutines also 

allows them to be used to define other keywords. For example, a 16 by 16-bit 

multiply that returns a 32-bit product can be easily designed based on two calls 

to $UD*. In point of fact this results in the fastest 16 by 16-bit multiply for the 

Z80. 

Exactly how you define your number crunching routines depends on your 

application. The extremes run the gamut from a secondary definition to 

multiply by successive addition (using add and loop primitives) to a straight 

non-looping algorithm in machine code with in-line sign fielding. Number 

crunching may not even be required for some applications and may be omitted 

entirely. The subroutined approach given here along with fast looping root 

algorithms is a compromise that achieves fair execution efficiency along with 

reasonable memory needs. 
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6 | Words, Words, and 
More Words 

If you think that I'm merely going to bandy words with 
you, you're right. Ignore walruses and other figments of 
mathematical minds; the time is here and now. After all, 
CABBAGES and KINGS are both viable TIL keyword 
names. 

6.1 The Word 

Following a few, brief introductory remarks, here are page upon page of 
keyword descriptions. With any sort of luck at all, they will be arranged in 

ASCII alphabetic order. The composite collection is not quite a language 

specification nor is it really intended to be. The code descriptions are Z80 

specific in many cases, which limits their universal applicability. Most of the 

descriptions are simple enough to allow recoding for an alternate central pro¬ 

cessing unit. 

The general format of the descriptions is as follows: 

Name — My arbitrary name for the keyword which may be changed to your 

favorite flavor. 

Class — A vague attempt to classify the keywords into groups of like usage. 

Function — A description of what the keyword is to accomplish. 

Usage — Given you have got it, why you want it. 

Z80 Code — A semi Z80 assembly language description of the code body of 

primitives, including explanatory comments. These listings do not include the 

header or the code address, but include the return address if and only if a label 

precedes the return. 

Code — A list of the primitive and secondary keywords that constitute the 

code body of a secondary. They include relative jump bytes in hexadecimal. 

Sans headers, COLON addresses and SEMI addresses. 

Bytes — The total byte count for the keyword including the header, the code 

address and the return address where applicable. Specific to the Z80 for Z80 
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code listings but generally indicative of keyword sizes. 

Notes — A list of the funnies and restrictions associated with some keywords. 

Formal Definition — The formal definition of the secondary keywords given 

that the entire language existed. These keywords cannot usually be defined by 

the formal definition. For example, the formal definition of presumes the 

existence of 

On with the show. 

f 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

BYTES: 

Memory Reference 

Stores second stack entry at the address at the top stack en¬ 

try, removing both entries. 

Two stack entries/None 

Storage of word length data in programmable memory. 

POP HL ;GET ADDRESS 

POP DE ;GET DATA 

LD {HL},E ;STORE BYTE 

INC HL ;BUMP ADDRESS 

LD {HL},D;STORE BYTE 

15 

# 

Class: 

Function: 

Input/Output: 

Usage: 

Code: 

BYTES: 

Formal Definition: 

I/O 

Pops the top stack entry, computes the quotient and re¬ 

mainder relative to the system number base, converts the 

remainder to an ASCII character (0 thru 9, A thru Z), 

pushes the character, then pushes the quotient. 

One stack entry/Two stack entries. 

Does one conversion in the process of generating format¬ 

ted display outputs. 

0 ;24 BIT NUMBER EXTENSION 

BASE ;NUMBER BASE ADDRESS 

C@ ;NUMBER BASE 

D/MOD ;REMAINDER THEN QUOTIENT 

ASCII ;REMAINDER TO ASCII CHARACTER 

SWAP REMAINDER TO NUMBER STRING 

22 

:■#■()■ BASE ■ C@ ■ D /MOD ■ ASCII ■ SWAP ■; 
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#> 

Class: I/O 

Function: Pops the the sign byte left on the return stack by <#, 

discards it and then displays the string on the stack using 

the DISPLAY format convention. 

Input/Output: One return stack entry and a variable length stack 

string/None. 

Display formatted strings built onto the stack. 

INC IX ;DROP RETURN 

JP DISPLAY ;GO ECHO STRING 

13 

This routine jumps to the code body of $DISPLAY and 

thus has no return address. 

#S 

I/O 

Converts the top stack entry to a sequence of ASCII 

characters equivalent to the entry given the current system 

number base. Sequentially pushes the number characters 

with the most significant character to the top stack entry. 

Input/Output: One stack entry/One to sixteen stack entries. 

Usage: Converting numbers to a display string. 

Code: # ; CONVERT 1 CHARACTER 

DUP ;DUP QUOTIENT 

0= ;IS IT ZERO? 

*END F8 ;IF NOT LOOP 

DROP ;DROP 0 QUOTIENT 

Bytes: 21 

Notes: Always does at least one conversion producing an ASCII 0 

if the top entry was 0. 

Formal Definition: 

: ■ #S ■ BEGIN ■ # ■ DUP ■ 0 = ■ END ■ DROP ■; 

Usage: 

Z80 Code: 

BYTES: 

Notes: 

Class: 

Function: 

$CRLF 

Class: Subroutine 

Function: Issue a carriage return-line feed sequence to the display to 

scroll the display if required, clear the next display line and 

leave the cursor at the left end of the blank line. 
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Input/Output: 
Usage: 
Z80 Code: 

Bytes: 

Class: 
Function: 
Input/Output: 
Usage: 
Code: 
Notes: 

Class: 
Function: 

Input/Output: 
Usage: 
Z80 Code: 

None/None. 

Formatting the display. 

LD A,0D ;GET A CR 

CALL $ECHO ;ISSUE IT 

LD A,0A ;GET A LF 

CALL $ECHO ;ISSUE IT 

RET ; RETURN 

11 

$ECHO 

Subroutine 

Interfaces the system to the display 

None/None. 

Available only to the system. 

Not applicable. 

Usually called via a transfer vector. $ECHO must interface 

to existing system software or may be specifically written 

to field the display function for the TIL. 

SISIGN 

Subroutine 

Computes and saves the sign of an arithmetic result and 

converts negative integers to positive integers. 

None/None. 

Available only to the system. See Section 5.5. 

SISIGN: LD A,D ;SIGN OF 1ST 

XOR B ;XOR SIGN OF 2ND 

EX AF,AF' ; RESULT SIGN TO AF 

LD A,D ;SIGN OF 1ST 

AND A ;TEST SIGN, CY=0 

JP P,TST2 ;IF + , IT'S OK 

LD HL,0 ;ELSE GET ZERO 

SBC HL,DE ;MAKE 1ST POSITIVE 

EX DE,HL ;RESTORE 1ST 

TST2: LD H,B ;MOVE 2ND HIGH BYTE 

LD L,C ;MOVE 2ND LOW BYTE 

LD A,B ;SIGN OF 2ND 

AND A ;TEST SIGN, CY=0 

RET P ;IF +, RETURN 

LD HL,0 ;ELSE GET ZERO 

SBC HL,BC ;MAKE 2ND POSITIVE 

RET ;RETURN 
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Bytes: 25 

Notes: Numbers in DE and BC on entrance and DE and HL on ex¬ 

it. Result sign in AF' on exit. 

$KEY 

Class: 

Function: 

Input/Output: 

Usage: 

Code: 

Notes: 

Subroutine 

Interfaces the keyboard to the system. 

None/None. 

Available only to the system. 

Not applicable. 

Usually called via a transfer vector. $KEY must interface to 

existing system software or may be specifically written to 

field keyboard data for the TIL. 

SOSIGN 

Class: 

Function: 

Bytes: 

Notes: 

Subroutine 

Negates a positive integer arithmetic result if the result sign 

Input/Output: 

Usage: 

bit is 1 set. 

None/None. 

Available only to the system. See Section 5.5. 

Z80 Code: SOSIGN: EX AF,AF ; RETRIEVE SIGN FLAGS 

RET P ;IF +, SIGN IS OK 

EX DE,HL ;ELSE, RESULT TO DE 

LD HL,0 ;ZERO HL 

SBC HL,DE ;MINUS RESULT TO HL 

RET ; RETURN 

Result in HL on entrance and exit. Result sign bit in AF' on 

entrance. 

$UD* 

Class: 

Function: 

Input/Output: 

Usage: 

Subroutine 

Multiplies a 16-bit unsigned integer by an 8-bit unsigned 

integer and returns a 24-bit product. 

None/None. 

Available only to the system. See Section 5.5. 
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Z80 Code: 

Bytes: 

Notes: 

$UD*: LD A,L MULTIPLICAND TO A 

LD BC,0800 ; COUNT=8, DUMMY = 0 

LD H,C ;ZERO HIGH RESULT 

LD L,C ;ZERO LOW RESULT 

D*LOOP: ADD HL,HL ;SHIFT RESULT AND 

ADC A MULTIPLICAND LEFT 1 

JR NC, SKADD ;IF CY=0, SKIP ADD 

ADD HL,DE ;ADD MULTIPLIER 

ADC C ;PROPOGATE CARRY 

SKADD: DJNZ D*LOOP ;LOOP 8 TIMES 

LD C,A ;+ HIGH 8 BITS IN C 

RET ;LOW 16 IN HL 

16 

On entrance, L contains an 8-bit multiplicand and DE con¬ 

tains a 16-bit multiplier. On exit BC contains the most 

significant 8 bits and HL the 16 least significant bits. No 

test is made to verify a valid 8-bit number in L on entrance. 

$US* 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Notes: 

Subroutine 

Multiplies an 8-bit unsigned integer by an 8-bit unsigned 

integer and returns a 16-bit product. 

None/None. 

Available only to the system. See Section 5.5. 

$US: LD H,L MULTIPLICAND TO H 

LD L,0 ;ZERO RESULT LOW 

LD D,L MULTIPLIER HIGH=0 

LD B,8 ;SET MULTIPLY COUNT 

S*LOOP: ADD HL,HL ; SHIFT RESULT AND XCAND 

JR NC,SKPAD ;IF CY=0, SKIP ADD 

ADD HL,DE ;ADD MULTIPLIER 

SKPAD: DJNZ S*LOOP ;LOOP 8 TIMES 

RET ;RESULT IN HL 

13 

On entrance, L and E contain 8-bit unsigned integers and H 

and D are presumed 0 (assumes valid 8-bit numbers). On 

exit, HL contains the 16-bit product. 

$UD/ 

Class: Subroutine 

Function: Divides a positive 24-bit integer by a positive 8-bit integer 

and returns a positive 8-bit remainder and 16-bit quotient. 
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Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Notes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Notes: 

None/None. 

Available only to the system. See Section 5.5. 

$UD/: LD B,10 

D/LOOP: ADD HL,HL 

LD A,D 

ADC D 

LD D,A 

SUB E 

IP M,SKIP 

INC L 

LD D,A 

SKIP: DJNZ D/LOOP 

LD 

RET 

16 

C,D 

; DIVIDE COUNT = 16 

; SHIFT LOW 16 

;GET HIGH 8 

; SHIFT HIGH 8 

;RESTORE HIGH 

; SUBTRACT DIVISOR 

;TOO MUCH, IT'S OK 

;SET RESULT LOW BIT = 1 

;DECREASE DIVIDEND 

;LOOP 16 TIMES 

REMAINDER TO C 

; QUOTIENT IN HL 

On entrance, D,HL contains a 24-bit positive dividend and 

E contains an 8-bit positive divisor. On exit, C contains an 

8-bit remainder and HL contains a 16-bit quotient. No test 

is made to verify a correct 16-bit quotient. 

$US/ 

Subroutine 

Divides a positive 16-bit dividend by a positive 8-bit 

divisor and returns a positive 8-bit remainder and 8-bit 

quotient. 

None/None. 

Available only to the system. See Section 5.5. 

$US/: LD B,8 DIVIDE COUNT=8 

S/LOOP: ADD HL,HL ; SHIFT DIVIDEND 

LD A,H ;GET HIGH BYTE 

SUB E ; SUBTRACT DIVISOR 

JP M,SKP ;TOO MUCH, IT'S OK 

INC L ;SET RESULT LOW BIT 

LD H,A ; DECREASE DIVIDEND 

SKP: DJNZ S/LOOP ;LOOP 8 TIMES 

LD C,H REMAINDER IN C 

LD H,B ; RESULT HIGH=0 

RET ;RESULT IN HL 

15 

On entrance, HL contains a positive 16-bit dividend and E 

contains a positive 8-bit divisor. On exit, C contains an 

8-bit remainder and L contains an 8-bit quotient. No test is 

made to verify a correct 8-bit quotient. 



110 THREADED INTERPRETIVE LANGUAGES 

' (tick) 

Class: System 

Function: Scans the token following the ' (tick) in the input buffer 

and searches the CURRENT and CONTEXT vocabularies 

Input/Output: 

Usage: 

Code: 

for the keyword corresponding to the token. Returns the 

word address of the keyboard as the top stack entry if it is 

located. If not found, the token is echoed to the operator 

and followed by a "?". 

None/One stack entry or none. 

Operator location of keywords. 

ASPACE 

TOKEN 

CONTEXT 

@ 

@ 
SEARCH 

*IF 0A 

ENTRY 

SEARCH 

*IF 03 

QUESTION 

SEMI 

;GET THE SEPARATOR 

;SCAN THE NEXT TOKEN 

; CONTEXT ADDRESS 

;CONTAINS VOCABULARY ADDRESS 

;CONTAINS THE LATEST ENTRY 

; SEARCH THE VOCABULARY 

;IF FALSE, FOUND; OTHERWISE 

;GET LATEST CURRENT 

; SEARCH CURRENT 

;IF FALSE, FOUND; OTHERWISE 

;ECHO TOKEN AND ? 

;WA ON THE STACK 

Bytes: 34 

Formal Definition: 

: ■' ■ ASPACE ■ T OKEN ■ CONTEXT ■ @ @ ■ SEARCH ■ IF ■ ENTRY ■ 
SEARCH ■ IF ■ QUESTION ■ THEN ■ THEN ■ ; 

* (asterisk) 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Notes: 

Arithmetic 

Does a signed multiply of the second stack word by the 

low-order byte of the top stack entry and replaces both en¬ 

tries by the 16-bit (word) product. 

Two stack entries/One stack entry. 

Signed integer arithmetic. 

EXX ;SAVE IR 

POP BC ;GET FIRST 

POP DE ;GET SECOND 

CALL $ISIGN ; FIELD INPUT SIGNS 

CALL $UD* ;MULTILY 16X8 

CALL SOSIGN JUSTIFY RESULT 

PUSH HL ; RESULT TO STACK 

EXX ; RESTORE IR 

24 

Does not test the top stack entry to insure it is a valid 8-bit 

number. No test is made to insure a valid 16-bit product. 
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Class: 
Function: 

Input/Output: 
Usage: 
Z80 Code: 

Bytes: 

Class: 
Function: 

Input/Output: 
Usage: 
Z80 Code: 

Bytes: 
Notes: 

Class: 
Function: 

Input/Output: 
Usage: 

*# 

Literal Handler (Headerless) 
Pushes to the stack the word whose address is in the in¬ 
struction register and increments the instruction register 
twice (past the word literal). 
None/One stack entry. 
Available only to the system. 

LD A,{BC} ;GET BYTE AT IR 
LD E,A ;MOVE IT TO DE 
INC BC ;BUMP IR 
ID A,{BC} ;GET BYTE AT IR 
LD D,A ;MOVE IT TO DE 
INC BC ;BUMP IR 
PUSH DE ;PUSH WORD AT DE 

11 

* +LOOP 

Program Control Directive (Headerless) 
Gets the return stack pointer, pops the index byte from the 
stack, and then transfers to the *LOOP code to mechanize 
a non-unity indexed loop. 
One stack entry/None. 
Available only to the system. 

PUSH IX ;GET RETURN STACK 
POP HL ;TO THE REGISTERS 
POP DE ;GET INC BYTE 
LD A,E ;TO THE A REGISTER 

JP SLOOP JUMP TO ‘LOOP CODE 
10 

* -I-LOOP has a code address but not a return address. 
Increments must be in the set — 128<I<127. 

V 

Arithmetic 
Does a signed multiply of the third stack word by the low- 
order byte of the second stack word and a signed divide of 
the 24-bit product by the low-order byte of the top stack 
entry. Replaces the three entries with the 16-bit quotient. 
Three stack entries/One stack entry. 
Signed integer arithmetic. 
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Z80 Code: 

Bytes: 

Notes: 

LD 

JP 
RETTO: POP 

LD 

IY,RETTO ;CHANGE NEXT RETURN 

$*/MOD ;DO */MOD CODE 

HL ;DROP REMAINDER 

IY,NEXT ;SET NEXT RETURN 

22 
This illustrates a sneaky way to use a primitive as a 

subroutine. The */MOD code is executed as normal but 

the JP {IY} return jumps back to the */ code rather than 

NEXT. This code then restores the normal return to NEXT. 

*/MOD 

Class: 

Function: 

Input/Output: 

Z80 Code: 

Bytes: 

Notes: 

Arithmetic 

Does a signed multiply of the third stack word by the low- 

order byte of the second stack entry and a signed divide of 

the 24-bit product by the low-order byte of the top stack 

entry. Replaces the three entries with the 16-bit quotient as 

the second and the 8-bit residual as the top stack entry. 

Three stack entries/Two stack entries. 

$*/MOD: POP HL 

EXX 

POP BC 

POP DE 

CALL SISIGN 

CALL $UD* 

EXX 

EX AF,AF' 

XOR L 

EX AF,AF' 

LD A,L 

EXX 

AND A 

JP P, SKIPN 

NEG 

SKIPN: LD D,C 

LD E,A 

CALL $UD/ 

CALL $OSIGN 

PUSH HL 

PUSH BC 

EXX 

43 

;DIVISOR TO L 

;SAVE IR AND DIVISOR 

MULTIPLICAND {8} 

MULTIPLIER {16} 

; FIELD * SIGN 

;DO 16X8 MULTIPLY 

;GET DIVISOR AND IR 

;GET / SIGN FLAG 

;XOR IN DIVISOR SIGN 

;SAVE RESULT SIGN 

;GET DIVISOR 

;SAVE IR AGAIN 

;TEST DIVISOR SIGN 

;IF +, IT'S OK 

MAKE DIVISOR + 

MOVE HIGH 8 BITS OF 24 

MOVE DIVISOR 

;DO 24X8 DIVIDE 

JUSTIFY RESULT 

; QUOTIENT TO STACK 

; REMAINDER TO STACK 

;RESTORE IR 

The $*/MOD entrance is used by */. No tests are per¬ 

formed to insure valid number lengths. 
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Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Notes: 

Class: 

Function: 

*C# 

Literal Handler (Headerless) 

Pushes to the stack the byte whose address is in the instruc¬ 

tion register and increments the instruction register once 

(past the literal). 

None/One stack entry. 

Available only to the system. 

LD A,{BC} ;GET BYTE AT IR 

LD E,A ;MOVE IT TO DE 

INC BC ;BUMP IR 

RLA A ;SIGN TO CY 

SBC A,A ,FF IF NEG ELSE 00 

LD D,A ;SET SIGN EXTENSION 

PUSH DE ;PUSH 16-BIT WORD 

10 

*C + LOOP 

Program Control Directive (Headerless) 

Pops the top stack entry and increments the top return 

stack byte by the low-order byte from the stack. Control is 

then transferred to the *CLOOP code to mechanize a non¬ 

unity byte indexed loop. 

One stack entry and one return stack byte/One return 

stack byte. 

Available only to the system. 

PUSH IX ;GET RETURN STACK 

POP HL ;POINTER 

POP DE ;GET INC BYTE 

LD A,{HL} ;GET LOOP COUNT 

ADD E ;ADD INCREMENT 

LD {HL}A ;RESTORE LOOP COUNT 

JP $CLOOP JUMP TO ‘CLOOP CODE 

12 

*C + LOOP has a code address but not a return address. 

Increments must be in the set — 128<I<127. 

*CDO 

Program Control Directive (Headerless) 

Moves the low-order byte of the top stack entry (the loop 

start index) and the low-order byte of the second stack en- 
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try (the loop termination argument) to the return stack 

with the start index as the top return stack entry and the 

terminator as the second entry. This initializes the byte in¬ 

dexed loop. 

Input /Output: Two stack entries/Two return stack byte entries. 

Usage: Available only to the system. 

Z80 Code: POP HL ;GET START INDEX 

LD {IX—2},L ;TO RETURN TOP 

POP HL ;GET TERMINATOR 

LD {IX 1 },L ;TO RETURN SECOND 

DEC IX ; RESET RETURN 

DEC IX ; STACK POINTER 

Bytes: 16 

* CLEAVE 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Program Control Directive (Headerless) 

Replaces the top return stack byte (the byte loop index) 

with the second return stack byte (the terminating argu¬ 

ment) to force loop exit on the next byte loop test. 

Two return stack bytes/Two return stack bytes. 

Availabe only to the system. 

LD A,{IX + 1} ;GET TERMINATOR 

LD {IX-1-0},A ;TO INDEX 

10 

*CLOOP 

Class: Program Control Directive (Headerless) 

Function: Increments the top return stack byte by 1 and compares it 

to the second return stack byte entry. If the second byte is 

larger than the first, a jump to the *WHILE code occurs to 

implement a relative backwards jump. Otherwise the top 

two return stack entries are dropped and the instruction 

register is incremented by 1 to step past the relative jump 

byte. Controls byte loop termination. 

Input/Output: Two return stack bytes/Two return stack bytes except on 

completion. 
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Usage: Available only to the system. 

Z80 Code: PUSH IX ;GET RETURN 

POP HL ;STACK POINTER 

INC {HL} INCREMENT INDEX 

SCLOOP: LD A,{HL} ;GET INDEX 

INC HL ;POINT TO TERMINATOR 

SUB {HL} ;INDEX - TERMINATOR 

IP C,$WHILE ;IF CY = 1, JUMP BACK 

INC IX ;ELSE DROP INDEX 

INC IX ;AND TERMINATOR 

INC BC INCREMENT IR 

Bytes: 19 

Notes: *C+LOOP uses the SCLOOP entrance. 

*DO 

Class: Program Control Directive (Headerless) 

Function: Moves the top stack entry word (the loop start index) and 

the second stack entry word (the loop terminating argu¬ 

ment) to the return stack with the start index as the top 

return stack entry and the terminator as the second entry. 

This initializes a word indexed loop. 

Input/Output: Two stack entries/Two return stack word entries. 

Usage: Available only to the system. 

Z80 Code: POP HL ;GET START INDEX 

LD {IX—4},L ;MOVE TO THE RETURN 

LD {IX—3},H ; STACK AS TOP ENTRY 

POP HL ;GET TERMINATOR 

LD {IX—2},L ;MOVE TO THE RETURN 

LD {IX —1},H ; STACK AS 2ND ENTRY 

LD DE, -4 ;RESET RETURN 

ADD IX, DE ; STACK POINTER 

Bytes: 23 

*ELSE 

Class: 

Function: 

Input/Output: 

Usage: 

Program Control Directive (Headerless) 

Increments the instruction register by the value whose ad¬ 

dress is in the instruction register to effect a relative for¬ 

ward jump. 

None/None. 

Available only to the system. 
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Z80 Code: 

Bytes: 

Notes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Notes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Notes: 

$ELSE: 

OUT: 

10 

LD A,{BC} 

ADD C 

LD C,A 

JR NC,OUT 

INC B 

JP {IV} 

;GET JUMP BYTE 

;ADD IT TO IR 

;RESET IR 

;PAST PAGE? 

;YES 

; RETURN 

The $ELSE entrance is used by *IF. 

*END 

Program Control Directive (Headerless) 

If the top stack entry is 0, the instruction register is in¬ 

cremented by the value whose address is in the instruction 

register to implement a relative backwards jump. Other¬ 

wise the instruction register is incremented by 1 to step 

past the relative jump byte. 

One stack entry/None. 

Available only to the system. 

POP HL 

LD A,L 

OR H 

JP Z,$WHILE 

INC BC 

;GET THE FLAG 

;ARE ALL BITS 0 

;OR FALSE 

;IF 0, JUMP 

;ELSE BUMP IR 

11 

The jump to $ WHILE evokes the backwards jump. 

*IF 

Program Control Directive (Headerless) 

If the top stack entry is 0, the instruction register is in¬ 

cremented by the value whose address is in the instruction 

register to implement a relative forward jump. Otherwise 

the instruction register is incremented by 1 to step past the 

relative jump byte. 

One stack entry/None. 

Available only to the system. 

POP HL ;GET THE FLAG 

LD A,L ;ARE ALL BITS 0 

OR H ;OR FALSE 

JP Z,$ELSE ;IF 0, JUMP 

INC BC ;ELSE BUMP IR 

11 

The jump to $ELSE evokes the relative forward jump. 
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Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Notes: 

* LEAVE 

Program Control Directive (Headerless) 

Replaces the top return stack word (the word loop index) 

with the second return stack word (the terminating argu¬ 

ment) to force loop exit on the next word loop test. 

Two return stack words/Two return stack words. 

Available only to the system. 

LD A,{IX+3} ;GET TERM LOW BYTE 

LD {IX + 1},A ;TO INDEX LOW BYTE 

LD A,{IX+2} ;GET TERM HIGH BYTE 

LD {IX + 0},A ;TO INDEX HIGH BYTE 

16 

*LOOP 

Program Control Directive (Headerless) 

Increments the top return stack word by 1 and compares it 

to the second return stack word entry. If the second word 

is larger than the first, a jump to the $WHILE code occurs 

to implement a relative backwards jump. Otherwise the 

top return stack entries are dropped and the instruction 

register is incremented by 1 to step past the relative jump 

byte. Controls word loop termination. 

Two return stack words/Two return stack words except 

on completion. 

Available only to the system. 

PUSH IX ;GET RETURN 

POP HL ;STACK POINTER 

LD A,1 ;GET INCREMENT 

SLOOP: ADD {HL} ;INC INDEX LOW 

LD {HL},A ;RESTORE LOW INDEX 

INC HL ;BUMP TO INDEX HIGH 

JR NC,PAGE ;PAST PAGE? 

INC {HL} ;BUMP PAGE 

PAGE: LD D,{HL} ;GET INDEX HIGH 

INC HL ,BUMP TO TERM LOW 

SUB {HL} ;INDEX-TERM {LOW} 

LD A,D ; INDEX HIGH TO A 

INC HL ;BUMP TO TERM HIGH 

SBC {HL} ;INDEX-TERM-CY {HIGH} 

JP C,$WHILE ;IF CY=1, JUMP BACK 

LD DE,4 ;ELSE DROP INDEX 

ADD IX, DE ;AND TERMINATOR 

INC BC INCREMENT IR 

30 

* + LOOP uses the SLOOP entrance. 
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Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Notes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Notes: 

*SYS 

System (Incomplete) 

Used by the system to recover the addresses of system 

variables. 

See notes. 

Available only to the system. 

LD A,{DE} ;DE = WA, @WA = OFFSET 

LD HLJSYS ; START OF SYS BLOCK 

ADD L ;ADD OFFSET 

LD L,A VARIABLE ADDRESS LOW 

PUSH HL ;ADDRESS TO STACK 

JP {IV} ;JUMP TO NEXT 

This code is the generic code for a user block type defined 

keyword without the header-creating code. 

All system variables defined in the system block contain 

$SYS as their code address followed by a 1-byte offset as 

their code body. The offset points to the system variable, 

relative to the start of the block. A full 256-byte block is 

not reserved for system variables (only 20 thru 30 bytes are 

used), which is why there is no defining code. A possibility 

exists for overwriting system code if this were allowed. 

All system variables are predefined. 

*WFHLE 

Program Control Directive (Headerless) 

Increments the instruction register by the value whose ad¬ 

dress is in the current instruction register to implement a 

relative backwards jump. 

None/None. 

Available only to the system. 

$WHILE: LD A,{BC} ;GET JUMP BYTE 

ADD C ;ADD IT TO IR 

LD C,A ;RESET IR 

IR C,OUT ;PAST PAGE? 

DEC B ;YES 

OUT: JP {IV} ; RETURN 

10 
The $WHILE entrance is used by *END, *LOOP, and 

*CLOOP to execute the backward jump. 
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*[ 

Class: Literal Handler (Headerless) 

Function: Uses the Instruction Register (IR) as a pointer to a string 

embedded in the threaded code. Extracts the string length 

from the first byte pointed to by the IR and outputs that 

many characters to the display. Leaves the IR pointing to 

the first byte past the embedded string. 

Input/Output: None/None. 

Usage: Available only to the system. 

Z80 Code: LD A,{BC} ;BC=IR, @IR=LENGTH 

LD D,A ;SAVE LENGTH 

SLOOP: INC BC ;BUMP IR 

LD A,{BC} ;GET AT IR 

CALL $ECHO ;ECHO CHARACTER 

DEC D DECREMENT LENGTH 

IR NZ, SLOOP ;LOOP UNTIL LENGTH=0 

INC BC ; ADJUST IR 

Bytes: 15 

Class: 

+ 

Arithmetic 

Function: Adds the second stack entry and the top stack entry and 

replaces both with the single two's complement sum as the 

top stack entry. 

Input/Output: Two stack entries/One stack entry. 

Usage: Signed arithmetic. 

Z80 Code: POP HL ;GET 1ST WORD 

POP DE ;GET 2ND WORD 

ADD HL,DE ;ADD THEM 

PUSH HL ;PUSH SUM 

Bytes: 14 

Notes: No check of carry or overflow is done. 

+ ! 

Class: 

Function: 

Input/Output: 

Usage: 

Memory Reference 

Pops two stack entries and adds the word at the second en¬ 

try to the word whose address is the top entry. 

Two stack entries/None. 

Incrementing and decrementing word length data stored in 

programmable memory. 
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Z80 Code: POP 

POP 

LD 

ADD 

LD 

INC 

LD 

ADC 

LD 

HL ;GET ADDRESS 

DE ;GET INC/DEC 

A,{HL} ;GET LOW BYTE 

E ;INC/DEC LOW BYTE 

{HL},A ;STORE IT BACK 

HL ;STEP TO HIGH BYTE 

A,{HL} ;GET HIGH BYTE 

D ;INC/DEC HIGH BYTE 

{HL},A ;STORE IT BACK 

Bytes: 19 

Notes: Overflow and carry in high-byte add are ignored. 

+ LOOP 

Compiler Directive (Immediate) 

Adds the word address of the program control directive 

*+LOOP to the dictionary, then computes the difference 

between the current free dictionary address and the ad¬ 

dress at the top of the stack and encloses the low-order 

byte in the dictionary as the relative jump byte. 

Input/Output: One stack entry/None. 

Usage: Used to terminate a DO . . . -I-LOOP construct in the com¬ 

pile mode. 

Code: *# XX ;WORD ADDRESS OF * + LOOP {LITERAL} 

END, ;ENCLOSE RELATIVE JUMP BYTE 

Bytes: 16 

Formal Definition: 

: ■ + LOOP ■ XX ■ END, ■; ■ IMMEDIATE 

Class: 

Function: 

+ SP 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

System 

Adds the current stack pointer to the number at the top of 

the stack. 

One stack entry/One stack entry. 

Direct addressing of data on the stack. 

POP HL ;GET NUMBER 

ADD HL,SP ;ADD STACK POINTER 

PUSH HL ;RESTORE POINTER 

Bytes: 13 
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Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Class: 

Function: 

Input/Output: 

Z80 Code: 

Bytes: 

Notes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

, (comma) 

System 

Pops the top stack entry word and encloses it in the free 

dictionary space. 

One stack entry/None. 

Used to build dictionary keywords. 

POP DE ;GET WORD 

LD HL,{DP} ;GET @DP 

LD {HL},E ; STORE LOW BYTE 

INC HL ;BUMP @DP 

LD {HL},D ; STORE HIGH BYTE 

INC HL ;BUMP @DP 

LD {DP},HL ;UPDATE @DP 

Arithmetic 

Pops the top two stack entries and two's complement sub¬ 

tracts the top entry from the second entry and pushes the 

result. 

Two stack entries/One stack entry. 

POP DE ;GET B 

POP HL ;GET A 

AND A ; RESET CARRY 

SBC HL,DE ;FORM A-B 

PUSH HL ;PUSH RESULT 

16 

No tests of overflow or carry are made. 

-SP 

System 

Subtracts the current stack pointer from the number at the 

top of the stack. 

One stack entry/One stack entry. 

Direct addressing of stack data. 

POP HL ;GET THE NUMBER 

AND A ;RESET CARRY 

SBC SP ; SUBTRACT STACK POINTER 

PUSH HL ;PUSH POINTER 

Bytes: 15 
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• (period) 

Class: I/O 
Function: Displays the top stack entry number to the operator (given 

the current number base) and follows by a space. Destroys 
the top stack entry in the process. 

Input/Output: One stack entry/None. 
Usage: Displaying signed numbers to the operator. 
Code: <# INITIALIZE CONVERSION 

ABS ;TAKE THE ABSOLUTE VALUE 
#S ;CONVERT ABSOLUTE VALUE 
SIGN ;ADD - SIGN IF REQUIRED 
#> .-DISPLAY RESULT 

Bytes: 20 
Formal Definition: 

:B.B<#BABSB#SBSIGNB#> B; 

.R 

Class: I/O 
Function: Displays the second stack number to the operator (given 

the current system number base) in a field width deter¬ 
mined by the top stack entry. The number is right adjusted 
in the field and followed by a space. The field width is the 
minimum field width. 

Input/Output: Two stack entries/None. 
Usage: Formatting display number output. 
Code: 2* ;DOUBLE CHARACTER COUNT 

- SP ; SUBTRACT CURRENT STACK POINTER 
< R ;SAVE AS TEMPORARY 
< # INITIALIZE CONVERSION { SAVE SIGN} 
ABS .-CONVERT NUMBER TO POSITIVE VALUE 
#S ;CONVERT TO A STRING 
SIGN ;ADD SIGN IF NEGATIVE 
CR> .-GET SIGN FROM TEMPORARY 
DROP ;DROP IT 
R> ,-GET TEMPORARY 
+SP .-ADD CURRENT STACK POINTER 
PAD ;ADD SPACES IF REQUIRED 
DISPLAY ;DISPLAY RESULT 

Bytes: 36 
Formal Definition: 
:B.RB2*B —SPB<RB<#BABSB#SBSIGNBCR> BDROPB 
R> B + SPBPADBDISPLAYB; 
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Class: 

Function: 

Input/Output: 
Usage: 

Z80 Code: 

Bytes: 

Notes: 

Class: 

Function: 

Input/Output: 
Usage: 

Z80 Code: 

Bytes: 

Notes: 

Arithmetic 

Does a signed divide of the second stack word by the low- 

order byte of the top stack entry. Replaces both entries 

with an 8-bit quotient expanded to 16 bits. 

Two stack entries/One stack entry. 

Signed integer arithmetic. 

EXX ;SAVE IR 

POP DE ;GET DIVISOR {8 BITS} 

POP BC ;GET DIVIDEND {16 BITS} 

CALL $ISIGN ; FIELD INPUT SIGNS 

CALL $US/ ;DIVIDE 16X8 

CALL $OSIGN JUSTIFY RESULT 

PUSH HL QUOTIENT TO STACK 

EXX ;RESTORE IR 

Does not test the top stack entry to insure it is a valid 8-bit 

number. No test is made to insure a valid 8-bit quotient. 

/MOD 

Arithmetic 

Does a signed divide of the second stack entry by the low- 

order byte of the top stack entry. Replaces these entries 

with the 8-bit quotient expanded to 16 bits as the second 

entry and the positive 8-bit remainder expanded to 16 bits 

as the top entry. 

Two stack entries/Two stack entries. 

Signed integer arithmetic. 

EXX ;SAVE IR 

POP DE ;GET DIVISOR {8 BITS} 

POP BC ;GET DIVIDENCE {16 BITS} 

CALL SISIGN ; FIELD INPUT SIGNS 

CALL $us/ ; DIVIDE 16X8 

CALL SOSIGN JUSTIFY RESULT 

PUSH HL QUOTIENT TO STACK 

PUSH BC REMAINDER TO STACK 

EXX ;RESTORE IR 

25 

Does not test the top stack entry to insure it is a valid 8-bit 

number. No test is made to insure a valid 8-bit quotient. 
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Class: 

Function: 

Input/Output: 
Usage: 
Z80 Code: 

Bytes: 

Class: 
Function: 

Input/Output: 
Usage: 
Z80 Code: 

Bytes: 

Class: 
Function: 

Input/Output: 
Usage: 

0< 

Relational 

If the top stack entry is two's complement negative, it is 

replaced by a True flag. Otherwise it is replaced by a False 

flag. 
One stack entry/One stack entry. 

Test conditioning prior to branching. 

POP 

LD 

RLA 

JR 
INC 

PUSHIT: PUSH 

19 

0 = 

Relational 

If the top stack value is 0, it is replaced by a True flag. 

Otherwise it is replaced by a False flag. 

One stack entry/One stack entry. 

Test conditioning prior to branching. 

POP HL ;GET WORD 

LD A,L ;MOVE LOW BYTE 

OR H ;OR IN HIGH BYTE 

LD DE,0 ;GET FALSE 

JR NZ,OUT ;NOT ZERO PUSHES FALSE 

INC DE ;ELSE MAKE FLAG TRUE 

PUSH DE ;PUSH FLAG 

20 

AF ;GET NUMBER 

DE,0 ;SET FLAG FALSE 

;SIGN TO CY 

NC,PUSHIT ;IF CY = 0, PUSH FALSE 

E ;ELSE FLAG TRUE 

DE FLAG TO STACK 

OSET 

Memory Reference 

Pops the top stack entry and sets the word whose address 

was the top entry to 0. 

One stack entry/None. 

Initializing word length data in programmable memory to 

0 or setting word length flags in programmable memory to 

False. 



WORDS, WORDS, AND MORE WORDS 125 

Z80 Code: 

Bytes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Notes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Notes: 

Class: 

Function: 

Input/Output: 

Usage: 

POP HL ;GET ADDRESS 

XOR A ;ZEROS A REGISTER 

LD {HL},A ;ZERO LOW BYTE 

INC HL ;BUMP ADDRESS POINTER 

LD {HL},A ,ZERO HIGH BYTE 

15 

1 + 

Arithmetic 

Increments the top stack entry by 1. 

One stack entry/One stack entry. 

Signed arithmetic, byte addressing and index incremen- 

ting. 

POP HL ;GET WORD 

INC HL ;BUMP IT 1 

PUSH HL ;RESTORE IT 

13 

No tests of overflow or carry are made. 

1- 

Arithmetic 

Decrements the top stack entry by 1. 

One stack entry/One stack entry. 

Signed arithmetic, byte addressing and index decremen¬ 

ting. 

POP HL ;GET WORD 

DEC HL DECREMENT IT 

PUSH HL ; RESTORE IT 

13 

No tests of overflow or carry are made. 

1SET 

Memory Reference 

Pops the top stack entry and sets the word whose address 

was the top entry to one. 

One stack entry/None. 

Initializing word length data in programmable memory to 

one or setting word-length flags in programmable memory 

to True. 
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Z80 Code: POP HL ;GET ADDRESS 

LD {HL},1 ;1 SET LOW BYTE 

INC HL ;BUMP ADDRESS POINTER 

LD {HL},0 ;0 SET HIGH BYTE 

Bytes: 16 

2* 

Class: Arithmetic 

Function: Multiplies the top stack entry by 2. 

Input/Output: One stack entry /One stack entry. 

Usage: Signed integer arithmetic. 

Z80 Code: POP HL ;GET WORD 

ADD HL,HL ;DOUBLE IT 

PUSH HL ;RESTORE IT 

Bytes: 13 

Notes: No tests of overflow or carry are made. 

2 + 

Class: Arithmetic. 

Function: Increments the word at the top of the stack by 2. 

Input/Output: One stack entry /One stack entry. 

Usage: Word addressing and incrementing. 

Z80 Code: POP HL ;GET WORD 

INC HL ;WORD + 1 

INC HL ;WORD + 2 

PUSH HL ;PUSH WORD + 2 

Bytes: 14 

Notes: No test for overflow or carry is made. 

Class: 

2- 

Arithmetic 

Function: Decrements the word at the top of the stack by 2. 

Input/Output: One stack entry/One stack entry. 

Usage: Word addressing and decrementing. 

Z80 Code: POP HL ;GET WORD 

DEC HL ;WORD -1 

DEC HL ;WORD -2 

PUSH HL ;PUSH WORD -2 

Bytes: 14 

Notes: No tests of overflow or carry are made. 
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2/ 

Class: Arithmetic 

Function: Divides (signed) the top stack word by 2. 

Input/Output: One stack entry/One stack entry. 

Usage: Signed integer arithmetic. 

Z80 Code: POP HL ;GET WORD 

SRA H ARITHMETIC SHIFT 

RR L ;PROPAGATE CY 

PUSH HL ;PUSH WORD/2 

Bytes: 16 

2DUP 

Stack 

Duplicates the top stack entry twice. 

One stack entry/Three stack entries. 

Duplication of data on the stack. 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: POP 

PUSH 

PUSH 

PUSH 

Bytes: 14 

HL ;GET WORD 

HL ;RESTORE IT 

HL ;DUP IT 

HL ;DUP IT AGAIN 

20VER 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Stack 

Duplicates the third stack entry over the top two and 

pushes the word to the stack. 

Three stack entries/Four stack entries. 

Stack data management. 

EXX ;SAVE IR 

POP HL ;GET TOP 

POP DE ;GET 2ND 

POP BC ;GET 3RD 

PUSH BC ;PUSH 3RD 

PUSH DE ;PUSH 2ND 

PUSH HL ;PUSH TOP 

PUSH BC ;PUSH 3RD TO TOP 

EXX ;RESTORE IR 

Bytes: 19 
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2SWAP 

Class: Stack 

Function: Interchanges the top and third stack words. 

Input/Output: Three stack entries/Three stack entries. 

Usage: Stack management. 

Z80 Code: POP HL ;GET TOP 

POP DE ;GET 2ND 

EX {SP},HL ;TOP TO STACK 

PUSH DE ;RESTORE 2ND 

PUSH HL ;3RD TO TOP 

Bytes: 15 

Class: 

Function: 

Input/ Output: 

Usage: 

Code: 

Bytes: 

Formal Definition: 

Defining Word 

Sets the CONTEXT vocabulary equal to the CURRENT 

vocabulary, creates a secondary header for the token 

following in the input buffer and links it to the CUR¬ 

RENT vocabulary and sets the system mode to the compile 

mode. 

None/None. 

Initiate compilation of secondary keywords. 

CURRENT ;CURRENT ADDRESS 

@ CONTAINS VOCABULARY ADDRESS 

CONTEXT ; CONTEXT ADDRESS 

! ; CURRENT INTO CONTEXT 

CREATE ; CREATE PRIMITIVE HEADER 

*# XX ;ADDRESS OF COLON ROUTINE 

CA! ;REPLACE CODE ADDRESS 

MODE ;MODE ADDRESS 

ClSET ;SET COMPILE MODE {MODE = l} 

30 

: ■: ■ CURRENT ■ @ ■ CONTEXT ■! BXXBCA! ■ MODE ■ ClSET ■; 

Class: 

Function: 

Input/Output: 

Usage: 

Compile Mode Termination Directive (Immediate) 

Encloses the word address of the inner interpreter SEMI 

routine in the dictionary and sets the system mode to the 

execute mode. 

None/None. 

Terminates the definition of a secondary and re-establishes 

the execute mode. 
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Code: *# XX ;ADDRESS OF SEMI ROUTINE 

; ENCLOSE IT IN THE DICTIONARY 

MODE ;MODE ADDRESS 

COSET ;SET EXECUTE MODE {MODE = 0} 

Bytes: 20 

Formal Definition: 

: BXXB, ■ MODE ■ COSET ■; ■ IMMEDIATE 

;CODE 

Class: Compile Mode Termination Directive (Immediate) 

Function: Encloses the word address of the keyword SCODE in the 

dictionary and sets the system mode to execute. 

Input/Output: None/None. 

Usage: Terminates a defining keyword definition. Always fol¬ 

lowed by generic machine code that defines the execution 

time action of the defined class. 

Code: *# XX ;WORD ADDRESS OF SCODE 

;ENCLOSE IT IN THE DICTIONARY 

MODE ;MODE ADDRESS 

COSET 'SET EXECUTE MODE {MODE = 0} 

Bytes: 20 

Formal Definition: 

: ■ ;CODE BXX ■, BMODE BCOSET ■; ■ IMMEDIATE 

< 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Relational 

If the second stack entry is less than the top entry, both en¬ 

tries are replaced by a True flag. Otherwise both are 

replaced by a False flag. 

Two stack entries/One stack entry. 

Test conditioning prior to branching. 

POP DE ;GET TOP 

POP HL ;GET 2ND 

AND A ;RESET CARRY 

SBC HL,DE ;2ND-TOP 

LD DE,0 ;SET FLAG FALSE 

JP P,PUSHIT ;IF POSITIVE, FALSE 

INC E ;SET FLAG TRUE 

PUSHIT; 

23 

PUSH DE ,FLAG TO STACK 
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<# 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Notes: 

I/O 

Pops the top stack entry, pushes an ASCII space code with 

its high-order bit set to the stack, restores the top stack en¬ 

try and copies the high-order byte to the return stack. 

One stack entry/Two stack entries and one return stack 

byte entry. 

Prepares for number conversion and display by saving the 

number sign on the return stack, pushing the string ter¬ 

mination character to the stack and leaving the original top 

stack entry on the top. 

POP HL ;GET THE NUMBER 

LD E,A0 ;SPACE WITH B7=l 

PUSH DE ;PUSH STRING STOP 

PUSH HL RESTORE NUMBER 

DEC IX ;DEC RSP 

LD {IX+0},H ;SIGN TO RETURN 

Must be followed by a #> or CR> within a definition to 

clean up the return stack and leave a valid return address 

on the stack. 

< BUILDS 

Class: Defining Word 

Function: Creates a CONSTANT keyword definition with an initial 

value of 0. The keyword name is the next available token 

in the input buffer when < BUILDS is executed. 

Input/Output: None/None. 

Usage: Used to initiate a high-level defining word which must later 

be terminated with a DOES > . 

Code: 0 ;INITIAL VALUE 

CONSTANT ; CREATES A CONSTANT KEYWORD 

Bytes: 14 

Notes: See Section 4.5.5. 

Formal Definition: 

: ■ < BUILDS BOB CON ST ANT B; 

<R 

Class: Interstack 

Function: Pops the top stack word and pushes it to the return stack. 

Input/Output: One stack entry/One return stack word entry. 
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Usage: 

Z80 Code: 

Bytes: 

Notes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Temporary storage of data within a definition or direct 

return stack control. 

POP HL ;GET WORD 

DEC IX ;PUSH IT TO THE 

LD {IX+0},H ;RETURN STACK 

DEC IX 

LD {IX+0},L ; 

Temporary data stored on the return stack must be re¬ 

moved before exit to prevent incorrect return. 

Relational 

If the top two stack entries are equal, both are replaced by 

a True flag. Otherwise both are replaced by a False flag. 

Two stack entries/One stack entry. 

Test conditioning prior to branching. 

PUSHIT: 

22 

POP HL ;GET TOP 

POP DE ;GET 2ND 

AND A ; RESET CARRY 

SBC HL,DE ;TOP-2ND 

LD DE,0 ;SET FLAG FALSE 

JR NZ, PUSHIT ;IF = , PUSH FALSE 

INC E ;SET FLAG TRUE 

PUSH DE ;FLAG TO STACK 

> 

Relational 

If the second stack entry is greater than the top entry, both 

entries are replaced by a True flag. Otherwise both are 

replaced by a False flag. 

Two stack entries/One stack entry. 

Test conditioning prior to branching. 

POP HL ;GET TOP 

POP DE ;GET 2ND 

AND A ;RESET CARRY 

SBC HL,DE ;TOP-2ND 

LD DE,0 ;SET FLAG FALSE 

JP P,PUSHIT ;IF POSITIVE, FALSE 

INC E ;SET FLAG TRUE 

PUSHIT: PUSH 

23 

DE ;FLAG TO STACK 

Bytes: 
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Class: 

Function: 

Input/Output: 

Usage: 

Code: 

Bytes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

? 

I/O 

Displays to the operator (using the current system number 

base) the word whose address is the top stack entry. 

Number display is always followed by a space. 

One stack entry/None. 

Displaying signed numbers to the operator, generally the 

contents of variables. 

@ ;GET THE NUMBER 

;DISPLAY IT 

14 

?RS 

System 

Pushes to the stack the current return stack pointer. 

None/One stack entry. 

Return stack display and control. 

PUSH IX ;PUSH RETURN POINTER 

12 

?SP 

System 

Pushes to the stack the address of the top stack entry prior 

to the execution of ?SP. If underflow occurs, the stack is 

reset prior to the push. 

None/One stack entry. 

Data stack display and control. 

LD HL,0 ;GET STACK 

ADD HL,SP ; POINTER 

EX DE,HL * 

LD HL, STACK ;GET END OF STACK 

AND A ; RESET CARRY 

SBC HL,DE ;END-SP 

JR NC,SKIP ;NC IS OK STACK 

LD SP, STACK ;ELSE INIT STACK 

PUSH DE ;PUSH PRIOR SP 

27 Bytes: 
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@ 

Class: Memory Reference 

Function: Replaces the address at the top of the stack with the word 

at that address. 

Input/Output: One stack entry/One stack entry. 

Usage: Returns word length data stored in memory. 

Z80 Code: POP HL ;GET THE ADDRESS 

LD E,{HL} ;LOW BYTE AT ADDRESS 

INC HL ;BUMP ADDRESS 

LD D,{HL} ;HIGH BYTE AT ADDRESS 

PUSH DE ;PUSH CONTENTS 

Bytes: 15 

Notes: Low-byte, high-byte order is central processing unit depen¬ 

dent. 

ABORT 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Notes: 

System 

Does an unconditional jump to the START/RESTART 

routine to re-initialize the system and the stacks. 

None/None. 

Used when the operator is totally at sea. (The system 

knows exactly what's going on.) 

JP START ;TO START/RESTART 

11 

ABORT has no return address. See Section 5.3.1 and 

listing 5.1. 

ABS 

Class: 

Function: 

Input/Output: 

Usage: 

Arithmetic 

If the top stack entry is two's complement negative, its 

two's complement (a positive integer) is returned to the 

stack. Otherwise the original positive integer is returned to 

the stack. 

One stack entry/One stack entry. 

Signed integer arithmetic. 
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Z80 Code: POP 

BIT 

JR 
LD 

AND 

SBC 

EX 

OUT: PUSH 

Bytes: 23 

DE ;GET NUMBER 

7,D ;IF POSITIVE, Z = 1 

Z,OUT ;IFZ = 1, IT'S OK 

HL,0 ;ELSE GET A ZERO 

A ; RESET CARRY 

HL,DE ; ZERO—NUMBER 

DE,HL ;IS POSITIVE 

DE ; POSITIVE NUMBER 

ADUMP 

Class: I/O 

Function: Does a memory dump taking the second stack entry as the 

starting address and the top entry as the ending address. 

Displays a line consisting of the address, eight characters 

of ASCII, a space, and eight more characters of ASCII. 

Control ASCII codes are not displayed. Removes both en¬ 

tries. 

Input/Output: Two stack entries/None. 

Usage: Examining memory to locate or display string data. 

Code: OVER ,PREPARE FOR LOOP START INDEX 

‘DO INITIALIZE DO LOOP 

CRET ;ISSUE CR-LF 

DUP ; DUPLICATE LINE ADDRESS 

*Q 4 ;FOUR CHARACTER LINE ADDRESS 

.R ;PRINT LINE ADDRESS 

APART ;ISSUE FIRST 8 CHARACTERS 

APART ; ISSUE SECOND 8 CHARACTERS 

WAIT ;TIME TO STOP AND WAIT? 

*C# 10 ;NUMBER OF CHARACTERS AS INDEX 

* + LOOP EE ;LOOP UNTIL DONE 

DROP ;DROP ADDRESS POINTER 

Bytes: 37 

Formal Definition: 

:BADUMPBOVERBDOBCRETBDUPB4B.RBAPARTBAPARTB 

WAIT ■ 10 ■ + LOOP ■ DROP ■; 

AND 

Class: 

Function: 

Logical 

Pops the top two stack words, does a logical AND of all 

bits on a bit-by-bit basis and pushes the result to the stack. 
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Input/Output: Two stack entries/One stack entry. 

Usage: Logical operations 

Z80 Code: POP HL ;GET TOP 

POP DE ;GET 2ND 

LD A,L ;AND LOW BYTES 

AND E • 

LD L,A ;BACK TO L 

LD A,H ;AND HIGH BYTES 

AND D * 

LD H,A ;BACK TO H 

PUSH HL ;RESULT TO STACK 

Bytes: 19 

APART 

Class: I/O 

Function: Displays eight characters of ASCII using the top stack en¬ 

try as a pointer. The pointer is incremented with each 

character access. ASCII control code is converted to a 

displayable form before being echoed. 

Input/Output: One stack entry/One stack entry. 

Usage: Displaying memory. 

Code: SPACE ;FORMAT CONTROL 

*Q 8 ;LOOP ENDING INDEX 

0 ;LOOP STARTING INDEX 

*CDO INITIATE DISPLAY LOOP 

DUP DUPLICATE POINTER 

C@ ;GET MEMORY BYTE 

*C# 80 ;TO SET MSB TO 1 

OR ;MAKE CONTROL CODE DISPLAYABLE 

ECHO ;DISPLAY BYTE AS ASCII 

SPACE ; SPACE BETWEEN CHARACTERS 

1+ INCREMENT POINTER 

*CLOOP EF ;LOOP UNTIL DONE 

Bytes: 37 

Formal Definition: 

:BAPARTBSPACEB8B0BCDOBDUPBC@B80BORBECHOB 

SPACE B1 + B CLOOP B; 

ASCII 

I/O 

Converts the low-order byte of the top stack entry from a 

binary number to an ASCII code in the set 0 thru 9, A thru 

Z. 

Class: 

Function: 
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Input/Output: One stack entry/One stack entry. 
Usage: Converts binary numbers to their equivalent ASCII code 

for conversion to displayable formats. 
Z80 Code: POP HL ;GET BINARY 

LD A, 30 ; ASCII 0 CODE 
ADD L ;ADD BINARY 
CP 3A ; LETTER? 

JR C,OUT ;IF CY=1, A DIGIT 
ADD 7 ;ADD LETTERS BIAS 

OUT: LD L,A ;BACK TO L 
PUSH HL ;CODE TO STACK 

Bytes: 22 

ASPACE 

Class: System 
Function: Pushes an ASCII space code to the low-order byte of the 

stack. 
Input/Output: None/One stack entry. 
Usage: The normal token separator and to insert blanks in format- 

ted displays. 
Code: Not applicable. 
Bytes: 
Formal Definition: 

9 

HEX ■ 20 ■ CCONSTANT ■ ASPACE 

BASE 

Class: System Variable 
Function: Pushes to the stack the address of the number base 

variable. 
Input/Output: None/One stack entry. 
Usage: Used to access the system variable which contains the radix 

for system I/O. 
Code: Not applicable. 
Bytes: 9 
Notes: In the SYS user block. The code body contains an offset 

number and there is no return address. See *SYS. BASE is 
a CVARIABLE and must be referenced using byte-length 
addressing keywords.. 

BEGIN 

Class: Compiler Directive (Immediate) 
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Function: 

Input /Output: 

Usage: 

Code: 

Bytes: 

Notes: 

Formal Definition: 

Pushes to the stack the address of the next available free 

dictionary location. 

None/One stack entry. 

Initiates a BEGIN . . . END loop in the compile mode. 

HERE ;GET AT DP 

12 

The immediate form of HERE. 

: ■ BEGIN ■ HERE ■; ■ IMMEDIATE 

BINARY 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

System 

Sets the system number base to 2 decimal or the binary 

radix. 

None/None. 

Sets I/O to the binary radix notation. 

LD A,2 ;GET 2 DECIMAL 

LD {BASE},A ;SET BASE TO 2 

15 

C! 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Memory Reference 

Stores the low-order byte of the second stack entry at the 

address at the top stack entry, removing both entries. 

Two stack entries/None. 

Storage of byte length data in programmable memory. 

POP HL ;GET ADDRESS 

POP DE ;GET BYTE 

LD {HL},E ;STORE BYTE 

13 

C + ! 

Class: 

Function: 

Input/Output: 

Usage: 

Memory Reference 

Pops two stack entries and adds the byte in the low-order 

byte of the second stack entry to the byte whose address is 

the top stack entry. 

Two stack entries/None. 

Incrementing/decrementing byte-length data stored in pro¬ 

grammable memory. 
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Z80 Code: 

Bytes: 

Notes: 

POP HL ;GET ADDRESS 

POP DE ;GET BYTE 

LD A,{HL} ;GET AT ADDRESS 

ADD E ;ADD BYTE 

LD {HL},A ; STORE AT ADDRESS 

No tests for overflow or carry are made. 

C+LOOP 

Compiler Directive (Immediate) 

Adds the word address of the program control directive 

*C + LOOP to the dictionary, then computes the difference 

between the current free dictionary address and the ad¬ 

dress at the top of the stack and encloses the low-order 

byte in the dictionary as the relative jump byte. 

Input/Output: One stack entry/None. 

Usage: Used to terminate a CDO . . . C -I- LOOP construct in the 

compile mode. 

Code: *# XX ;WORD ADDRESS OR C+LOOP {LITERAL} 

END, ;ENCLOSE RELATIVE JUMP BYTE 

Bytes: 16 

Formal Definition: 

: BC + LOOP BXX BEND, B; B IMMEDIATE 

Class: 

Function: 

C, 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

System 

Pops the top stack word and encloses the low-order byte in 

the dictionary 

One stack entry/None. 

Used to build dictionary keywords. 

POP DE ;GET BYTE 

LD HL,{DP} ;GET @DP 

LD {HL},E ;STORE BYTE 

INC HL ;BUMP @DP 

LD {DP},HL ;UPDATE @DP 

Bytes: 19 
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COSET 

Class: Memory Reference 

Function: Pops the top stack entry and sets the byte whose address 

was the top entry to 0. 

Input/Output: One stack entry/None. 

Usage: Initializing byte-length data in programmable memory to 0 

or setting byte-length flags in programmable memory to 

False. 

Z80 Code: POP HL ;GET ADDRESS 

LD {HL},0 ;ZERO @ADDRESS 

Bytes: 13 

ClSET 

Class: Memory Reference 

Function: Pops the top stack word and sets the byte whose address 

was the top entry to 1. 

Input/Output: One stack entry/None. 

Usage: Initializing byte-length data in programmable memory to 1 

or setting byte-length flags in programmable memory to 

True. 

Z80 Code: POP HL ;GET ADDRESS 

LD {HL},1 ;ONE SET @ADDRESS 

Bytes: 13 

C<R 

Class: Interstack 

Function: Pops the top stack entry and pushes the low-order byte to 

the return stack. 

Input/Output: One stack entry/One return stack byte entry. 

Usage: Temporary storage of byte data within a definition, or 

direct return stack control. 

Z80 Code: POP HL ;GET TOP BYTE 

DEC IX ;PUSH IT TO THE 

LD {IX+0},L ;RETURN STACK 

Bytes: 16 

Notes: Temporary data stored on the return stack must be re¬ 

moved before the end of a definition to prevent incorrect 

return. 
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Class: 

Function: 

Input/Output: 

Usage: 

Code: 

Bytes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Class: 

Function: 

Input/Output: 

Usage: 

Code: 

Bytes: 

C? 

I/O 

Displays to the operator (using the current system number 

base) the byte whose address is popped from the stack. The 

number is always followed by a space. 

One stack entry/None. 

Displaying signed numbers to the operator; generally the 

contents of byte variables or constants. 

C@ ;GET THE BYTE 

; DISPLAY IT 

14 

C@ 

Memory Reference 

Replaces the address at the top of the stack with the byte at 

that address (in sign extended format). 

One stack entry/One stack entry. 

Returns byte-length data stored in memory in a format 

compatible with 16-bit signed arithmetic. 

POP HL ;GET ADDRESS 

LD E,{HL} ;GET BYTE @ ADDRESS 

LD A,E ;GET THE BYTE 

RLA A ;SIGN TO CY 

SBC A, A ;FF IF NEG ELSE 00 

LD D,A ;SET SIGN EXTENSION 

PUSH DE ;PUSH 16-BIT WORD 

17 

CA! 

System 

Stores the address at the top of the stack in the word ad¬ 

dress location of the latest entry in the CURRENT 

vocabulary, ie: the top stack entry is the code address of 

the keyword currently in the process of being defined. 

One stack entry/None. 

Used to define defining keywords. 

ENTRY ;ADDRESS OF LATEST HEADER 

*C# 6 ;LITERAL 6 

+ ;HEADER PLUS 6 EQUAL WORD ADDRESS 

! ; STORE CODE ADDRESS 

19 

Formal Definition: 

:BCAIBENTRYB6B + BlB; 
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CCONSTANT 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Formal Definition: 

Defining Word 

Creates a byte constant keyword dictionary entry whose 

name is the token following CCONSTANT and whose 

value equals the low-order byte of the top stack entry. 

One stack entry/None. 

Defining byte-length named constants. 

CREATE 

C, 

SCODE 

22 

LD A,{DE} 

; CREATE PRIMITIVE 

; STORE BYTE TO BODY 

;REPLACE CODE ADDRESS 

;GET BYTE IN CODE BODY 

LD L,A ;TO L REGISTER 

RLA A ;SIGN TO CY 

SBC A,A ;FF IF NEG ELSE 00 

LD H,A ;SET SIGN EXTENSION 

PUSH HL ;PUSH 16-BIT WORD 

JP {IV} JUMP TO NEXT 

: ■ CCON ST ANT ■ CREATE ■ C, ■; CODE ■ . 

Notes: The ". . . ."is the assembly or machine code. 

CDO 

Compiler Directive (Immediate) 

Encloses the word address of the program control directive 

*CDO in the dictionary and then pushes the address of the 

next free dictionary location to the stack. 

Input/Output: Used to initiate a CDO...CLOOP or CDO...C + LOOP 

construct in the compile mode. 

Code: *# XX ;WORD ADDRESS OF *CDO {LITERAL} 

DO, ; STORE AND PUSH 

Bytes: 16 

Formal Definition: 

: ■ CDO ■ XX ■ DO, ■; ■ IMMEDIATE 

Class: 

Function: 

CI> 

Class: 

Function: 

Interstack 

Pushes to the stack the loop index for the innermost byte- 

length loop which is the top return stack byte. 
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Input/Output: One return stack byte/One stack entry and one return 

stack byte entry. 

Usage: Retrieval of the current byte loop index. 

Z80 Code: LD 
LD 

RLA 

SBC 

LD 

NEXA: PUSH 

Bytes: 18 

Notes: Assumes the byte 

stack. 

L,{IX + 0} ;GET RETURN TOP 
A,L ;GET THE BYTE 

A ;SIGN TO CY 

A,A ;FF IF NEG ELSE 00 

H,A ;SET SIGN EXTENSION 

HL ;PUSH 16-BIT INDEX 

loop index is at the top of the return 

CJ> 

Class: Interstack 

Function: Pushes to the stack the loop index for the second innermost 

byte-length loop. 

Input/Output: Three return stack byte entries/Three return stack entries 

and one stack entry. 

Usage: Retrieval of the next level byte index. 

Z80 Code: LD L, {IX + 2} ;GET 2ND INDEX 

LD A,L ;GET THE BYTE 

RLA A ;SIGN TO CY 

SBC A,A ;FF IF NEG ELSE 00 

LD H,A ;SET SIGN EXTENSION 

NEXB: PUSH HL ;PUSH 16-BIT INDEX 

Bytes: 18 

Notes: Assumes only byte loop parameters are on the return 

stack. 

CJOIN 

Class: Stack 

Function: Pops the top two stack entries and combines them to a 

single word by moving the low-order byte of the top entry 

into the high-order byte of the second entry and pushes the 

resulting 16-bit word to the stack. 

Input/Output: Two stack entries/One stack entry. 

Usage: Stack manipulation for multi-byte signed integers. 

Z80 Code: POP HL ;GET LOW BYTE 

POP DE ;GET HIGH BYTE 

LD D,L ; COMBINE 

PUSH DE ;PUSH RESULT 

Bytes: 14 
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CK> 

Class: Interstack 

Function: Pushes to the stack the loop index for the third innermost 

byte-length loop. 

Input/Output: Five return stack byte entries/Five return stack byte entries 

and one stack entry. 

Usage: Retrieval of the second next level byte loop index. 

Z80 Code: LD L,{IX + 4} ;GET 3RD INDEX 
LD A,L ;GET THE BYTE 

RLA A ;SIGN TO CY 

SBC A,A ;FF IF NEG ELSE 00 

LD H,A ;SET SIGN EXTENSION 

NEXC: PUSH HL ;PUSH 16-BIT INDEX 

Bytes: 18 

Notes: Assumes only byte loop parameters are on the return 

stack. 

CLEAR 

I/O 

Clears the CRT display and homes the cursor. 

None/None. 

Control of display formatting. 

LD A,CLEAR ;LOAD CLEAR CODE 

CALL $ECHO ;ISSUE TO DISPLAY 

15 

Presumes that the display driver recognizes a command to 

clear the screen and homes the cursor. 

CLEAVE 

Class: Compiler Directive (Immediate) 

Function: Encloses the word address of the program control directive 

* CLEAVE in the dictionary 

Input/Output: None/None. 
Usage: Compiles a command to cause an immediate exit from a 

byte loop construct at execution time. Used within a condi¬ 

tional branch structure. 

Code: *# XX ;WORD ADDRESS OF * CLEAVE 

{LITERAL} 

;ENCLOSE IT IN THE DICTIONARY 

Bytes: 16 

Formal Definition: 

: ■ CLEAVE ■ XX ■, ■; ■ IMMEDIATE 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Notes: 
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CLOOP 

Class: 

Function: 

Input/Output: 

Usage: 

Code: 

Bytes: 

Formal Definition: 

Compiler Directive (Immediate) 

Adds the word address of the program control directive 

* CLOOP to the dictionary, then computes the difference 

between the current free dictionary address and the ad¬ 

dress at the top of the stack and encloses the low-order 

byte in the dictionary. 

One stack entry/None. 

Used to terminate a CDO . . . CLOOP construct in the 

compile mode. 

*# XX ;WORD ADDRESS OF *CLOOP 

{LITERAL} 

END, ;ENCLOSE RELATIVE JUMP BYTE 

16 

:■ CLOOP ■ XX BEND, ■; ■ IMMEDIATE 

COMPILER 

Class: System Variable 

Function: Pushes to the stack the address of the compiler variable 

which points to the last entry in the COMPILER 

vocabulary. 

Input/Output: None/One stack entry. 

Usage: Used to access the link to the last COMPILER vocabulary 

entry. 

Code: Not applicable. 

Bytes: 9 

Notes: In the SYS users block. The code body is an offset number 

and there is no return address. See *SYS. 

CONSTANT 

Class: Defining Word 

Function: Creates a word-length constant keyword dictionary entry 

whose name is the token following CONSTANT and 

whose value equals the top stack entry. 

Input/Output: One stack entry/None. 

Usage: Defining word-length named constants. 

Z80 Code: CREATE ;CREATE PRIMITIVE HEADER 

; STORE NUMBER IN CODE BODY 

SCODE ;REPLACE CODE ADDRESS 
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EX DE,HL ;WORD ADDRESS TO HL 

LD E,{HL} ;GET LOW BYTE IN CODE BODY 

INC HL ;BUMP POINTER 

LD D,{HL} ;GET HIGH BYTE 

PUSH DE ;NUMBER TO STACK 

JP {IY} JUMP TO NEXT 
Bytes: 21 

Formal Definition: 

: ■ CONSTANT ■ CREATE ■ CODE ■.... 

Notes: The is the assembly or machine code. 

CONTEXT 

Class: System Variable 

Function: Pushes to the stack the address of the system context 

variable. 

Input/Output: None/One stack entry. 

Usage: Used to access the system variable which contains the ad¬ 

dress of the vocabulary that will be searched to locate 

keywords. 

Code: Not applicable. 

Notes: In the SYS user block. The code body contains an offset 

number and there is no return address. 

CORE 

Class: Vocabulary 

Function: Sets the CONTEXT system variable to the address of the 

code body of CORE which contains the address of the 

latest entry in the vocabulary. 

Input/Output: None/None. 

Usage: Evokes the CORE vocabulary. 

Code: Not applicable. 

Bytes: 12 

Notes: Predefined but exactly as if defined using the 

VOCABULARY defining keyword. 
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CR> 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Interstack 

Pops the byte at the top of the return stack and pushes it to 

the stack in sign-extended format. 

One return stack byte entry/One stack entry. 

Retrieval of temporary data stored on the return stack to 

the stack in a format compatible with signed 16-bit 

arithmetic. 

LD L,{IX+0} ;GET TOP RETURN BYTE 

INC IX ;ADJUST RSP 

LD H,0 ;ASSUME BYTE POSITIVE 

BIT 7, L ;TEST BYTE SIGN 

JR Z,SKIP ;IF ZERO, POSITIVE 

DEC H ;MAKE NEGATIVE 

PUSH HL ;PUSH 16 BIT WORD 

23 

CREATE 

Class: Defining Word 

Function: Creates a dictionary header for a primitive keyword whose 

name is the token following CREATE and links it to the 

CURRENT vocabulary. 

Input / Output: N one / N one. 

Usage: Used to create all dictionary headers. 

Code: ENTRY ;POINTER TO LATEST HEADER 

ASPACE ;SET THE SEPARATOR 

TOKEN ;TOKEN TO DICTIONARY SPACE 

HERE ;POINTS TO THE TOKEN 

CURRENT ;ADDRESS OF CURRENT VOCABULARY 

@ VOCABULARY LINK 

! ;UPDATE LINK TO NEW TOKEN 

*C# 4 ;FOUR IDENTIFIER CHARACTERS 

DP ; DICTIONARY POINTER 

+! ; ENCLOSE FOUR CHARACTERS 

;ADD LINK ADDRESS TO NEW 

HEADER 

HERE ;WORD ADDRESS OF NEW HEADER 

2 + ;POINTS TO CODE BODY 

;STORE AT WORD ADDRESS 

Bytes: 39 

Formal Definition: 

: ■ CREATE ■ ENTRY ■ ASPACE ■ T OKEN ■ HERE ■ CURRENT ■ @ ■! ■ 
4BDPB + !H,BHEREB2 + 
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Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Class: 

Function: 

Input/Output: 

Usage: 

Code: 

Bytes: 

Notes: 

CRET 

I/O 

Issues a carriage-return line-feed sequence to the display. 

None/None. 

Display formatting. 

CALL $CRLF ;CALL CR-LF 

13 

CSPLIT 

Stack 

Pops the top stack entry and creates two 16-bit numbers. 

The high-order byte is moved to the low-order byte of the 

second entry in sign-extended format. The low-order byte 

is returned as the top stack entry as a positive 16-bit 

number. 

One stack entry/Two stack entries. 

Stack manipulation of multi-byte integers. 

POP HL ;GET 16 BIT NUMBER 

LD E,H ;MOVE HIGH BYTE 

LD H,0 ;MAKE LOW + 16 BIT 

LD D,H ; ASSUME POSITIVE 

BIT 7,E ;TEST SIGN 

JR Z,OUTl ;IF + , IT'S OK 

DEC D ;ELSE MAKE NEGATIVE 

OUTl: PUSH DE ;PUSH SIGNED BYTE 

22 

PUSH HL ;PUSH REMAINDER 

CURRENT 

System Variable 

Pushes to the stack the address of the current vocabulary 

variable. 

None/One stack entry. 

Used to access the current vocabulary variable which con¬ 

tains the address of the vocabulary where new keywords 

will be added. 

Not applicable. 

9 

In the SYS user block. The code body is an offset number 

and there is no return address. See *SYS. 
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CVARIABLE 

Class: Defining Word 

Function: Creates a byte variable keyword dictionary entry whose 

name is the token following CVARIABLE and whose ini¬ 

tial value is the low-order byte of the entry popped from 

the stack. 

Input/Output: One stack entry/None. 

Usage: Defining byte-length named variables and initializing 

them. 

Z80 Code: CCONSTANT ;CREATE HEADER AND INITIALIZE 

SCODE :REPLACE CODE ADDRESS AND EXIT 

PUSH DE ;PUSH WORD ADDRESS 

JP {IY} JUMP TO NEXT 

Bytes: 15 

Formal Definition: 

: ■ CVARIABLE ■ CCONSTANT ■; CODE ■.... 

Notes: The "...." is assembly or machine code. 

D* 

Class: Arithmetic 

Function: Does a signed multiply of the second stack word by the 

low-order byte of the top stack entry and replaces both en¬ 

tries by the 24-bit product with the 8 most significant bits 

sign extended as the second stack entry and the 16 least 

significant bits as the top stack entry. 

Input/Output: Two stack entries/Two stack entries. 

Usage: Signed integer arithmetic. 

Z80 Code: EXX ;SAVE IR 

POP BC ;GET 8 BIT NUMBER 

POP DE ;GET 16 BIT NUMBER 

CALL $ISIGN ; FIELD INPUT SIGNS 

CALL $UD* ;MULTIPLY 16X8 

EX AF,AF' RETRIEVE SIGN FLAG 

JP P,OUT* ;IF + , IT'S OK 

LD A,C ;MOVE 8 MOST SIGNIFI¬ 

CANT 

CPL ; COMPLEMENT 

LD C,A ;RESTORE 

EX DE,HL ;MOVE 16 LEAST 

LD HL,0 ;GET ZERO 

SBC HL,DE ;NEGATE 16 LEAST 

JR NZ,OUT ;IF NOT ZERO, IT'S OK 

INC C ;ELSE 2'S COMP MOST 
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Bytes: 

Notes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

OUT* PUSH HL ;16 LEAST TO STACK 

PUSH BC ;8 MOST TO STACK 

EXX ;RESTORE IR 

39 

Does not test the top stack entry to insure it is a valid 8-bit 

number. The 16 least significant bits are an unsigned 

number on the stack. 

D/MOD 

Arithmetic 

Does a signed divide of the 24-bit number in the third (16 

least significant bits) and second (8 most significant bits) 

stack entries by the low-order byte of the top stack entry. 

Replaces these entries with the 16-bit quotient as the sec¬ 

ond stack entry and the positive 8-bit remainder expanded 

to 16 bits as the top entry. 

Three stack entries/Two stack entries. 

Signed integer arithmetic. 

MO VI; 

MOV2; 

EXX ;SAVE IR 

POP HL ;GET 8 BIT DIVISOR 

POP DE ;8 MOST SIGNIFICANT 

POP BC ;GET 16 LEAST 

LD A,H ; DIVISOR SIGN 

XOR D ;RESULT SIGN 

EX AF,AF' ;SAVE SIGN FLAG 

LD A,L ;GET DIVIDEND SIGN 

AND A ;TEST SIGN 

JP P,MOVl ;IF + , IT'S OK 

NEG ;MAKE POSITIVE 

LD D,A ; STORE DIVISOR 

LD H,B ;GET 16 LEAST 

LD L,C ;TO HL 

LD A,E ;GET 8 MOST 

AND A ;TEST SIGN 

JP P,MOV2 ;IF +, IT'S OK 

CPL COMPLEMENT HIGH 8 

LD HL,0 ;ELSE GET ZERO 

SBC HL,BC ;NEGATE LOW 16 

JPC NZ,MOV2 ;IF NON-ZERO, IT'S OK 

INC A ;ELSE BUMP HIGH 

LD D,A ;MOVE HIGH 8 

CALL $UD/ ; DIVIDE 24X8 

CALL $OSIGN JUSTIFY RESULT 
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PUSH HL ;QUOTIENT TO STACK 

PUSH BC REMAINDER TO STACK 

EXX ;RESTORE IR 
Bytes: 48 

Notes: Does not test the top stack entry to insure it is a valid 8-bit 

number. No test is made to insure a valid 16-bit quotient. 

DECIMAL 

Class: System 

Function: Sets the system variable BASE to 10 decimal to evoke 

decimal I/O. 

Input/Output: None/None. 

Usage: Evokes radix 10 I/O. 

Z80 Code: LD A,0A ;GET 10 DECIMAL 

LD {BASE},A ;STORE IT AT BASE 
Bytes: 15 

DEFINITIONS 

Class: System Directive 

Function: Sets the system variable CURRENT to the value in the 

system variable CONTEXT. 

Input/Output: None/None. 

Usage: Sets the vocabulary into which new definitions will be 

linked. 

Z80 Code: LD HL,{CONTEXT} ;CONTEXT VOCABULARY 

LD {CURRENT},HL ;TO CURRENT 

Bytes: 16 

DISPLAY 

Class: I/O 

Function: Outputs to the display the low-order byte of successive top 

stack entries until a non-ASCII code is output (a character 

with the high-order bit 1 set). 

Input/Output: One to N stack entries/None. 

Usage: Output to display the stack string data. 

Z80 Code: SDISPLAY: EXX ;SAVE IR 

DLOOP; POP HL ;GET TOP STACK WORD 

LD A,L ;LOW BYTE 
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CALL $ECHO ; DISPLAY IT 
AND A ;TEST CODE FOR BIT 7 

JP P,DLOOP ;IF POSITIVE, LOOP 
EXX ;RESTORE IR 

Bytes: 21 

Notes: Entered from #> (to display number strings) at the 

SDISPLAY entrance. 

DO 

Class: Compiler Directive (Immediate) 

Function: Encloses the word address of the program control directive 

*DO in the dictionary and then pushes to the stack the ad¬ 

dress of the next free dictionary location. 

Input/Output: None/One stack entry. 

Usage: Used to initiate a DO . . . LOOP or DO . . . -I-LOOP con¬ 

struct in the compile mode. 

Code: *# XX ;WORD ADDRESS OF *DO {LITERAL} 

DO, ; STORE ADDRESS AND GET POINTER 
Bytes: 16 

Formal Definition: 

: BDOBXXBDO, ■; ■ IMMEDIATE 

DO, 

Class: 

Function: 

Input/Output: 

Usage: 

Code: 

Bytes: 

Formal Definition: 

System 

Stores the program control directive at the top of the stack 

to the dictionary and returns the address of the next free 

dictionary location on the stack. 

One stack entry/One stack entry. 

Used to define compiler directive immediate keywords. 

; STORE DIRECTIVE 

HERE ;PUSH FREE ADDRESS 

14 

:BDO,B,BHEREB; 

DOES> 

Class: 

Function: 

Program Control Directive 

Replaces the first word in the code body of the latest entry 
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in the CURRENT vocabulary with the top return stack 

word and then replaces its code address with the second 

return stack entry. 

Input/Output: Two return stack word entries/None. 

Usage: Used to terminate the compile time code of a high-level 

defining word definition. Always followed by keywords 

that constitute the execution time generic code definition. 

Z80 Code: R> ;GET TOP RETURN ADDRESS 

ENTRY ; LATEST HEADER ADDRESS 

*C# 8 ;PLUS 8 

+ ;POINTS TO CODE BODY 

! ; STORE RETURN TO CODE BODY 

SCODE ;REPLACE CODE ADDRESS AND RETURN 

DEC IX ; ADJUST RSP 

LD {IX+0},B ;IR LOW BYTE TO RETURN 

DEC IX ; ADJUST RSP 

LD {IX+0},C ;IR HIGH BYTE TO RETURN 

EX DE,HL ;WA REGISTER TO HL 

LD C,{HL} ;@WA LOW INTO IR 

INC HL ;BUMP WA 

LD B,{HL} ;@WA HIGH INTO IR 

INC HL ;BUMP WA 

PUSH HL ;PUSH POINTER 

Bytes: 39 

Formal Definition: 

:BDOES> BENTRYB8B + ■!B;CODEB.... 

Notes: The is assembly or machine code. 

DP 

System Variable 

Pushes to the stack the address of the dictionary pointer 

variable. 

None/One stack entry. 

Used to access the system variable which contains the ad¬ 

dress of the next free dictionary location. 

Not applicable. 

9 

In the SYS user block. The code body contains an offset 

number and there is no return address. See *SYS. 

DROP 

Class: Stack 

Class: 

Function: 

Input/Output: 

Usage: 

Code: 

Bytes: 

Notes: 
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Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Pops the top stack entry and discards it. 

One stack entry/None. 

Stack clean up. 

POP HL ;DROP TOP 

11 

DUMP 

Class: I/O 

Function: Does a memory dump using the second stack entry as the 

starting address and the top stack entry as the ending ad¬ 

dress. Displays a line consisting of the address, eight 

numbers, a space, and eight more numbers. Removes both 

entries. 

Input/Output: Two stack entries/None. 

Usage: Examining memory. 

Code: OVER ;GET LOOP STARTING ADDRESS 

*DO INITIALIZE DO LOOP 

CRET ;ISSUE CR-LF 

DUP ;DUPLICATE LINE ADDRESS 

*C# 4 TOUR CHARACTER LINE ADDRESS MINIMUM 

.R ;PRINT LINE ADDRESS 

PART ;ISSUE FIRST 8 

PART ; ISSUE SECOND 8 

WAIT TIME TO STOP AND WAIT? 

*C# 10 ;16 NUMBERS PER LINE 

*+LOOP EE ;LOOP UNTIL DONE 

DROP ;DROP ADDRESS 

Bytes: 37 

Formal Definition: 

: ■ DUMP ■ OVER ■ DO ■ CRET ■ DUP ■ 4 ■. R ■ PART ■ PART ■ WAIT ■ 
10 ■ -I- LOOP ■ DROP ■; 

DUP 

Class: Stack 

Function: Duplicates the top stack entry and pushes it to the stack. 

Input/Output: One stack entry/Two stack entries. 

Usage: Stack management. 

Z80 Code: POP HL ;GET TOP WORD 

PUSH HL ;RESTORE TOP 

PUSH HL ;AND PUSH IT AGAIN 

Bytes: 13 
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ECHO 

Class: I/O 

Function: Pops the top stack entry and outputs the low-order byte to 

the display. 

Input/Output: One stack entry/None. 

Usage: Direct control of the display for formatting. 

Z80 Code: POP HL ;GET TOP 

LD A,L ;GET LOW-ORDER BYTE 

CALL $ECHO ;DISPLAY IT 

Bytes: 15 

ELSE 

Class: 

Function: 

Input/Output: 

Usage: 

Code: 

Bytes: 

Notes: 

Formal Definition: 

Compiler Directive (Immediate) 

Encloses the word address of the program control directive 

*ELSE in the dictionary, saves the address of the next free 

dictionary location on the stack, reserves 1 byte in the dic¬ 

tionary, swaps the top two stack entries, computes the dif¬ 

ference between the top stack entry and the current free 

dictionary location and encloses the low-order byte in the 

dictionary as a relative jump byte. 

One stack entry/One stack entry. 

Used to terminate the True code portion in an IF...ELSE 

...THEN construct in the compile mode. 

*# XX ;WORD ADDRESS OF *ELSE {LITERAL} 

DO, ; STORE ADDRESS AND GET POINTER 

0 ;GET ZERO 

C, ;RESERVE BYTE 

SWAP ;SWAP TOP TWO ADDRESSES 

THEN ; EXECUTE THEN CODE 

24 

See definition of THEN. 

: ■ ELSE ■ XX ■ DO, BOBC, ■ SWAP ■ THEN ■; ■ IMMEDIATE 

END 

Class: Compiler Directive (Immediate) 

Function: Encloses the word address of the program control directive 

*END in the dictionary, pops the top stack address, com¬ 

putes the difference between this address and address of 

the current free dictionary location and encloses the low- 

order byte in dictionary as a relative jump byte. 

One stack entry/None. Input/Output: 
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Usage: Used to terminate a BEGIN . . . END loop structure in the 

compile mode. 

Code: XX ;WORD ADDRESS OF *END {LITERAL} 

END, ;STORE AND COMPUTE JUMP 

Bytes: 

Formal Definition: 

16 

: ■ END ■ XX ■ END, ■; ■ IMMEDIATE 

END, 

Class: System 

Function: Encloses the address of the program control directive at the 

top of the stack in the dictionary, computes the relative 

jump byte using the top stack entry and the current free 

dictionary location and encloses the low-order byte in the 

dictionary. 

Input/Output: Two stack entries/None. 

Usage: Used in defining compiler directive immediate keywords. 

Code: 

HERE 

;STORE DIRECTIVE WORD ADDRESS 

; CURRENT FREE ADDRESS 
— ; COMPUTE RELATIVE OFFSET 

C, ; ENCLOSE IT IN DICTIONARY 

Bytes: 18 

ENTRY 

Class: System 

Function: Pushes to the stack the address of the first header byte of 

the latest entry in the CURRENT vocabulary. 

Input/Output: None/One stack entry. 

Usage: Used to locate the address of the latest vocabulary defini- 

tion which 

keyword. 

will become the link address of the next 

Code: CURRENT ; CURRENT ADDRESS 

@ VOCABULARY ADDRESS 

@ ;HEADER ADDRESS 

Bytes: 16 

ERASE 

Class: Utility 
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Function: 

Input/Output: 

Usage: 

Code: 

Bytes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Notes: 

Class: 

Function: 

Input/Output: 

Usage: 

Code: 

Fills a region of memory with ASCII spaces. The starting 

memory address is the second stack entry and the ending 

memory address is the top entry. Removes both entries. 

Two stack entries/None. 

Clearing string data. 

1 + ;BUMP LAST ADDRESS FOR LOOPING 

SWAP ;GET LOOP ORDER CORRECT 

*DO INITIALIZE LOOP 

ASPACE ;GET SPACE CODE 

I> ; INDEX EQUALS MEMORY ADDRESS 

C! ;SPACE TO MEMORY 

*LOOP F8 ;LOOP UNTIL DONE 

25 

EXECUTE 

System 

Pops the top stack entry to the word address register and 

jumps to the inner interpreter RUN routine to cause the ex¬ 

ecution of a keyword. 

One stack entry/None. 

Used by the system for keyword execution and by operator 

for defining conditional execution keywords. 

POP HL ;GET KEYWORD WORD ADDRESS 

JP RUN ; EXECUTE IT 

12 
EXECUTE does not have a return address. 

FILL 

Utility 

Fill a region of memory with a specified byte. The byte is 

the third stack entry low-order byte. The starting memory 

address is the second stack entry and the ending memory 

address is the top entry. Removes all three entries. 

Three stack entries/None. 

Loading memory to some initial value. 

1+ ;BUMP LAST ADDRESS FOR LOOPING 

SWAP ;GET RIGHT LOOP ORDER 

‘DO INITIALIZE LOOP 

DUP ; DUPLICATE BYTE 

I> ;GET MEMORY ADDRESS 

C! ; STORE BYTE 

‘LOOP F8 ;LOOP UNTIL DONE 
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DROP ; REMOVE BYTE FROM STACK 

Bytes: 27 

Formal Definition: 

:■ FILL■ 1 + ■ SWAPBDOBDUPBI> BOBLOOP■ DROP■; 

FORGET 

Class: Vocabulary 

Function: Searches the current vocabulary for the token following 

FORGET. If located, the current link address is set to the 

address of the link in the keyword located and the dic¬ 

tionary pointer is reset to the start of the header of the 

located keyword. If not located, the token is echo 

displayed and followed by a "?". 

Input/Output: None/None. 

Usage: Used to delete keyword definitions in a spatial sense. 

Code: CURRENT ;GET CURRENT ADDRESS 

@ ;POINTS TO LATEST ENTRY IN CURRENT 

CONTEXT ;GET CONTEXT ADDRESS 

1 ;SET TO SEARCH CURRENT 

;SEARCH FOR TOKEN {KEYWORD} 

DUP ;NEED WORD ADDRESS TWICE 

*Q 2 ;WORD ADDRESS LESS 2 POINTS 

;TO THE LINK ADDRESS 

@ ;THE LINK ADDRESS 

CURRENT ;GET CURRENT ADDRESS 

@ ;POINTS TO THE LINK 

! ;RESET LINK TO TOKEN LINK 

*C# 6 , WORD ADDRESS LESS 6 POINTS TO THE 

; FIRST HEADER BYTE OF THE TOKEN 

DP ;GET FREE DICTIONARY ADDRESS 

I ;RESET DICTIONARY FREE LOCATION 

Bytes: 44 

Notes: Caution is advised. It is possible to forget part or all of the 

context vocabulary. The end result is an unusable language 

since nothing can be located. 

Formal Definition: 

: ■ FORGET ■ CURRENT B @ B CONTEXT ■! ■’ ■ DUP ■ 2 ■ - ■ @ ■ 
CURRENTB@B!B6B-BDPB!B; 

HERE 

Class: System 
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Function: Pushes the address of the next free dictionary location to 

the stack (the address stored at the system variable DP). 

Input/Output: None/One stack entry. 

Usage: Used by the system in building dictionary entries and by 

the operator to determine dictionary space usage. 

Z80 Code: LD HL,{DP} ;GET @DP 

PUSH HL ;FREE LOCATION TO STACK 

Bytes: 14 

HEX 

Class: System 

Function: Sets the system variable BASE to 16 decimal to evoke 

hexadecimal I/O. 

Input/Output: None/None. 

Usage: Evokes radix 16 I/O. 

Z80 Code: LD A,10 ;GET 16 DECIMAL 

LD {BASE},A ;STORE IT AT BASE 
Bytes: 15 

Notes: Base 16 I/O is the base on start-up. 

I> 

Class: Interstack 

Function: Pushes to the stack the loop index for the innermost word- 

length loop which is the top return stack word. 

Input/Output: One return stack word/One return stack word and one 

stack word. 

Usage: Retrieval of the current word loop index. 

Z80 Code: LD L,{IX + 0} ;GET LOW INDEX 

LD H, {IX ■+1} ;GET HIGH BYTE 

PUSH HL ; INDEX TO STACK 

Bytes: 17 

Notes: Presumes nothing else on the return stack except loop in¬ 

dex. 

IF 

Class: Compiler Directive (Immediate) 

Function: Encloses the word address of the program control directive 

*IF in the dictionary, pushes the address of the next free 

dictionary location to the stack and reserves 1 byte in the 



WORDS, WORDS, AND MORE WORDS 159 

dictionary for a relative jump byte. 

Input/Output: None/One stack entry. 

Usage: Used to initiate a conditional branch construct in the com- 

pile mode. 

Code: *# xx ;WORD ADDRESS OF *IF {LITERAL} 

DO, ;STORE ADDRESS AND SAVE POINTER 

0 ;GET A ZERO 

C, ; RESERVE A BYTE 

Bytes: 20 
Formal Definition: 

: ■IFBXXBDO, BOBC, IMMEDIATE 

IMMEDIATE 

Class: 

Function: 

Input/Output: 

Usage: 

Code: 

Bytes: 

Formal Definition: 

Vocabulary 

Delinks the latest entry from the current vocabulary and 

links it to the compiler vocabulary. The previous second 

entry in the current vocabulary becomes the latest entry. 

None/None. 

Adding keywords to the compiler vocabulary. 

ENTRY 

DUP 

*C# 4 

+ 

DUP 

@ 
CURRENT 

@ 
I 
COMPILER 

@ 
SWAP 

! 
COMPILER 

I 
39 

;POINTS TO LATEST CURRENT KEYWORD 

;SAVE IT FOR COMPILER LINK 

;CURRENT HEADER + 4 POINTS TO THE 

; LATEST KEYWORDS LINK 

;SAVE AS NEW LINK ADDRESS 

;GET THE LINK 

;POINTS TO CURRENT 

; POINTS TO VOCABULARY 

; UPDATE CURRENT TO 2ND KEYWORD 

; COMPILERS ADDRESS 

;POINTS TO LAST COMPILER ENTRY 

;ADDRESS THEN LINK 

; STORE LINK IN PREVIOUS CURRENT 

; COMPILER ADDRESS 

PREVIOUS CURRENT TOP OF COMPILER 

: ■ IMMEDIATE ■ ENTRY ■ DUP ■ 4 ■ + ■ DUP ■ @ ■ CURRENT ■ @ ■ 1 ■ 
COMPILER ■ @ ■ SWAP ■! ■ COMPILER ■! ■; 

IOR 

Class: Logical 
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Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Replaces the top two stack entries by the logical inclusive 

or of the entries on a bit-by-bit basis. 

Two stack entries/One stack entry. 

Logical operations. 

POP HL 

POP DE 

LD A,L 

OR E 

LD L,A 

LD A,H 

OR D 

LD H,A 

PUSH HL 

;GET TOP WORD 

;GET NEXT WORD 

;MOVE TOP LOW BYTE 

;OR IN 2ND LOW BYTE 

;SAVE LOW OR 

MOVE TOP HIGH BYTE 

;OR IN 2ND HIGH BYTE 

;SAVE HIGH OR 

;PUSH RESULT 

I> 

Class: Interstack 

Function: Pushes to the stack the loop index for the second innermost 

word-length loop. 

Input/Output: Three return stack word entries/Three return stack word 

entries and one stack entry. 

Usage: Retrieval of the second level word-length loop index. 

Z80 Code: LD L, {IX + 4} ;GET LOW INDEX 

LD H, {IX + 5} ;GET HIGH INDEX 

PUSH HL ;INDEX TO STACK 

Bytes: 17 

Notes: Presumes only word-length loop parameters on the return 

stack. 

K> 

Class: Interstack 

Function: Pushes to the stack the loop index for the third innermost 

word-length loop. 

Input/Output: Five return stack word entries/Five return stack word en¬ 

tries and one stack entry. 

Usage: Retrieval of the third level word-length loop index. 

Z80 Code: LD L,{IX + 8} ;GET LOW INDEX BYTE 

LD H, {IX ■+ 9} ;GET HIGH INDEX BYTE 

PUSH HL ;INDEX TO STACK 

Bytes: 17 

Notes: Presumes only word-length loop parameters on the stack. 
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KEY 

Class: 
Function: 

Input/Output: 
Usage: 
Z80 Code: 

Bytes: 
Notes: 

I/O 
Pushes to the stack in the low-order byte position the next 
ASCII code entered via the keyboard. 
None/One stack entry. 
Interfaces the keyboard to the system. 

CALL $KEY 
LD L,A 
PUSH HL 

15 
Presumes transfer via the A register. 

LBP 

Class: 
Function: 

Input/Output: 
Usage: 

Code: 
Bytes: 
Notes: 

System Variable 
Pushes to the stack the address of the line buffer pointer 
variable. 
None/One stack entry. 
Used to access the line buffer pointer variable which con¬ 
tains the address of the start of the next token in the input 
line buffer. 
Not applicable. 
9 
In the SYS users block. The code body is an offset number 
and there is no return address. See *SYS. 

LEAVE 

Class: 
Function: 

Input/Output: 
Usage: 

Code: 

Compiler Directive (Immediate) 
Encloses the word address of the program control directive 
* LEAVE in the dictionary. 
None/None. 
Compiles a command to cause an immediate exit from a 
word-length loop construct at execution time. Used within 
a conditional branch construct. 

XX ;WORD ADDRESS OF * LEAVE {LITERAL} 
;ENCLOSE IT 

Bytes: 16 
Formal Definition: 

: BLEAVEBXXB, ■; ■ IMMEDIATE 
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LOOP 

Class: 
Function: 

Input/Output: 

Usage: 

Code: 

Bytes: 

Formal Definition: 

Compiler Directive (Immediate) 

Encloses the word address of the program control directive 

*LOOP in the dictionary, then pops the stacks and com¬ 

putes the difference between this address and the next free 

dictionary address and encloses the low-order byte in the 

dictionary as the relative jump byte. 

One stack entry/None. 

Used to terminate a DO . . . LOOP construct in the com¬ 

pile mode. 

*# XX ;WORD ADDRESS OF *LOOP 

{LITERAL} 

END, ;STORE ADDRESS AND JUMP 

16 

: ■ LOOP ■ XX ■ END, ■; ■ IMMEDIATE 

LROT 

Class: 
Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Stack 

Rotates the top three stack entries left in an infix cyclic 

sense (input ABC into B C A with A the final top stack en¬ 

try). 

Three stack entries/Three stack entries. 

Control of stack order. 

POP DE ;GET TOP 

POP HL ;GET 2ND 

EX {SP},HL ; EXCHANGE 3RD AND 2ND 

PUSH DE ;PUSH OLD TOP 

PUSH HL ;PUSH OLD 3RD 

15 

MAX 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Arithmetic 

Replaces the top two stack entries by the entry with the 

higher value (signed). 

Two stack entries/One stack entry. 

Signed integer arithmetic tests. 

POP DE ;GET TOP 

POP HL ;GET 2ND 

PUSH HL ;ASSUME 2ND GREATER 
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Bytes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

AND A ; RESET CARRY 

SBC HL,DE ;2ND-TOP 

JP P,OUT ;2ND GREATER, EXIT 

POP HL ;DROP 2ND 

PUSH DE ;PUSH TOP 

JP {IY} ;JUMP TO NEXT 

MIN 

Arithmetic 

Replaces the top two stack entries with the entry with the 

smaller value (signed). 

Two stack entries/One stack entry. 

Signed integer arithmetic tests. 

POP DE ;GET TOP 

POP HL ;GET 2ND 

PUSH HL ;ASSUME 2ND SMALLER 

AND A ;RESET CARRY 

SBC HL,DE ;2ND-TOP 

JP N,OUT ;2ND SMALLER, EXIT 

POP HL ;DROP 2ND 

PUSH DE ;PUSH TOP 

JP {IY} ;JUMP TO NEXT 

MINUS 

Arithmetic 

Replaces the top stack entry with its two's complement. 

One stack entry/One stack entry. 

Signed integer arithmetic. 

LD HL,0 ;GET ZERO 

POP DE ;GET NUMBER 

AND A ; RESET CARRY 

SBC HL,DE ;0-NUMBER 

PUSH HL ;PUSH 2'S COMPLEMENT 

18 

MOD 

Class: Arithmetic 



164 THREADED INTERPRETIVE LANGUAGES 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Notes: 

Class: 

Function: 

Input/Output: 

Usage: 

Code: 

Bytes: 

Notes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Does a signed divide of the second stack word by the low- 

order byte of the top stack entry. Replaces both entries 

with the 8-bit remainder expanded to 16 bits. 

Two stack entries/One stack entry. 

Signed integer arithmetic. 

EXX ;SAVE IR 

POP DE ;GET 8 BIT DIVISOR 

POP BC ;GET 16 BIT DIVIDEND 

CALL SISIGN ; FIELD INPUT SIGNS 

CALL $us/ ; DIVIDE 16X8 

PUSH BC ;PUSH REMAINDER 

EXX ;RESTORE IR 

21 
No test is made to insure a valid 8-bit divisor. 

MODE 

System Variable 

Pushes to the stack the address of the system mode 

variable. 

None/One stack entry. 

Used to access the system variable which contains the 

system execution state. 

Not applicable. 

9 

In the SYS user block. The code body contains an offset 

number and there is no return address. See *SYS. If MODE 

contains 0, the execute mode is in effect and if 1, the com¬ 

pile mode is in effect. MODE is a CVARIABLE and must 

be referenced using keywords for byte-length addressing. 

MODU/ 

Arithmetic 

Does a signed divide of the second stack entry by the low- 

order byte of the top stack entry. Replaces both entries 

with the positive 8-bit remainder expanded to 16 bits as the 

second stack entry and the 8-bit quotient expanded to 16 

bits as the top stack entry. 

Two stack entries/Two stack entries. 

Signed integer arithmetic. 

EXX ;SAVE IR 

POP DE ;GET 8 BIT DIVISOR 
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POP BC ;GET 16 BIT DIVIDEND 

CALL $ISIGN ; FIELD INPUT SIGNS 

CALL $US/ ;DIVIDE 16X8 

CALL $OSIGN ; FIELD OUTPUT SIGN 

PUSH BC ; REMAINDER TO STACK 

PUSH HL ;QUOTIENT TO STACK 

EXX ;RESTORE IR 

Bytes: 25 

Notes: Does not test the divisor to insure it is a valid 8-bit 

number. No test is made to insure a valid 8-bit quotient. 

MOVE 

Class: Utility 

Function: Move the region of memory specified by the starting ad- 

dress of the third stack entry and the ending address of the 

second stack entry to the memory region specified by the 

starting address of the top stack entry. Removes all three 

entries. 

Input/Output: Three stack entries/None. 

Usage: Used to move memory data. 

Z80 Code: EXX ;SAVE IR 

POP DE ;NEW STARTING ADDRESS 

POP HL ;OLD ENDING ADDRESS 

POP BC ;OLD STARTING ADDRESS 

AND A ;RESET CARRY 

SBC HL,BC ; COUNT —1 

PUSH BC ;OLD STARTING 

EX {SP},HL ;SAVE COUNT-1 

POP BC ;BC = COUNT-1 

EX DE,HL ;HL=NEW STARTING 

PUSH HL ;SAVE IT 

AND A ; RESET CARRY 

SBC HL,DE ;MOVE FROM TOP? 

POP HL ;GET IT BACK 

JR NC, BOTTOM ;NO, BOTTOM 

EX DE,HL ;HL + OLD START 

INC BC ;BC = COUNT 

LDIR ;MOVE THE BLOCK 

OUTM: EXX ;RESTORE IR 

JP {IV} ;RETURN TO NEXT 

BOTTOM: ADD HL,BC ;NEW ENDING ADDRESS 

EX DE,HL ;OLD STARTING ADDRESS 

ADD HL,BC ;OLD ENDING ADDRESS 

INC BC ;BC +COUNT 
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Bytes: 

Notes: 

LDDR ;MOVE THE BLOCK 

JR OUTM JUMP TO RETURN 

40 

The memory blocks may be overlapping, but this routine 

will correctly move them. 

NEXT 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Program Control Directive 

Encloses a jump to the inner interpreter NEXT routine in 

the dictionary 

None/None. 

Used to terminate keywords defined using machine code. 

*# E9FD ;FDE9 INSTRUCTION {LITERAL} 

; ENCLOSE THE JP {IY} 

Bytes: 16 

Formal Definition: 

HEX ■: ■ NEXT ■ E9FD ■, ■; 

NOT 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Logical 

Inverts the logic state of the flag at the top of the stack. 

One stack entry/One stack entry. 

Inverting the results of relational test or other flags. 

POP HL ;GET THE FLAG 

LD A,L ;MOVE LOW BYTE 

OR H ;OR IN HIGH BYTE 

LD DE,0 ;ASSUME FALSE RESULT 

JR NZ,OUT ;IF NONZERO, FALSE 

INC E ;MAKE TRUE 

OUT: PUSH DE ;FLAG TO STACK 

20 

OCTAL 

Class: 

Function: 

Input/Output: 

Usage: 

System 

Sets the system variable BASE to 8 decimal to evoke octal 

I/O. 

None/None. 

Evokes radix 8 I/O. 
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Z80 Code: 

Bytes: 15 

LD A,8 

LD {BASE}, A 

;GET 8 DECIMAL 

;STORE IT AT BASE 

OVER 

Class: Stack 

Function: Duplicates the second stack entry and pushes it to the top 

of the stack. 

Input/Output: Two stack entries/Three stack entries. 

Usage: Control of stack order. 

Z80 Code: POP HL ;GET TOP 

POP DE ;GET 2ND 

PUSH DE ;RESTORE 2ND AS 3RD 

PUSH HL ;RESTORE TOP AS 2ND 

PUSH DE ;RESTORE 2ND AS TOP 

Bytes: 15 

PART 

Class: I/O 

Function: Pops an address from the stack and displays eight numbers 

to the operator from the 8 bytes following the initial ad¬ 

dress. The address pointer is left on the stack. 

Input/Output: One stack entry/One stack entry. 

Usage: Used by DUMP to display memory. 

Code: SPACE ;ISSUE SPACE TO DISPLAY 

*C# 8 ;LOOP ENDING INDEX 

0 ;LOOP STARTING INDEX 

*CDO INITIALIZE LOOP 

DUP ; DUPLICATE POINTER 

C@ ;GET MEMORY BYTE 

*C# 3 ;SET TO DISPLAY 3 CHARACTERS 

.R ;DISPLAY AT LEAST 3 

1 + INCREMENT MEMORY POINTER 

*CLOOP F3 ;LOOP UNTIL DONE 

Bytes: 33 

Formal Definition: 

: ■ PART K SPACE ■ 8 ■ 0 ■ C DO ■ DUP ■C@B3B.RBl + B CLOOP ■; 

R> 

Class: Interstack 



168 THREADED INTERPRETIVE LANGUAGES 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Pops the word at the top of the return stack and pushes it 

to the stack. 

One return stack word entry/One stack entry. 

Retrieval of temporary data stored on the return stack or 

direct control of return stack addresses. 

LD L,{IX+0} ;GET RETURN LOW BYTE 

INC IX ;ADJUST RSP 

LD H,{IX+0} ;GET RETURN HIGH BYTE 

INC IX ; ADJUST RSP 

PUSH HL ;PUSH TO STACK 

21 

RROT 

Stack 

Rotates the top three stack entries right in an infix cyclic 

sense (input ABC into CAB with B the top stack entry). 

Three stack entries/Three stack entries. 

Control of stack order. 

POP HL ;GET TOP 

POP DE ;GET 2ND 

EX {SP},HL ;TOP TO 3RD 

PUSH HL ;3RD TO 2ND 

PUSH DE ;2ND TO TOP 

15 

S* 

Arithmetic 

Does a signed multiply of the low-order byte of the second 

stack entry by the low-order byte of the top stack entry 

and replaces both entries by the 16-bit product. 

Two stack entries/One stack entry. 

Signed integer arithmetic. 

EXX ;SAVE IR 

POP BC ;GET FIRST 8 BITS 

POP DE ;GET 2ND 8 BITS 

CALL $ISIGN ; FIELD INPUT SIGNS 

CALL $US* ;MULTIPLY 8X8 

CALL $OSIGN JUSTIFY RESULT 

PUSH HL ;QUOTIENT TO STACK 

EXX ;RESTORE IR 

Bytes: 24 
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Notes: No test is made to insure that either stack entry is a valid 

8-bit number. 

SCODE 

Class: Program Control Directive (Headerless) 

Function: Resets the code address of the latest keyword in the CUR¬ 

RENT vocabulary to the address at the top of the return 

stack. 

Input/Output: One return stack word entry/None. 

Usage: Used by the system to load the generic code address for 

defining words at execution time and then return to the 

outer interpreter. 

Code: R> ;GET RETURN ADDRESS 

CA! ;STORE IT AS CODE ADDRESS 

Bytes: 8 

Formal Definition: 

:BSCODEBR>BCA!B; 

SIGN 

I/O 

Pushes the ASCII code for a minus sign to the stack (in the 

low-order byte position) if the top byte on the return stack 

is twos complement negative. 

One return stack byte entry/One return stack byte entry 

and zero or one stack entries. 

Adds a leading negative sign to the stack string number if 

the original binary number was negative. Used in de¬ 

signing formatted displays. 

BIT 7,{IX + 0} ;GET RETURN SIGN BIT 

JR Z,OUT ;IF ZERO +, EXIT 

LD L,2D ASCII CODE 

PUSH HL ;MINUS SIGN TO STACK 

OUT: JP {IY} JUMP TO NEXT 

19 

SINGLE 

Class: System 

Function: If the top stack entry is a valid 8-bit number (the high- 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 
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Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Notes: 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Class: 

Function: 

Input/Output: 

Usage: 

Code: 

Bytes: 

Notes: 

order byte is all zeros or all ones), a False flag is pushed to 

the stack. Otherwise a True flag is pushed to the stack. 

One stack entry/Two stack entries. 

Used to determine storage or display requirements for 

stack numbers. 

POP HL ;GET WORD 

PUSH HL ;RESTORE WORD 

LD L,H ;IF SINGLE, 0 OR FFFF 

LD A,H ;GET HIGH BYTE 

AND A ;TEST IT 

JR Z,OUT ;IF ZERO, PUSH FALSE 

INC HL ;SEE NOTE BELOW 

PUSH HL ;PUSH FLAG 

18 

If the top byte is single, the INC HL instruction will yield a 

False flag since FFFF -1-1 = 0 if and only if the original value 

of H was FF. 

SPACE 

I/O 

Echo displays a space to the display. 

None/None. 

Display formatting. 

LD A,20 ;GET ASCII SPACE CODE 

CALL $ECHO ;ECHO DISPLAY IT 

15 

STATE 

System Variable 

Pushes to the stack the address of the system state variable. 

None/One stack entry. 

Used to access the system variable which contains the com¬ 

piler immediate state. 

Not applicable. 

9 

In the SYS user block. The code body contains an offset 

number and there is no return address. See *SYS. STATE 

is 1 set if a compiler immediate keyword is located in the 

compile mode and is 0 set when the keyword is executed. 

STATE is a CVARIABLE and must be referenced using 

keywords for byte-length addressing. 
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SWAP 

Class: 

Function: 

Input/Output: 

Usage: 

Z80 Code: 

Bytes: 

Stack 

Interchanges the order of the top two stack entries. 

Two stack entries/Two stack entries. 

Stack data management. 

POP HL ;GET TOP 

EX {SP},HL ;TOP TO 2ND 

PUSH HL ;2ND TO TOP 

13 

THEN 

Class: 

Function: 

Input/Output: 

Code: 

Bytes: 

Notes: 

Compiler Directive (Immediate) 

Pops the address from the stack, computes the difference 

between this address and the current free dictionary loca¬ 

tion as the relative jump byte, and stores the byte at the ad¬ 

dress popped from the stack initially. 

Used to terminate a branch construct in the compile mode. 

HERE ;GET FREE ADDRESS 

OVER ;COPY JUMP ADDRESS OVER HERE 

; COMPUTE JUMP BYTE 

SWAP ;REVERSE ORDER 

C! ;STORE JUMP BYTE 

20 
Loads a previously reserved byte in the dictionary. Define 

THEN as a normal keyword, then define ELSE and WHILE 

as IMMEDIATES, and finally make THEN an IM¬ 

MEDIATE. 

Formal Definition: 

: ■ THEN ■ HERE ■ OVER ■ - BSWAPBCIB; 

TYPE 

Class: I/O 

Function: Pops the top stack entry which points to a string consisting 

of a length argument followed by that many ASCII 

characters. Outputs the string characters to the display. 

Input/Output: One stack entry/None. 

Usage: Display of system messages to the operator. 

Z80 Code: POP HL ;GET STRING ADDRESS 

LD E,{HL} ;GET LENGTH 

LOOP: INC HL ;BUMP POINTER 
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LD A,{HL} ;GET CHARACTER 

CALL $ECHO ;ECHO DISPLAY IT 

DEC E DECREMENT LENGTH 

JR NZ,LOOP ;IF LENGTH * 0, LOOP 

Bytes: 20 

VARIABLE 

Class: Defining Word 

Function: Creates a word-length variable dictionary keyword entry 

whose name is the token following VARIABLE and whose 

initial value is the value popped from the stack. 

Input/Output: One stack entry/None. 

Usage: Defining and initializing word-length named variables. 

Z80 Code: CONSTANT :CREATE HEADER AND INITIALIZE 

SCODE :REPLACE CODE ADDRESS AND EXIT 

PUSH DE ;PUSH WORD ADDRESS 

JP {IY} JUMP TO NEXT 

Bytes: 15 

Formal Definition: 

: ■ VARIABLE ■ CONSTANT ■; CODE ■.... 

Notes: The "...." is the assembly or machine code. 

VOCABULARY 

Class: Defining Word 

Function: Creates a vocabulary keyword dictionary entry whose 

name is the token following VOCABULARY, with an ini¬ 

tial link to the latest entry in the CURRENT vocabulary, 

and which, when the vocabulary name is executed, sets the 

system variable CONTEXT to the link address. 

Input / Output: N one / N one. 

Usage: Defining vocabularies. 

Code: < BUILDS ;CREATE THE HEADER AND BODY 

ENTRY ;GET CONTEXT LINK 

; STORE IN BODY 

DOES> ;RESET CODE ADDRESS, BODY AND EXIT 

CONTEXT ;GET CONTEXT ADDRESS 

! ; STORE LINK TO CONTEXT 

Bytes: 22 

Formal Definition: 

:■ VOCABULARY■ <BUILDS■ ENTRY■,BDOES> BCONTEXTBlB; 



WORDS, WORDS, AND MORE WORDS 173 

WAIT 

Class: Utility 

Function: If a keyboard entry (any) has been received, a loop is 

entered waiting for the next keyboard entry. 

Input/Output: None/None. 

Usage: Used to hold the display screen fixed to allow inspection. 

Code: See notes. 

Bytes: See notes. 

Notes: A system specific keyword which first reads the keyboard 

port without an initial rest. If an entry has been received, 

the keyboard is sampled until the next entry is received. 

No keyboard return is expected. The routine should not 

manipulate the cursor but should simply await the next en¬ 

try. Very system specific. 

WHILE 

Class: Compiler Directive (Immediate) 

Function: Encloses the word address of the program control directive 

‘WHILE in the dictionary. The top two stack entries are 
swapped, the top stack entry is popped. The offset from 

this address to the current free dictionary location is 

enclosed in the dictionary as a relative jump byte. The 

function also pops the top stack entry, computes the dif¬ 

ference between this address and the current free dic¬ 

tionary location and stores the low-order byte to the ad¬ 

dress popped from the stack as a relative jump byte. 
Input/Output: Two stack entries/None. 

Usage: Used to terminate a loop construct containing a *WHILE. 

Code: SWAP ;CHANGE STACK ORDER 

*# XX ;WORD ADDRESS OF ‘WHILE 

END, ; STORE ADDRESS AND OFFSET FOR BEGIN 

THEN ; STORE OFFSET FOR IF OR ELSE 

Bytes: 20 

Formal Definition: 

: ■ WHILE ■ SWAP ■ XX ■ END, ■ THEN ■; ■ IMMEDIATE 

Notes: See definition for THEN. 

XOR 

Class: 

Function: 

Logical 

Replaces the top two stack entries by the logical exclusive 
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or of the entries on a bit-by-bit basis. 

Input/Output: Two stack entries/One stack entry. 

Usage: Logical operations. 

Z80 Code: POP HL ;GET TOP WORD 

POP DE ;GET 2ND WORD 

LD A,L ;MOVE TOP LOW BYTE 

XOR E ;XOR IN 2ND LOW BYTE 

LD L,A ;MOVE TO RESULT 

LD A,H ;GET TOP HIGH BYTE 

XOR D ;XOR IN 2ND HIGH BYTE 

LD H,A ;MOVE TO RESULT 

PUSH HL ;RESULT TO STACK 

Bytes: 19 

Class: 

Function: 

Input/Output: 

Usage: 

Code: 

Bytes: 

Formal Definition: 

Compiler Directive (Immediate) 

Encloses the literal handler *[ in the dictionary, changes 

the token separator to ] and scans the next token from the 

input buffer and then encloses the token in extended 

header format in the dictionary. 

None/None. 

Compiling literal strings into secondary keywords or 
display formatting. 

*# *[ ;WORD ADDRESS OF *[ {LITERAL} 

;ENCLOSE IT IN THE DICTIONARY 

*C# 5D ;GET THE SEPARATOR ] 

TOKEN ;MOVE TOKEN TO THE DICTIONARY 

HERE ;GET START OF TOKEN 

C@ ;TOKEN LENGTH 

1 + ; ADDRESS OF LENGTH OF TOKEN 

DP : DICTIONARY ADDRESS 

+ ! ; ENCLOSE TOKEN IN DICTIONARY 

31 

: ■[ BXX ■ , ■ 5D ■ TOKEN ■ HERE ■ C@ ■ 1 + BDPB +! ■; ■ IMMEDIATE 

6.2 A Classy Cross-Reference 

What would you expect to find in a classy cross-reference? A cross-reference 

by class, of course. Following are all the keywords arranged alphabetically by 

class. 
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Arithmetic Keywords 

★ 
2- 

*/ 2/ 

VMOD ABS 

+ D* 
— D/MOD 

/ MAX 

/MOD MIN 

1 + MINUS 

1- MOD 

2* MODU/ 

2 + S* 

Compiler Directives 

+ LOOP END 

BEGIN IF 

C + LOOP LEAVE 

CDO LOOP 

CLEAVE THEN 

CLOOP WHILE 

DO [ 
ELSE 

Compile Mode Terminators 

!code 

Defining Words 

< BUILDS 

CCONSTANT 

CONSTANT 

CREATE 

CVARIABLE 

VARIABLE 

VOCABULARY 
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* CLEAR 

CRET 

#S DISPLAY 

DUMP 

.R ECHO 

<# KEY 

7 PART 

ADUMP SIGN 

APART SPACE 

ASCII TYPE 

C7 

Interstack 

<R CR> 

C<R I> 

CI> J> 
CJ> K> 

CK> R> 

Literal Handlers 

*# 

*C# 

Logical 

AND 

IOR 

NOT 

XOR 
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Memory Reference 

1 C! 

+ ! C+! 

OSET COSET 

1SET ClSET 

@ C@ 

Program Control Directives 

+ LOOP *IF 

C+LOOP * LEAVE 

CDO ‘LOOP 

CLEAVE ‘WHILE 

CLOOP DOES> 

DO NEXT 

ELSE SCODE 

END 

Relational 

0< 
0 = 

< 

> 

Stack 

2DUP DUP 
20VER LROT 

2SWAP OVER 

CJOIN RROT 

CSPLIT SWAP 
DROP 
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Subroutine 

$CRLF $UD* 
$ECHO $US* 
$ISIGN $UD/ 
$KEY $US/ 
SOSIGN 

System 

'(tick) CA! 
‘SYS DECIMAL 
+ SP DO, 
, (comma) END, 
-SP ENTRY 
?RS EXECUTE 
?SP HERE 
ABORT HEX 
ASPACE OCTAL 
BINARY 
C, 

SINGLE 

System Directives 

DEFINITIONS 

System Variables 

BASE DP 
COMPILER LBP 
CONTEXT MODE 
CURRENT STATE 
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Utility 

ERASE 

FILL 

MOVE 

WAIT 

Vocabulary 

CORE 

FORGET 

IMMEDIATE 

6.3 Sum Total 

There are roughly 150 user-available keywords in the design presented. The 

memory requirement to implement the keywords in the Section 6.1 description 

is about 3200 bytes. The total design, including the inner interpreter, the outer 

interpreter, and the routine of Section 5.3, can be easily coded in less than 4 K 

bytes. Well, maybe not easily, but it will fit. 
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7 I Extension Please 

There are any number of extensions that may be added to 
the TIL language. All depend only on defining the problem, 
defining the keywords and extending the language. The utili¬ 
ty of the extension is the sole criteria. For example, an im¬ 
portant keyword in my system is an ASCII file called 
SANDI. It contains our anniversary, her birthday, my 
mother-in-law's phone number, and other critical data-base 
parameters. One can never be too safe. 

Some of the more useful extensions to the basic (not BASIC) TIL will be con¬ 

sidered in this section. Incorporation of all of these extensions will extend the 

TIL from a language to a programming system. The extensions are not totally 

unrelated among themselves, although it is possible to incorporate some 

features and not others. The level of presentation of the material in this section 

is higher than in previous sections. The reader is assumed to have a working 

knowledge of more advanced software concepts and a broader knowledge of 

hardware interfacing. 

7.1 Introductions 

The majority of the extensions to the TIL are predicated on a system con¬ 

figuration of 16 K bytes of programmable memory and a floppy disk/con¬ 

troller combination. It is presumed that a more sophisticated operating system 

is available to support the system input/output to the disk system. The system 

designer (you) is faced with many more decisions on how to configure the 

overall software system. Depending on the idiosyncrasies of the disk system 

designer, a total rewrite of the disk controller software may be in order. This 

generally arises because the equipment manufacturer presumes that the disk 
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operating system should reside at some strange location in memory, and the 

bootstrap read-only memory he supplies does not contain all of the fundamen¬ 

tal disk input, output and control functions. 

The three main extensions to be considered are an assembler, a virtual 

memory system, and an editor. These three functions are complimentary but 

caution is advised; the functions are only similar in nature to what their names 

imply. This will become clearer when the functions are discussed. 

A TIL assembler is different from the normal concept of an assembler. It still 

translates from 'assembly language" to "machine language" but it has restric¬ 

tions on how programs can be structured. Rather than using a symbol table to 

resolve forward and backward references, it passes addresses on the stack. It 

contains structured constructs to accomplish this semi-automatically. This is 

generally adequate for resolving references in the short programs encountered 
in TIL keyword definitions but not for general assembly language program¬ 

ming. The target memory for the assembled code is the TIL dictionary since 

the assembler is specifically designed for defining new key words. The assembler 

extension does not depend on the disk system and is very useful even in small 

systems. The assembler is always evoked with the system in the execution 

mode rather than the compile mode. This is true even when the assembly 

source code is disk resident and is loaded to the system to extend the language. 

The TIL virtual memory extension is a method for integrating a floppy disk 

into the basic system. The disk is used to store both TIL source text and pro¬ 

gram data. Disk accesses are accomplished in a manner that is totally 

transparent to the operator. Source text on the disk may include both 

primitive and secondary keywords that are assembled/compiled to the free 

dictionary space when the source text is evoked. The primitive keywords in 

the source text must contain totally relocatable code if defined using a or C, 

keyword, or they must be defined in assembly language (which allows reloca¬ 

tion by its very nature). A virtual memory system without an associated TIL 

assembler is restrictive. Program data accesses are provided by the virtual 

memory system, but the data formatting is strictly application-dependent. 

The TIL editor is designed to allow generation and modification of TIL 

source text files. Source text files allow individual keywords, classes of 

keywords, or entire vocabularies to be stored in source form on the disk rather 

than demanding resident TIL memory space. When the keywords are needed, 

they can be loaded to the system and are compiled/assembled to the resident 

dictionary. The editor is specifically designed to simplify source text manipula¬ 

tion. Although it has limited general text editor features, it is not designed to 

be the last word in an editor. If it is desired or required, it is certainly possible 

to add general text editing features. 

In discussing the extensions, I will usually give an overview of how to 

proceed with the design, rather than a detailed discussion of a precise design. 

This is mostly a fallout of the hardware- specific nature of the designs. A Z80 

assembler description is of limited use if you have some other microcomputer, 

but the design approach is still similar. Note that, in order to proceed, the 

designer of the assembler must be familiar with both the microcomputer and 

the assembly language process. This is typical of all of the extensions; a degree 
of sophistication is required to proceed with a design. 
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7.2 Assemblers 

An extension of great utility is the TIL assembler. The assembler consists of 

a group of keywords which are usually spatially intermixed with the core 

language but contained in a separate vocabulary. A TIL assembler materially 

eases the generation of the full core language by allowing more easily 

remembered keyword mnemonics to be used (instead of direct machine code) 

in defining primitives. A TIL assembler is evoked in the execute mode and the 

system never enters the compile mode while the assembler is in effect. 

A TIL assembler is very different from the usual concept of an assembler. 

The TIL assembler is specifically designed to allow the addition of keywords to 

the TIL rather than to produce stand-alone programs or subroutines. The 

target memory for the assembler is the free dictionary space since this is where 

keyword extensions are always added. The TIL assembler does not use a sym¬ 

bol table but rather uses the stack to store addresses needed to resolve both 

forward and backward references. This is generally adequate given the brevity 

of most keyword definitions. 

7.2.1 Assembler Overview 

The problem with describing the assembler is the machine-specific nature of 

the beast. Although the general design procedure for producing an assembler is 

universal, the product is not. The design techniques will be illustrated relative 

to the Z80. 
The assembler for the threaded interpretive language is a translator. It 

translates more easily remembered instruction mnemonics into machine code. 

Like all TIL code entry, the assembler is a reverse Polish notation entry design. 

A non-TIL assembler entry usually consists of a line number, an optional 

label, an instruction mnemonic and one or more operands. The operands are 

usually register designators, numbers, or labels. The TIL assembler does not 

support line numbers and demands that the operands precede the instruction 

mnemonic. Only limited label operands are supported. 

The mnemonics for the TIL assembler will not necessarily be those suggested 

by the manufacturer of the microprocessor. The manufacturer's mnemonics 

generally presume a symbol table which can be used to resolve ambiguities 

within a single mnemonic instruction regarding the addressing mode. It is far 

easier in a TIL to assign individual mnemonic names to the various addressing 
modes. As an example, the Zilog mnemonic ADD will generate 1-, 2-, or 

3-byte instructions for implied register addressing, immediate addressing, 

register pair addressing and indexed addressing. In the TIL, separate 

mnemonics are used to evoke the different addressing modes. 

Strictly from personal preference, the mnemonics (keywords) that I use for 

the Z80 are all three letters followed by a comma. The instruction names are a 
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cross-breed of Z80 and 8080 mnemonics and a personal quirk that names 

should be related to the action and the addressing modes. For example, the 

mnemonics STA (store accumulator) and LDA (load accumulator) a la the 

8080 are very descriptive and are retained. The mnemonic EX DE,HL (Z80) or 

XCHG (8080) that interchange the DE and HL register pair is simplified to 

XDH,. The Z80 mnemonic suggests that other register pairs could be inter¬ 

changed by using different operands (not true) while the 8080 mnemonic does 

not indicate which items are to be exchanged (and there are several with the 

Z80). I will leave the design of your mnemonics to you but will perforce use 
my own in the design presentation. 

7.2.2 Architecture and the Assembler 

Any assembler must make use of the central processing unit architecture to 

define a reasonable set of mnemonics. The machine-code instructions of a 

given processor generally have a regularity that results from the logic design of 

the unit. Individual bits within the machine instruction determine the opera¬ 

tion type, the register(s) involved, the conditional options depending on the in¬ 

ternal status, and the addressing mode. Some central processing units are very 

regular in their architecture (the 6809) and some are very irregular (the Z80). 

The goal is to find the regular instructions that will allow the definition of in¬ 

struction classes. A careful inspection of the manufacturer's documentation 

will most often reveal this regularity. Almost all of the regular instructions in a 

given processor can be built from bit mask patterns. The bit patterns represent 

registers, conditions, operation types, or other parameters used by the central 

processing unit to direct its internal operations. 

To illustrate this pattern regularity, the Z80 internal architecture will be 

briefly described first. Figure 7.1 shows the main register of the Z80. The 

Figure 7.1: Z80 processor registers. 

H L H' L' 
D E D' E' 

B C B' C' 
A F _A!_ F 

IX 
IY 
PC 
SP 

I R 

registers A, B, C, D, E, H, and L may be individually addressed as 8-bit 

registers with the A register as the accumulator. The register pairs AF, BC, DE, 

HL, IX, IY, SP, and PC are 16-bit registers with the HL, IX, and IY registers 
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serving as accumulators with limited scope. The F register is a program status 

word that contains flag bits which are set by the central processing unit. The 

state of the bits depends on the results from executing given instructions. 

Ignore for the moment the addressing modes of the Z80; the mask patterns 

that address registers, register pairs, and condition codes in the Z80 are 

depicted below in table 7.1: 

Pattern Register Register Pair Condition 

0 0 0 B BC NZ (non-zero) 
0 0 1 C DE Z (zero) 
0 1 0 D HL,IX,IY NC (non-carry) 
0 1 1 E AF,SP CY (carry) 
1 0 0 H PO (parity odd) 
1 0 1 L PE (parity even) 
1 1 0 M,@X,@Y 

or default P (positive) 
1 1 1 A N (negative) 

Table 7.1: Mask patterns that address registers, register pairs, and condition codes. 

Note that the register pairs are 2-bit masks rather than 3-bit masks. So what 

are M, @X, and @Y you ask, and why are there several register pairs evoked 

by the same mask pattern? The addressing modes just landed. 

The designation M (8080 derived), or in Z80 parlance {HL}, refers to the 

fact that the HL register pair can be used as a pointer to a memory location 

which can be accessed like a register (implied register pair indirect addressing). 

The Z80 allows the IX and IY registers to be used to determine an effective ad¬ 

dress using the value in the register plus a signed displacement embedded in the 

instruction. This is a form of indexed indirect addressing that is evoked by @X 

or @Y, as opposed to the Z80 {IX + d} or {IY + d}. The form of these instruc¬ 

tions consists of 1 byte (DD for an @X or FD for an @Y), the first byte of the 

equivalent M instruction, the signed displacement byte ( — 126 to +129), and 

the second byte of the equivalent M instruction, if applicable. When used in 

this fashion the M, @X and @Y, along with displacement in the later two 

cases, specify a memory location which is accessed as if it were an 8-bit 

"register". 

When the HL, IX or IY keywords are used as register pair designators, the 

instruction formats for all three are the same except that the IX instruction is 

preceded by a DD byte and the IY by an FD byte. The mask patterns for all 

three register designators are the same, however. 

One further factor is important relative to the mask patterns. The register 

pair mask patterns always fall in bit position b5b4 in the instruction (with bO 

the least significant bit). The condition code patterns always fall in positions 

b5b4b3 and the register patterns may be in positions b5b4b3 or b2blb0. These 

facts are important when the assembler is designed. 
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The regularity of the mask patterns for register designations and condition 

flags is typical for most processors. This regularity often extends into instruc¬ 

tion groups as well. For example the entire Z80 ALG (arithmetic and logic 
group) of instructions are of the form: 

b 7 b6 b5 b4 b3 b2 bl bO 

Register 1 0 ^ f — *- r 

Immediate 1 1 <— f —> 1 1 O^n — 

Here r is one of the 3-bit register masks, f is a 3-bit function code and n is an 

8-bit byte following the instruction. The arithmetic and logic register instruc¬ 

tions perform some operation between the register designated by r and the A 

register (accumulator) and leave the result in the A register and/or the condi¬ 

tion flags of F set appropriately. The immediate arithmetic and logic instruc¬ 

tions perform similar operations using the immediate byte instead of a register. 
The f-bit mask pattern evokes the following functions: 

f Function 

000 Add 

0 0 1 Add with carry 

0 10 Subtract 

Oil Subtract with carry 

10 0 AND 

10 1 Exclusive OR 

110 Inclusive OR 

111 Compare 

Other microcomputers have similar instruction designator bits. 

The object of the assembly keyword designs is to produce coding sequence 

from input of the form: 

keyword 

operand. 1 keyword 

operand. 1 operand.2 keyword 

operand. 1 operand.2 operand.3 keyword 

The operands are either register designations, condition codes, or numbers, all 

of which leave numbers (or masks) on the stack. The keywords are the instruc¬ 

tion mnemonic and they expect any required input data on the stack. The 

keywords combine the operand masks with the basic instruction masks as ap¬ 

propriate and enclose the resulting machine code instruction in the dictionary. 

The mnemonics produce 1-, 2-, 3-, or 4-byte machine-code instructions in the 

Z80 case. 

Since the assembler always operates in the execute mode, numbers entered 

as operands are always pushed to the stack. By defining the register and condi- 
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tion codes as CCONSTANTs, the mask patterns can also be pushed to the 
stack. The mnemonic keywords then evoke instruction skeletons, add in mask 
patterns as appropriate, and enclose the results in the dictionary. If the instruc¬ 
tions are regular, it is usually possible to define the keywords using a high- 
level defining word. In this case the specific mask is stored with the mnemonic 
keyword and the generic instruction build code follows the defining word (see 
1BYTE of Section 4.5.5 as an example). 

7.2.3 The Z80 Assembler 

The code for producing a subset of the Z80 assembler will be given in the 
following pages. It is not a "complete" assembler since some possible Z80 in¬ 
structions are not produced. Generally this is because more than one form of 
the instruction exists. 

One of the more difficult aspects of the design of the Z80 TIL assembler is 
designing a method for handling the indexed addressing mode. The inclusion 
of these instructions considerably complicates the design of keywords. This 
will become obvious when the design is presented. It is possible to produce a 
less complex assembler by totally ignoring the indexed instructions. They are 
still available via the and C, keywords if needed. 

There are several ways to present the design: by addressing mode, by func¬ 
tional group, or by the number of bytes in the instruction. Because of the ir¬ 
regularity of the Z80 instruction set, a mixture of the different design ap¬ 
proaches will be used. The result will be total coverage but in a nonstandard 
way. 

7.2.3.1 The Operands 

The object of the game at this point is to define the operand keywords. The 
design is not complex. Consider the following: 

:B8*B2*B2*B2*B; 

OBCCONSTANTBB 
1BCCONSTANTBC 
2 BCCONSTANT BD 
3BCCONSTANTBE 
4BCCONSTANTBH 
5BCCONSTANTBL 
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6 B CCONSTANT BM 

7BCCONSTANTBA 

OOBCCONSTANTBBC 
10BCCONSTANTBDE 

20BCCONSTANTBHL 

30BCCONSTANTBAF 

30 B CCONST ANT BSP 

00 B CCONSTANT BNZ 

08BCCONSTANTBZ 

10BCCONSTANTBNC 

18BCCONSTANTBCY 

20 B CCONST ANT B PO 

28BCCONSTANTBPE 

30 B CCONSTANT BP 

38BCCONSTANTBN 

Several points should be noted. The carry and minus keywords are defined as 

CY and N to prevent contention with register designators. The 8* keyword 

will be used to shift the register masks to position b5b4b3 from the b2blb0 

position of the definitions. The use of A, B, C, D, and E as keyword names in 

the ASSEMBLER vocabulary will force the use of leading zeros during 

equivalent hexadecimal number entry. There are alternate naming conven¬ 

tions that could be used to prevent these problems. The choice is yours, but I 

personally prefer C as the register designator rather than C. or C{ or some 

other convention. 

The register pair keywords @X and @Y will load the initial byte which in¬ 

dicates the index mode and will leave a negative-valued mask on the stack. 

The mask is designed such that the low-order byte position contains a positive 

07 (the mask pattern for M) but the high-order bit is set to 1. The negative 

value is easy to test to determine if the index mode special store of the displace¬ 
ment value is required. Thus: 

:B@XBDDBC,B8007B; 

:B@YBFDBC,B8007B; 

The register pair keywords are simply: 

:BIXBDDBC,BHLB; 

:BIYBFDBC,BHLB; 

Having the operand enclosing the indexed byte simplifies the design 

somewhat. Trouble arises in only one case with this design. 
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7.2.3.2 The Constants 

There are several Z80 instructions that have no required operands or are ir¬ 

regular enough to preclude the use of operands. These instructions are either 1 

or 2 bytes long but the first byte of the 2 byte instructions is always hexa¬ 

decimal ED. The 1-byte instructions are defined using the 1BYTE defining 
word of Section 4.5.5. The definition is: 

: ■ 1BYTE■ < BUILDSB C, B DOES > BC@ BC, B; 

The mnemonic keywords are then defined as: 

3F ■ IB YTE B CCF, 

AF ■ IB YTE B CLA, 

2F ■ IB YTE ■ CPL, 

27B1BYTEBDAA, 

F3 BlBYTEBDSI, 

FB ■ 1BYTE ■ ENI, 

76 ■ IB YTE ■ HLT, 

OOB1BYTEBNOP, 

A7 ■ IB YTE B RCF, 

37 ■ 1BYTE ■ SCF, 

C9 ■ IB YTE ■ RET, 

08B1BYTEBXAA, 

D9 ■ IB YTE ■ XAL, 

EBB IB YTE ■ XDH, 

Complement carry flag 

Clear accumulator {XOR A} 

Complement accumulator (l's complement) 

Decimal adjust accumulator 

Disable interrupts 

Enable interrupts 

Halt 

No operation 

Reset carry flag {AND A} 

Set carry flag 

Return from subroutine 

Exchange AF and AF' 

Exchange all three register pairs 

Exchange DE and HL 

Two-byte instructions are defined using the high-level defining keyword: 

: B2BYTES B < BUILDS BC, BDOES > BEDBC, BC@ BC, B; 

With this defining keyword, the mnemonic keywords are: 

46B2BYTEBIM0, 

56B2BYTEBIM1, 

5EB2BYTEBIM2, 

44B2BYTEBNEG, 

4DB2BYTEBRTI, 

45B2BYTEBRTN, 

6FB2BYTEBRLD, 

67B2BYTEBRRD, 

57B2BYTEBLAI, 

5FB2BYTEBLAR, 

4FB2BYTEBLRA, 

47B2BYTEBLIA, 

Set interrupt mode 0 

Set interrupt mode 1 

Set interrupt mode 2 

Complement A (2's) 

Return from interrupt 

Return from non-maskable interrupt 

Rotate left digit 

Rotate right digit 

A = I 

A = R 

R = A 

I = A 
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Several of these instructions are so useless (R = A) that they are included for 

drill rather than utility. 

7.2.3.3 8-Bit Move Group 

The 8-bit move group simply moves data around the machine in byte-sized 

hunks. There are several addressing modes allowed. 

The register to register move basic instruction is of the form: 

b7 b6 b5 b4 b3 b2 bl bO 

0 1 - r - - r' - 

Here r and r' are register masks, and the x register is moved to the r register. 

One of the "registers" may be M, @X, or @Y. There are ninety-one forms of 

this type — forty-nine involving only the 8-bit registers, fourteen involving the 

indirect HL register (M) and twenty-eight involving the indirect indexed 

registers (@X and @Y). The indirect indexed forms are 3-byte instructions and 

all others are 1-byte instructions. 

The sequence to assemble an instruction to move the M register to the C 

register is: 

CBMBMOV,B 

The C register is input first to retain the infix notation form C = M, which 

would equate C to the value of M. The sequence to assemble an instruction to 

move the A register to the memory location whose address is four more than 

the value in the IX register is: 

4B@XBABMOV,B 

The keyword MOV, is defined as: 

:BMOV,BOVERB8*BOVERB + B40B + BC,B + B0< BIFBC, 

BTHENB; 

The OVERB8* extracts the r register mask and shifts it over to b5b4b3. The 

OVERB -I- then adds the r and r' masks. The 40B -I- adds in the register-to- 

register move mask and the C, encloses the result in the dictionary. At this 

point the stack still contains at least the r and r' masks. Remember if @X or 

@Y precede the MOV, the first DD or FD byte will have already been en¬ 

closed prior to the execution of MOV,. The + B0< adds the r and r' mask and 

leaves a true value on the stack if the result is negative. Only the @X or @Y 
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register masks are negative so that the IFBC,BTHEN will drop the flag and 

store the displacement only for the indexed indirect cases. One note should be 

mentioned. There is no test to prevent using two M, @X, or @Y operands. 

Using two M operands will assemble a 76 (HALT) instruction. Any other com¬ 

bination leads to nonsense and should be avoided. 

The instruction group to move a given 8-bit number to some register is of 

the form: 

b7 b6 b5 b4 b3 b2 bl bO 

0 0 — r — 1 1 0 — n — 

Here n is the 8-bit number. The register may be the M @X, or @Y "register." 

The calling sequence is of the form: 

dBrBnBMVI,B 

Here d is the indexed displacement used only for the @X or @Y register op¬ 

tions, r is the register, and n is the byte number. The keyword MVI, is defined 

as: 

:BMVI,BOVERB8*B06B + BC,BSWAPB0< BIFBSWAPBC,B 

THENBC, B; 

There are eight possible instructions of this type with the indexed forms being 

4 bytes long and all others being 2 bytes long. 

The Z80 has six instructions that move the A register to the memory loca¬ 

tion whose address is the contents of the BC, DE, or HL register pair, or move 

the memory location to the A register. Those involving the HL register pair are 

evoked using the MOV, mnemonic keyword with M as an operand. The other 

four instructions are all 1-byte instructions. These four instructions and two 

other extended addressing instructions, which also load or store to the A 

register using the memory location whose address is embedded in the instruc¬ 

tion, complete the 8-bit move group. One would like to evoke these six in¬ 

structions via LDA, and ST A, keywords. This can be done but at the expense 

of some restrictions in the extended addressing mode. Specifically, a test is 

made to see if the top stack value is 0000 (a BC operand result) or 0010 (a DE 

operand result), rather than some other number that would indicate an ex¬ 
tended address. This eliminates two out of sixty-four K memory locations 

which could be addressed in the extended mode. 

To use this approach, first define a keyword that will leave a True flag on 
the stack only if the top stack entry is a BC or DE register pair mask. This 

keyword can be defined as: 

: B BCORDE B 2DUP B BC B = B SWAP B DEB = BORB; 

The four mask patterns involved are: 
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b7 b6 b5 b4 b3 b2 bl bO 

Load | 0 
t 0 

Store / ^ 
t 0 

0 - rp - 

Oil 
0 ^ rp — 

Oil 

10 1 
10 1 
0 0 1 
0 0 1 

0 

0 *— nL 

0 

0 — n£ 

nH — 

nH — 

The keywords for the mnemonics are: 

:BLDA,BBCORDEBIFB0AB + BC,BELSEB3ABC,B,BTHENB; 

:BSTA,BBCORDEBIFB02B + BC,BELSEB32BC,B,BTHENB; 

Although this may appear unduly complex, it is the price one pays for an ir¬ 

regular set of machine instructions. 

7.2.3.4. 16-Bit Move Group 

The 16-bit move group moves data around the machine in word-sized 

hunks. As in the 8-bit move group, there are several addressing modes. 

The extended addressing, 16-bit move instructions load register pairs with a 

word embedded in the instruction. The BC, DE, HL, and SP instructions are 3 

bytes long while the IX and IY forms are 4 bytes long. The basic instruction has 

the following form: 

b7 b6 b5 b4 b3 b2 bl bO 

0 0 — rp — 0 0 0 1 ^ n£ — — nH ^ 

Here rp is a register pair mask, n£ is the low-order byte and nH is the high-order 

byte. This instruction may be preceded by a DD or FD byte in the case of the 

IX or IY register designation. The calling sequence is: 

rpBnBDMI, 

The DMI, (double move immediate) is fairly descriptive of the action. The 

keyword DMI, is defined as: 

:BDMI, BSWAPBOlB + BC,B,B; 

The register pair to memory and memory to register pair move instructions are 

fairly regular except that two forms exist for those involving the HL pair. The 

odd forms of these two instructions are unfortunately both faster and shorter 

than the regular forms and are the preferred forms. The register pair to 

memory move instructions are of the form: 
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b7 b6 b5 b4 b3 b2 bl bO 

Regular ED 0 1 ^ rp — 0 0 1 1 ^ n£ — ^ n„ — 

Irregular 0 0 1 0 0 0 1 0 ^ n£ — ^ n„ — 

The irregular HL form is different from the regular form and there is no leading 

ED byte. The irregular form may be preceded by a DD or FD byte if the IX and 

IY register pair is involved. The calling sequence for these instructions is: 

nBrpBDSM, 

The DSM, (double store to memory) keyword is defined as: 

: BDSM, BDUPBHLB = BIFB22BC, B DROP B ELSE B ED B C, B43B + 

BC,BTHENB,B; 

Note that this sequence will not allow the regular form of the HL move instruc¬ 

tion to be assembled. 

The memory to register pair instructions have the form: 

b7 b6 b5 b4 b3 b2 bl bO 

Regular ED 0 1 — rp — 1 0 1 1 ^ nL ^ nN -* 

Irregular 0 0 1 0 1 0 1 0 ^ nL — ^ n„ — 

The DLM, (double load from memory) keyword is called using the following 

protocol: 

rpBnBDLM, 

The DLM, mnemonic keyword is defined as follows: 

:BDLM,BSWAPBDUPBHLB = BIFB2ABC,BDROPBELSEBEDB 

C,B4BB + BC,BTHENB,B; 

Again the regular form of the instruction referencing the HL register cannot be 

generated. 

The Z80 has sixteen instructions to push 16-bit words from register pairs to 

the stack and six instructions to pop 16-bit words from the stack to register 

pairs. The instructions are of the form: 

b7 b6 b5 b4 b3 b2 bl bO 

Push 1 1 - rp - 0 1 0 1 

Pop 1 1 - rp - 0 0 0 1 

These instructions may be preceded by the indexed byte indicator DD or FD. 

The keywords necessary are part of a group of keywords that use the high- 
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level defining keyword defined as follows: 

: BlMASKB < BUILDSBC, BDOES> BC@ BSWAPB8* ■ + BC, B; 

The keywords are defined as: 

C5B1MASKBPSH, 

Cl B1MASK B POP, 

7.2.3.5 Arithmetic and Logic Group 

The arithmetic and logic group includes both 8- and 16-bit operations. The 

accumulator for the 8-bit instructions is the A register, and for the 16-bit in¬ 

structions is either the HL, IX, or IY register. Condition flags are contained in 

F. 

There are eighty 8-bit instructions that operate on registers where registers 

include the indirect M and indexed registers @X and @Y. The machine-code 

forms for these instructions was given in Section 7.2.2. The mnemonic 

keywords are defined using a high-level definition. The defining sequence is: 

:B8ALGB <BUILDSBC,BDOES> BC@BOVERB 

+ BC,B0< BIFBC,BTHENB; 

80B8ALG BADD, 

88B8ALGBADC, 

90B8ALGBSUB, 

98B8ALGBSBC, 

A0B8ALGBAND, 

A8B8ALGBXOR, 

BOB8ALGBIOR, 

B8B8ALGBCMP, 

The generic code in the defining word encloses the displacement byte if the @X 

or @Y forms are used. 

The immediate forms of the 8-bit arithmetic and logic instructions are again 

defined using a high-level keyword. Eight possible instructions can be 

generated. The defining sequence is: 

: B 8IM B < BUILDS BC, B DOES >BC@BC,BC,B; 

C6B8IMBADI, 

CEB8IMBACI, 

D6B8IMBSUI, 

DEB8IMBSCI, 
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E6B8IMBANI, 
EEB8IMBXOI, 
F6B8IMBORI, 
FEB8IMBCPI, 

There is nothing magic about the sequence, and the mnemonics are strictly 

personal preference. 

The 8-bit register increment and decrement instructions again allow the ex¬ 

tended definition of a register. The bit patterns for these instructions are: 

b 7 b6 b5 b4 b3 b2 bl bO 

Increment 00 — r — 100 

Decrement 00 — r — 101 

The keywords are simply: 

: BINC, BDUPB8* B04B + BC, BIFBC, BTHENB; 

: BDEC, BDUPB8* B05B + BC, BIFBC, BTHENB; 

The 16-bit arithmetic instructions in the Z80 are: 

BC DE HL SP IX IY 

Add to HL 09 19 29 39 

Add to IX DD09 DD19 — DD39 DD29 — 

Add to IY FD09 FD19 — FD39 — FD29 

Add with carry to HL ED4A ED5A ED6A ED7A — — 

Subtract with carry to HL ED42 ED52 ED62 ED 72 — — 

The problem with this instruction set arises in part from our definition of the 

IX and IY keywords. The other part results from some type of indicator being 

required for the indexed accumulator case. By defining the keywords such that 

only the indexed keywords require two operands, a reasonable design results. 

The following sequence of definitions will do the job: 

: BDAD, B09B + BC, B; 

: B DAI, B SWAP B OVER B = BIFB — 1BDPB-HBTHENB DAD, B; 

: BDAC, BEDBC, B4AB + BC, B; 

:BDSC,BEDBC,B42B + BC,B; 

The double-add indexed instruction moves the dictionary pointer back if an 

IXBIX or an IYBIY operand sequence is input, since in this case two index 

bytes are incorrectly enclosed in the dictionary. 

Since the Z80 does not directly support a double subtract without carry in¬ 

structions, an instruction of this type is generated by defining the sequence: 

: BDSB, BEDA7B, B42B + BC, B; 
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The sequence EDA7B, encloses first the A7 byte and then the ED. The A7 in¬ 

struction is a A BAND, instruction which resets the carry flag but leaves A un¬ 

changed. (This instruction also exists as RCF,.) 

The technique of defining macroinstructions, such as DSB, is very useful. It 

is quite common in microcomputers to encounter sequences of instructions 

which occur regularly. In the 8080, for example, it is possible to define a dou¬ 

ble length subtract instruction as a macroinstruction in the assembler since the 

basic instruction set does not contain such an instruction. Macroinstructions 

are easy to define and implement in a TIL assembler. It is even possible to 

define instructions such as multiply and divide if you want to generate these 

sequences as in-line code. 

The double precision register pair increment and decrement instructions 

are: 

b7 b6 b5 b4 b3 b2 bl bO 

Increment 0 0 ^ rp — 0 0 1 1 

Decrement 0 0 ^ rp — 1 0 1 1 

These instructions may be preceded by the indexed byte indicator DD or FD. 

The keyword mnemonic is defined using the 1MASK defining word as follows: 

03 ■ 1MASK ■ DIN, 

OB ■ 1MASK ■ DDC, 

7.2.3.6 Rotate and Shift Group 

The rotate and shift group is fairly regular except that there are four 1-byte 

instructions that are duplicates of the regular 2-byte instructions. The 1-byte 

versions do not have the leading CB byte (which is standard for the 2-byte 

regular instructions), but are otherwise identical except for status flag results. 

The form of the second byte is: 

b7 b6 b5 b4 b3 b2 bl bO 

0 0 - f - - r - 

Here r is one of the extended register definitions. The f code is as follows: 

Mask Function 

000 
001 

Rotate left circular 

Rotate right circular 
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010 Rotate left through carry 

Oil Rotate right through carry 

100 Shift left register 

101 Shift right register 

110 Not defined 

111 Shift right logical 

The choice to patch the four odd rotate instructions is optional but will be con¬ 

sidered here. 

The keyword mnemonics are defined using a high-level defining word as 

follows: 

:BRSG■ <BUILDS BC,BDOES> BCBBC,BC@BDUPB20B — B0< B 

IFBOVERB07B = BIFB -1BDPB +! B THEN BTHENB OVER BO < B 

IFBLROTBC,BTHENB + BC,B; 

The mnemonic keywords are: 

OOBRSGBRLC, 
08BRSGBRRC, 

10BRSGBRLT, 
18BRSGBRRT, 

20BRSGBSLR, 
28BRSGBSRR, 

38BRSGBSRL, 

The majority of the code in the defining word is devoted to dropping the 

leading CB byte in the four odd cases. The third IF clause tests for indexing and 

inserts the displacement in the third byte location, if so. 

7.2.3.7 Bit Addressing 

The Z80 bit addressing mode allows testing, setting, or resetting of any bit in 

any register where the extended "register" definition is used. The forms of 

these instructions are: 

b7 b6 b5 b4 b3 b2 bl bo 

Bit test CB 0 1 b r 

Set CB 1 1 — b — *_ r — 

Reset CB 1 0 — b — — r — 

Here b is the bit number ranging from 0 to 7. If the register is @X or @Y, the 
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CB is the second byte in the instructions, the dispacement is the third byte and 

the fourth byte is the specific instruction byte. The calling sequences are: 

b ■ r ■ mnemonic 

d ■ b ■ r ■ mnemonic 

The keyword mnemonics are defined as follows: 

:BBITADB < BUILDS BC, ■DOES> BCBBC, BC@ BLROTB8*B 

+ BOVERB + BSWAP B0< BIFBSWAPBC,BTHENBC, B; 

40BBITADBBIT, 

80BBITADBRES, 

CO B BIT AD B SET, 

7.2.3.8 Block-Directed Instructions 

Although it is not obvious from the ZILOG Z80 manual, the block move, 

compare, input, and output instructions can be classified into one group. The 

general forms of these instructions are: 

b7 b6 b5 b4 b3 b2 bl bO 

ED 1 0 1 - C - 0 - f' - 

Here the condition mask and function masks have the following significance: 

C Mask Condition 

00 Increment 

01 Decrement 

10 Increment and repeat 

11 Decrement and repeat 

f' Mask Function 

00 Load 

01 Compare 

10 Input 

11 Output 

The sixteen instructions can be defined as follows: 
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OOBCCONSTANTBIC 

01 ■ CCONST ANT ■ DC 

10 ■ CCONSTANT ■ IR 

11 ■ CCONST ANT ■ DR 

:BBDIRB <BUILDS BC,BDOES> BEDBC,BC@B + BC,B; 

AOBBDIRBCLD, 

AlBBDIRBCCP, 

A2BBDIRBCIN, 

A3 BBDIRB COT, 

Here the constants are the conditional operands for the four basic mnemonic 

types. 

7.2.3.9 Miscellaneous Instructions 

Several instructions, however, fall into no clearly defined category when 

building the assembler. Consider the following: the Z80 restart instruction has 

this form: 

b7 b6 b5 b4 b3 b2 bl bO 

11- n - 111 

Here n' refers to the restart number (0 to 7). These are modified page zero 

addressing mode instructions. They are equivalent to a subroutine call to a 

page zero address whose address is eight times the restart number. The eight 

instructions are assembled by the keyword: 

:BRST, B8*BC7B + BC,B; 

Operands not in the set 0 thru 7 will obviously lead to problems. 

The input and output mnemonic keywords expect an I/O port number on 

the stack. These port numbers are in the set 0 to FF (0 to 255 decimal). The 

basic instructions have no variables and are defined: 

DBB8IMBINA, 

D3B8IMBOTA, 

There are three groups of instructions that assemble very different instruc¬ 

tions but in a similar manner. One group assembles instructions that exchange 

the top stack parameter with a register pair. Another group loads the stack 

pointer register with the register pair. The last group loads the central proces- 
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sing unit program counter with the register pair contents. The register pairs are 

the HL, IX, or IY only. In all cases the basic instructions are the same with in¬ 

dexed bytes preceding the group instruction. The keywords are defined as: 

: BXST, BE3BC, BDROPB; 

: BJPM, BE9BC, BDROPB; 

: BLSP, BF9BC, BDROPB; 

In all cases, the keyword expects a register pair operand. The only purpose for 

this is to load the index bytes where applicable. 

7.2.3.10 Call and Return Group 

The call and return group of instructions assembles calls to subroutines or 

returns from subroutines. The problem with using these instructions is 

knowing what the call address is. One cannot stop in the middle of assembling 

a definition and define a label keyword to save the current stack pointer. This 

would lead to disastrous results. 

There are several methods of keeping track of critical system addresses. One 

method is to simply use a HEREB. sequence at the critical point in the 

assembly code followed by a quick resort to a pencil to note the address on a 

laundry ticket or some other handy surface. The problem with this method is 

the transient nature of such notations and the fact that the system does not 

know the data. Another method is to define the entrance points as CON¬ 

STANTS before the definition is started. The CONSTANTS may be filled with 

the required address data using a LABEL keyword defined as follows: 

: B LABEL B'B2+ B HERE B SWAP BIB; 

At the point in the code where the dictionary pointer is to be saved, the se¬ 

quence LABEL followed by the name of the label is inserted in the assembly 

stream. The keyword LABEL uses the sequence 'B2+ to locate the code body 

of the constant and then fills it with the current dictionary free space address. 

The unconditional subroutine call instruction expects an address on the 

stack left there by a number or label (CONSTANT) operand. The call instruc¬ 

tion will simply assemble a CD byte followed by the 2-byte address. The 

keyword mnemonic is defined as: 

:BCAL,BCDBC,B,B; 

The unconditional return from a subroutine is a 1-byte instruction already 

defined in Section 7.2.3.2. 

The conditional call and return instructions have the formats: 
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b 7 b6 b5 b4 b3 b2 bl bO 

Call 11— cc— 10 0n£ n„ 

Return 11— cc— 0 0 0 n£ n* 

Here cc is one of the condition code masks. The calling sequence is of the form: 

n ■ cc B mnemonic 

The keyword mnemonics are defined using the following sequence: 

:BCCODEB <BUILDS BC, BDOES> BC@ B + BC, B, B; 

C4 ■ CCODE ■ CLC, 

COBCCODEBRTC, 

7.2.3.11 Jump Instructions 

The jump instruction includes both conditional and unconditional jumps to 

either an absolute address or to an address relative to the instructions address. 

The problem of using these instructions is obviously knowing the target ad¬ 

dress of the jump. The mnemonic keywords do not care how the address data 

got on the stack; it simply must be there. I shall consider methods of ac¬ 

complishing this semi-automatically in a later section. 

The conditional and unconditional absolute jump instructions are of the 

form: 

b7 b6 b5 b4 b3 b2 bl bO 

Unconditional 11000011 n£ n„ 

Conditional 1 1 — cc — 0 1 0 n£ n„ 

Like the call conditional instruction, the operand order is address then condi¬ 

tion code. The instruction mnemonic keywords are defined as follows: 

:BJMP,BC3BC,B,B; 

C2 B CCODE B JPC, 

The relative jump instructions have the following forms: 

b7 b6 b5 b4 b3 b2 bl bO 

Unconditional 00011000 — n 

Conditional 0 0 1 — cc' — 0 0 0 — n 
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Here the cc' conditions are the low-order 2 bits of the CY, NC, Z, and NZ con¬ 

dition (only), and n is the relative-jump offset from the address following the 

address of n. The value n is treated as a signed 8-bit value allowing relative 

jumps of —128 to -1-127 bytes relative to the next instruction following the 

jump. The required keywords are defined as follows: 

18B8IMBJPR, 

:BJRC,BlOB + BC,BC,B; 

The Z80 has a relative jump instruction that first decrements the B register 

and performs the relative jump only if the B register is not zero. If the B register 

is zero after the decrement, the next instruction is executed. This instruction 

keyword is defined as: 

10B8IMBDJN, 

7.2.3.12 Summary 

The Z80 assembler presented here is a fairly complete, fundamental 

assembler. The design requires about 1800 bytes in this form. The major disad¬ 

vantage of the design is its weak error detection and protection. The only real 

error detection is stack underflow. Adding the protective code is certainly 

feasible but requires more memory. The design does contain extra code to op¬ 

timize the assembled code where two instruction forms exist. Additionally, all 

of the possible Z80 instructions are covered. Many instructions are scarcely 

used, so including them is of limited utility. It is certainly possible to define a 

limited subset of the design in about 1 K bytes of memory that will provide 

well over 95% percent of the instructions usually used. The remaining instruc¬ 

tions can be assembled using C, and keywords when encountered. 

7.2.4 Structured Assembly Code 

Up to this point, the forward and backward reference problem has not been 

addressed. First, a brief explanation of the problem is in order. The problem 

arises because it is sometimes necessary to execute code only if some event oc¬ 

curs or to repeat code execution until some event occurs. If the code is to be 

skipped over, the address where execution is to be continued must be known 

to allow the forward jump. At assembly time, however, the address of the con¬ 

tinuation point is not known until the intervening code is assembled in place. If 
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the code is to be repeated, a jump backwards to some point in the code is re¬ 

quired. This implies that someone or something must remember an address to 

allow this backward reference. 

A non-TIL assembler usually handles the forward and backward reference 

problem in one of two ways. One solution is to employ a two-pass arrange¬ 

ment. The code is written using labels instead of addresses. The first pass 

through the code counts instruction bytes and builds a symbol table with the 

address of each label noted. The second pass can then assemble the code since 

all addresses are known. Another common method is to use a forward 

reference table. This allows a one-pass assembler to be built. Each time a label 

is encountered, a symbol table entry is opened with the address of the label 

noted. If an operand label is encountered, the symbol table is checked to see if 

the label is in the table. If it is, the address is known and the backward 

reference can be resolved. If the label is not in the symbol table, the reference 

must be a forward reference. In this event, the assembler stores the address 

where a patch to the code is required in a forward reference table along with 

the label itself. After each symbol table entry is made, the forward reference 

table is tested to see if there are occurrences of the label just entered. If there 

are, the code at the patch addresses is corrected and the patch address and 

labels are removed from the forward reference table. At the end of the 

assembly the forward reference table is checked to insure that it is empty or 

that all forward references have been resolved. 

Actually, implementation of these techniques depends on the available jump 

instructions of the microcomputer in question. If only absolute jump instruc¬ 

tions are available, the process is fairly simple since the number of bytes to be 

counted or to be patched is fixed. Some microcomputers, such as the Z80, 

have relative jump instructions that are shorter than the absolute jump instruc¬ 

tions. In this case, the assembler designer is faced with the additional problem 

of deciding which type of jump to employ. Most relative jumps are limited in 

how far they can jump ( — 126 to -1-129 bytes in the Z80 case). In the 

backwards reference case, it is easy to test and assemble the right type of jump. 

In the forward jump case, the length of the jump is unknown when the byte 

count for the instruction must be set. One method of resolving this dilemma is 

to always assume the longer absolute jump. Another is to allow the program¬ 

mer to specify the jump byte and to trust his judgment on the length of the 

jump required. 

The LABEL keyword introduced in Section 7.2.3.10 is one method that 

could be used for resolving backward jumps. The problem with the technique 

is that the associated CONSTANT keyword must be defined before the 

assembly, and it will remain a part of the dictionary. In the case of a 

subroutine, this is usually a desirable condition. For a simple backward jump 

during program assembly, it is not a good technique. 
The forward and backward reference problem in a TIL assembler is resolved 

via the stack using constructs similar to those used in the language itself. This 

technique is somewhat different from the usual assembler techniques. The fun¬ 

damental difference is that a symbol table is never generated and cannot be 

recovered after the assembly process. In a TIL assembler, the backward 

reference address is pushed to the stack using a special keyword. Other 
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keywords are defined to retrieve the address from the stack and assemble the 

backward jump. In forward references, the patch address is pushed to the 

stack, and space is allocated for the jump instruction using a special keyword. 

At the target location of the forward jump, other keywords retrieve the patch 

address (but only one time) and assemble the address to this location. The con¬ 

struct keywords are designed to assemble the constructs semi-automatically. 

By semi-automatically I mean that in some cases the programmer must decide 

whether to use an absolute or relative jump. 

7.2.4.1 BEGIN—END Loops 

The simplest construct is the BEGIN—END loop. The loop differs somewhat 

in form and usage from the equivalent TIL form. Instead of expecting a flag on 

the stack, the END form keyword expects a condition code. Further, there are 

several different END forms possible. Since the jump is a backward jump, the 

keyword could decide between a relative and absolute jump depending on the 

length of the jump, or two keywords could be defined which would require the 

operator to select the address mode. 

In all cases, the BEGIN keyword simply pushes the next free dictionary ad¬ 

dress to the stack. The keyword is defined in the assembler vocabulary as: 

: ■ BEGIN ■ HERE ■; 

This keyword simply saves the address of the next instruction to be assembled 

by pushing it to the stack. 

The END form to be considered for the Z80 will consider the automatic 

generation of the jump instruction depending on the jump length and the con¬ 

dition code. The condition codes considered in the basic assembler did not in¬ 

clude an unconditional condition but only eight specific conditions (Z, NZ, 

CY, NC, PE, PO, P, N). The first step is to define the unconditional 'condi¬ 

tion" as: 

— 1 ■ CCONSTANT BU 

This allows the assembly sequence to be: 

... ■ BEGIN ■... ■ condition ■ END ■... 

The END keyword will assemble a relative jump instruction back to the first 

assembler instruction following BEGIN if the backward jump is less than 126 

bytes and the condition code is U, Z, NZ, CY, or NC. Otherwise, the END 

keyword will assemble an absolute address. 

To generate the required END keyword, the first step is to define two 
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keywords that will decide whether to assemble a conditional or unconditional 
jump address, given that the addressing mode has already been decided. The 

keywords are: 

:BJRCBDUPB0< BIFBDROPBJPR,BELSEBJRC,BTHENB; 

: ■ JAC ■ DUP ■ 0 < ■ IF ■ DROP ■ JMP, ■ ELSE ■ JPC, ■ THEN ■; 

Both keywords expect the condition code on the top of the stack and the ad¬ 

dress or relative address as the second stack entry. The END keyword can then 

be defined as: 

:BENDBDUPB20B - B0< BIFBOVERBHEREB2 + ■ - BDUPB80B 

- B0< B IF B 2S W AP B DROP B JRC B ELSE B DROP B J AC B THEN B 

ELSE B JAC BTHEN B; 

The outer conditional branch selects the absolute addressing mode if the condi¬ 

tion code calls for PE, PO, P, or N condition since there are no relative jumps 

for these conditions. The inner conditional branch tests the jump length and 

assembles a relative jump if the jump is —128 bytes, or assembles an absolute 

jump otherwise. 

The keywords defined in this fashion are somewhat slow but very conve¬ 

nient. The programmer never needs to consider which addressing modes are 

applicable or how far the jump may be. The alternative is to define a sequence 

of keywords that requires the programmer to specify the type of backward 

jump required or to default all backward jumps to absolute jumps. 
One final note. The unconditional END construct can lead to an endless 

loop since it is the analog of the TIL OB END form. 

7.2.4.2 IF . . . ELSE . . . THEN 

The IF . . . ELSE . . . THEN assembler construct is similar in concept to the 

TIL constructs. The problem is that both the IF and ELSE forms assemble for¬ 

ward jumps. The IF forms always assemble conditional forward jumps, and 

the ELSE forms always assemble unconditional forward jumps. The only 

reasonable way out of the dilemma is to trust to the programmer's judgment 

on the length of the jump. 

The decision to trust the programmer's judgment implies separate keywords 

for both absolute and relative IF forms. The ELSE form must then be informed 

as to which type of IF form it must fill in an address, and whether its forward 

jump is an absolute or relative jump. The THEN form must similarly know the 

addressing type of the IF or ELSE form. The forms are then: 



EXTENSION PLEASE 205 

RIF — A relative if 

AIF — An absolute if 

RRELSE — Assumes a RIF and a relative else 

RAELSE — Assumes a RIF and an absolute else 

ARELSE — Assumes an AIF and a relative else 

AAELSE — Assumes an AIF and an absolute else 

RTHEN — Assumes a RIF or RRELSE or ARELSE 

ATHEN — Assumes an AIF or RAELSE or AAELSE 

The ELSE forms are optional as in the TIL constructs. 

Given the IF forms, the idea is to assemble a forward jump instruction, given 

a condition code operand preceding the mnemonic, and to leave a pointer to 

the jump instruction variable field on the stack. The variable jump field will be 

filled with a 0 until filled in by an ELSE or THEN form. The definitions are: 

: ■ RIF ■ 0 ■ SWAP ■ JRC, ■ HERE ■; 

: ■ AIF HO ■ SWAP ■ JPC, ■ HERE ■ 2 + ■; 

The ELSE forms must assemble an unconditional forward jump, fill in the 

variable field of the IF form and leave a pointer to the unconditional forward 

jump variable field on the stack. This variable field is again filled with a 0 until 

filled in by the THEN form. The ELSE form does not have any operands. The 

keywords are defined as: 

: ■ ATHEN ■ HERE ■ SWAP ■! ■ ; 
:BRTHENBOVERB-BSWAPBl-BC!B; 

:BRRELSEBHEREB2+BRTHENB18B,BHEREB; 

: ■ RAELSE ■ HERE ■ 3 ■ + BRTHENBOBJMP, BHEREB2- ■ 
: B ARELSE B ATHEN B18 B, B HERE B; 

: BAAELSEB ATHENBOBJMP, BHEREB2 - B; 

Observant of you to notice that the THEN forms were whiffled in and used to 

define the ELSE forms. After all, both the ELSE and THEN are used to patch 

forward jump variable fields and should look similar. It should also be realized 

that the THEN forms do not actually assemble any code at the point that they 

are evoked but merely fill in the previously reserved locations. 

There is actually one important fact about the conditional branch constructs 

which you may have noted. The True code and False code bodies are reversed 

from the usual TIL constructs. This results from the fact that the Z80, like most 

microcomputers, jumps if the condition is met. The syntax diagrams are: 

I condition I 

False Unconditional 

IxIF 
l 

IxxELSEI IxTHENI 

True Unconditional 
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False 

51 
Unconditional 

I condition BxIFB.f . . . BxTHENB.l. . 
_f 

True 

Actually this does not represent a problem with the Z80 since both senses of 

condition codes are available, which can effectively reverse the sense of the 

code bodies. 

7.2.4.3 WHILE 

The assembler WHILE construct is the exact analog of the TIL WHILE con¬ 

struct. It does need to know, however, the addressing mode of the ELSE or IF 

form it is to patch. This leads to the following forms: 

: ■ RWHILE ■ SWAP HUB END B HERE B RTHEN B; 

: B AWHILE B SWAP B U B END B HERE B ATHEN B; 

These keywords expect the address stored by BEGIN to be the second stack en¬ 

try and the pointer stored by the IF or ELSE form to be the top stack entry. The 

SWAP BUB END sequence will assemble an absolute or relative conditional 

jump back to the address stored by BEGIN. The remaining code then patches 

the IF or ELSE form as appropriate. 

The construct syntax of Section 4.4.3 applies with minor variation. The dif¬ 

ferences involve the condition code, the use of the relative or absolute forms 

and the reverse code body sense in the IF form. 

7.2.4.4 DO ... LOOP 

The assembler DO . . . LOOP construct is substantially different from the 

TIL construct. It is specifically designed in the Z80 assembler to utilize the 

DJNZ (decrement and jump non-zero) instruction (the DJN, in our notation). 

This instruction decrements the B register and does a relative jump if the 

register is non-zero. Otherwise, it executes the next instruction. The evoking 

sequence for the assembler DO . . . LOOP construct is: 

...nBDOB.... BLOOPB... 
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Here the LOOP code will be repeated n times. An initial value of 0 will cause a 

256-count loop, so that the loop may be executed from 1 to 256 times. The 

keywords required for the construct are: 

: ■ DO ■ HERE ■ B ■ LROT ■ M VI, ■ ; 
: BLOOPBHEREB2 + ■ - BDJN, ■; 

It is possible to use the LOOP keyword in a construct of the form: 

....BEGIN....LOOP.... 

This construct presumes that the B register was suitably loaded by some other 

means (say by the result of some computation followed by a BBABMOV,) 

prior to the occurrence of BEGIN. 

It must be noted that loop constructs of this form are not specific to the Z80 

with its DJNZ instruction. The operation can just as easily be emulated on 

other central processing units by defining a suitable macroinstruction. For ex¬ 

ample, an 8080 assembler DJN, keyword could be defined as: 

: BDJN, BBBDEC, BNZBJPC, B; 

This, of course, presumes that the mnemonics for the 8080 are selected to con¬ 
form to the design presented. 

Other loop constructs could be defined for the Z80 using macroinstructions. 

This will not be done in the basic assembler since there are no fundamental 

machine instructions which they support. Other loop structures are applica¬ 

tions specific. 

7.2.4.5 Construct Summary 

Implementing the structured constructs for the assembler requires an addi¬ 

tional 375 bytes or so. The assembly language programmer job is eased 

somewhat by the presence of these simple constructs, since they can keep track 

of the addresses on the stack without effort on the programmer's part. The 

constructs can be nested as long as entire constructs are defined in one code 

section. A validity test on nesting is simply that removal of any construct in its 

entirety cannot remove part of another construct. This must be true for all 

constructs. 

If the constructs available do not match the programmer's needs, the BEGIN 

keyword plus the stack keywords of the CORE vocabulary can be used to 

suitably manipulate addresses for the assembler jump keywords. As with all 

TIL keywords, the assembler keywords do not care how their expected stack 

entries arrived; they just assume they are there. 
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7.2.5 Assembler Design Notes 

The TIL assembler keywords are normally defined in the ASSEMBLER 

vocabulary. The vocabulary is linked to the CORE vocabulary and is usually 

intermixed spatially with the CORE vocabulary. Keywords to be defined in 

assembly code are primitives. The defining word that creates the keyword is 

called CODE. This keyword not only creates a primitive header but also sets 

the CONTEXT vocabulary to ASSEMBLER. In my personal system, CODE 

also sets the hexadecimal number base since I prefer to code using hexadecimal 

numbers. The keyword CODE is thus defined as: 

: ■ CODE ■ CREATE ■ HEX ■ ASSEMBLER ■; 

All of these keywords exist in the CORE vocabulary. The keyword that ter¬ 

minates the definition is NEXT. This keyword encloses in the dictionary the in¬ 

structions necessary to return to the inner interpreter (IYBJPM, for the Z80) 

and then sets the CONTEXT vocabulary to the CURRENT vocabulary. In ef¬ 

fect, this restores the vocabulary before the keyword was defined. A formal 

definition of NEXT is: 

: BNEXT ■ IY ■ JPM, ■ DEFINITIONS ■; 

NEXT exists in the ASSEMBLER vocabulary and differs from the NEXT de¬ 

fined in the CORE vocabulary. 

Inevitably the question arises about the viability of building a 'real" 

assembler using the TIL assembler. It is possible, but not easily accomplished, 

and not without several modifications and extensions to the TIL assembler. 

The modifications necessary are to solve problems that also arise in a non-TIL 

assembler. Fundamentally, the non-TIL assembler is designed to input an 

assembly code source file, generate machine code that is to reside and execute 

at some given address but is stored at assembly time at some different location, 

and, finally, to store the resulting machine-code file in some mass storage 

device. A TIL-based real assembler must perform similar tasks. 

The capability to store a file on some mass media and to load a file to the 

system has been assumed just to build the TIL. The ability to generate an 

assembly language source text file has not been considered. This requires some 

type of editor program to generate and update the source test. This require¬ 

ment is not really necessary for the short definitions encountered in a TIL 

assembler. There is a vast difference between a 3-line keyword definition 

and a long assembly language program. With the interactive TIL assembler, 

the assembly "source" disappears when the line it is entered on is scrolled off 

the display. An editor to generate an assembler source file and a virtual 

memory system to access the files will be considered later. 

The usual problem is relocating the assembly code. TIL source assembly 

code is always assembled to the free dictionary space. All of the assembler 

keywords are constructed using the and C, keywords which accomplish 
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this action. A more general scenario is to allow the starting location of the 

desired program to be specified, but to actually save the program at some dif¬ 

ferent location. This implies that a program could begin at any memory ad¬ 

dress, including an address which is occupied by the assembler at assembly 

time. 

There are two basic changes needed to allow a TIL assembler to be of more 

general-purpose value. The keywords and C, must be redefined prior to 

defining any of the assembler keywords. The keywords that assemble absolute 

addresses must also be modified. These include both the assembler mnemonic 

keywords and the assembler construct keywords. The reason for these 

modifications is almost self-evident. 

The keywords and C, must be modified to pop words or bytes from the 

stack and enclose them at the next consecutive assembler file location rather 

than the next free dictionary location. The assembler file location can be set 

equal to the dictionary pointer to assemble TIL keywords or to any available 

free memory space to support either direct assembly to the true target location 

or to a file location which will later be stored on the mass media. The address 

where the stack data is enclosed is referred to as the program counter (PC). 

The CODE keyword could be designed to set PC to DP to assemble TIL 

keywords. 

The keywords that assemble absolute addresses to the program must also be 

modified to support the assembly of a program to a different area of memory 

than it will occupy at execution time. For example, the TIL may start with a 

PC value of 4000, but the program may execute with the assembled program at 

1000. Thus, the absolute address stored by the assembler must be 3000 less 

than the PC value reference for the loading address at assembly time. The off¬ 

set between the program origin and the initial value of the PC is always a con¬ 

stant. To assemble TIL keywords or to assemble a program that will execute at 

its assembly address, set this offset to 0. The CODE keyword could also be de¬ 
signed to zero this offset value for assembling TIL keywords. 

A 'real" assembler does have some restrictions and disadvantages. The real 

problem is that the programs must be fairly short due to the lack of a symbol 

table. For those cases where the built-in constructs are inadequate, stack 

management can become a very real problem. The interactive building of an 

assembly program will not allow program documentation. If the editor and 

virtual memory system are not supported, program debug and modification 

really implies program re-entry via the keyboard and not correction of some 

source text. 

One final note about threaded interpretive language assemblers. Some in¬ 

structions are used so rarely that the memory required to implement them ex¬ 

ceeds their utility. The right answer is to ignore these instructions. The and 

C, keywords can always be used in the event the unimplemented instructions 

are required. The TIL assembler should be designed for utility rather than for¬ 

mal completeness. 
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7.3 Virtual Memory 

Virtual memory is a technique for transparently extending the addressing 

space of a computer by using a combination of actual system memory and a 

direct access storage device. A user could have an effective addressable 

memory space of several hundred thousand bytes in a system that only has 

12 K to 16 K bytes of actual memory. The direct access storage device could 

be any of a number of devices. I will constrain this discussion to a floppy disk 

system rather than opening Pandora's box. This is the most popular type of 

microcomputer system direct access storage device. 

There are roughly forty skillion ways to implement a virtual memory 

system. I won't even scratch the surface but will direct the presentation to a 

particular philosophy. Because of the extreme hardware dependence of the 

device interface, the level of the presentation will be somewhat sketchy. The 

design of the virtual memory system is not extremely difficult if one is in¬ 

timately familiar with both the disk system hardware and its associated soft¬ 

ware. If not, it is almost impossible unless the disk system documentation is 

absolutely superb. 

7.3.1 The Device 

A disk system usually consists of a disk controller board and an actual disk 

drive mechanization. The object of the disk system is to allow storage of data 

on the diskette media. The important point about the disk system is that the 

data are stored in blocks of bytes which are accessed from consecutive 

memory locations. The actual number of bytes in a block is usually 128, but 

systems with 256 bytes per block are common and 4 K-byte blocks are not 
unheard of. 

The format the system uses to record the blocks on the diskette media is 

device-dependent. The blocks are stored on tracks or circular areas on the 

diskette. The mini-floppy diskette usually has thirty-five tracks and the floppy 

seventy-six tracks for storage of data. The concentric tracks are usually 

numbered from 0 upward, with 0 the outermost track. Within a track there are 

a number of sectors defined. Depending on the device, a sector consists of data 

used to synchronize and/or identify the sector, the actual data block, and 

some type of block validation data. The most common sector formats consist 

of twenty-six sectors of 128 data bytes or ten sectors of 256 data bytes, but 

many other formats exist. 

The total number of data blocks the disk system can contain is the number 

of tracks times the number of sectors per track. The disk controller always ad¬ 

dresses the blocks by track number and sector number. This addressing is ap¬ 

plicable between the system and the disk controller. 
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Disk controllers are extremely variable in design. Some are very simple 
devices that depend on the central processing unit for initialization and simply 
signal the arrival of each data block byte at the interface and expect the pro¬ 
cessor to store to the proper memory location. Other controllers have their 
own processor on the controller board and quite sophisticated file manage¬ 
ment software in read-only memory. Most controllers are somewhere between 
these extremes. 

A common problem with disk controllers is that presumptions about the 
location of a supporting disk operating system (DOS) are embedded in the 
controller design. This may force the system designer to either patch the con¬ 
troller software (generally read-only memory resident) or build the threaded 
interpretive language around the disk operating system. Exactly how this will 
be accomplished is so system-dependent that no more can be said. 

7.3.2 Disk Access 

The object of the virtual memory system is to access disk blocks by some ad¬ 
dressing scheme such that the access is transparent to the operator. Correct ac¬ 
cess will occur regardless of whether the block is currently system resident or 
disk resident. If a block is not resident in the system when it is accessed, it is 
automatically loaded to the system memory. If a block has been modified 
while system resident, it will be updated by the system under operator direc¬ 
tion such that the operator never needs to know which blocks are to be up¬ 
dated. 

Disk data blocks that are system resident are stored in buffers. There are 
usually sufficient buffers defined to hold one or two screens of data. A screen 
is 1 K bytes of data (which will just fill a display screen of 16 lines of 64 
characters per line). For a block length of 128 bytes there are thus eight to six¬ 
teen block buffers of 128 bytes each required. Data screens are a convenient 
form for storing TIL source text. The block buffers are usually defined at some 
convenient memory address out of the way of the main TIL language area. 

The block buffers are used for temporary storage of data read from the disk 
or to be written to the disk. Blocks of data are read from the disk and stored to 
some block buffer using the keyword GETIT. Data in a block buffer are writ¬ 
ten to the disks using the keyword PUTIT. These two keywords are the 
primitives needed to implement all disk accesses. The target disk blocks for the 
accesses are addressed by a block number. There is a mapping between the 
disk block number and the disk track and sector number. The relationship is: 

Block# = (Track#) X (Sectors/Track) + (Sector#)+ 1 

The block numbers are thus in the set [1 — N] where N is system-dependent. 
The primitives GETIT and PUTIT will interface with the system disk I/O 

routines to actually perform the disk read/write. These routines usually re- 
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quire a buffer address, a block number (or sector and track number) and a 

drive number as input parameters. The drive number is usually stored in the 

system variable DRIVE if multiple drives are available. The buffer address and 

block number are passed to the keywords on the stack. The availability of 

these keywords will be presumed. 

Typically both GETIT and PUTIT are designed to reserve disk space at the 

low end of the disk which is used to store the core language. This disk is usual¬ 

ly placed in disk drive number 0 in a multidrive system. By defining a system 

variable named OFFSET, the amount of reserved area can be stored as a 

system parameter. The keywords DRO, DRl, . . . can be defined to both set 

the DRIVE system variable and the OFFSET system variable as appropriate for 

the given system configuration. This can be somewhat risky in a single drive 

system. 

Two other factors are important about GETIT. The keyword leaves a buffer 

address at the top of the stack when it completes. This allows for convenient 

recovery of the address where the data is located. GETIT also tests the block 

number to insure that a valid block is requested. If it detects an error, the error 

routine is called by GETIT, with the address of a disk addressing error message 

as a parameter. A similar scheme is employed in PUTIT. Depending on the 

available disk software, read or write errors may be handled by the system 

disk software or may need to be fielded by routines within the TIL code. 

To implement GETIT and PUTIT in a somewhat uniform manner, it is usual 

to segment the software tasks between the TIL and the system I/O code. 

Typically the TIL code is designed to pass the data needed by the system I/O 

code in the system user area. For example, a typical scheme is for the TIL code 

to set the following parameters: 

TARGET — The starting address of the block buffer. 

DRIVE — The drive number. 

TRACK — The track number. 

SECTOR — The sector number. 

OPER — The operation (0 = Write, 1 = Read). 

The definition of GETIT and PUTIT are then something like: 

: ■ GETIT ■ SETUP BOPER B ClSET B DISKI/O B; 

: B PUTIT B SETUP B OPER B COSET B DISKI/O B; 

Here SETUP pops the block number and the buffer address from the stack; 

computes TRACK and SECTOR from the block number, OFFSET, and the 

number of sectors per track; calls an error routine if the track number com¬ 

puted is outside the boundaries of the disk; and exits with TARGET, TRACK 

and SECTOR set. The DISKI/O routine then calls a system I/O routine which 

actually performs the reading and writing of the I/O operation. Alternately, 

GETIT and PUTIT can be written as primitives which perform the same opera¬ 

tion using a subroutine $SETUP. 
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7.3.3 Buffer Control 

By knowing the definition of the keywords GETIT and PUTIT, the actual 

design of the virtual memory scheme can be considered. This involves laying 

out the buffer area and designing keywords to load a specific disk block to a 

specific block buffer or vice versa. This implies a control structure but the con¬ 

trol should be invisible to the operator. 

Buffers can have several states. They can be empty or otherwise available to 

the system. They can contain some specific disk block exactly as contained on 

the disk. They can contain either new data or modified versions of blocks that 

are contained on the disk. The system needs to know the status of the buffers 

to properly manage the system resources. One relatively simple way to store 

the information is in a keyword called SBUF which contains the current status 

of the block buffers. 

The keyword SBUF is an array that contains two words for each block buf¬ 

fer in the system. The first word is a status word and the second word is the ad¬ 

dress of the starting location of the block buffer. The status word contains 0 if 

the buffer is empty, or if it is in use, contains the block number of the block 

currently located in the buffer. The high-order bit of the status word is 1 set if 

the block is modified or updated. The array is a convenient way to store the 

data the system needs to hide the disk accesses from the operation. 

The keyword the operator uses to access any block is BLOCK. This 

keyword expects the desired block number on the stack when it is evoked and 

replaces the block number with the address of the first byte of the block. This 

address is always the starting address of one of the block buffers. The defini¬ 

tion of BLOCK is: 

: ■ BLOCK ■ RESIDENT ■ IF ■ BUFFER ■ GETIT ■ THEN ■; 

The keyword RESIDENT searches the array SBUF looking for a status word 

that matches the block number at the top of the stack (ignoring the most 

significant bit). If a match is found, the block number is replaced by the ad¬ 

dress of the starting location of the block buffer associated with the status 

word and a False flag is then pushed to the stack. If a match is not found, a 

True flag is pushed to the stack leaving the block number as the second stack 

entry. The keyword BUFFER searches the array SBUF looking for a 0 status 

word. If an empty buffer is located, the address of the starting location of the 

block buffer associated with the 0 status word is pushed to the stack and the 

buffer is loaded by GETIT. If there are no available buffers, the error routine is 

called by BUFFER with the address of a buffer full message as a parameter. 

With the advent of BLOCK, a virtual memory scheme is at hand. Reading of 

disk blocks to the disk is totally transparent to the operator. The operator 

simply treats all blocks as if they were system-resident. There is no file direc¬ 

tory and no 'named" files except as defined by the operator. Named files can 

be created by the operator as follows: 

: ■ FILENAME ■ i ■ BLOCK ■ j ■ BLOCK ■....■ n ■ BLOCK ■; 
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Here i. . . n are block numbers. As many blocks can be defined in FILENAME 

as there are block buffers. However, named files are strictly applications- 

dependent. 

The storage of updated block buffers back to the disk is not done 

automatically. The operator must evoke this action manually using the 

keyword SAVE. SAVE searches the array SBUF looking for status words with 

their high-order bit set. If the update bit is set, the associated buffer is written 

to the disk block using PUTIT and the status word is set to 0. If the update bit 

is not set, the status word is simply 0 set. A keyword named ZBUF is also 

defined; it merely sets all the status words in SBUF to 0. This implementation 

does not change any block buffer contents when either SAVE or ZBUF is 

evoked. This is sometimes helpful when the operator makes an error. The im¬ 

portant point is that the operator does not need to concern himself about 

which blocks need to be updated. The system will perform the task semi- 

automatically. The system needs to be directed to perform the task to prevent 

overwriting of disk blocks when this action is undesirable. 

Setting of the update bit in the SBUF array status words is done by the 

system using special keywords. The design of these special keywords hides the 

activity from the operator. For example, if the operator is updating a data file, 

the keyword D! is usually based instead of the "!" keyword. D! is defined as: 

: BD! ■ UPDATE*! ■ ; 

Just like "!", D! expects an address at the top of the stack and a number as the 

second stack entry. The keyword UPDATE searches the SBUF array starting 

address locations. If the address at the top of the stack is within the block buf¬ 

fer range of one of the buffer areas, the update bit of the associated status word 

is 1 set. Other methods of setting the update bit will be considered later. 

7.3.4 Screens 

Source text for special vocabularies can be stored on the disk in screens. A 

screen may be loaded to the system and assembled/compiled to the dictionary 

space that exists when the load occurs. Typical applications for this technique 

are language extensions that are required for some applications but are usually 

not needed. A floating point package or an editor are examples. The source 

text may be either primitives (defined using assembly language or numbers 

followed by or C,) or secondaries. Primitives may not contain absolute ad¬ 

dress references unless the address is known to be invariant (a system variable 

for example) since the assembly origin is not known a priori. Listing 7.1 gives 

examples of typical screens. 
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( SCREEN 0 - EDITOR, SCREEN I OF 2 ) : EDITOR ; HEX 

( 1 ) 40 CCONSTANT LENGTH 

( 2) 12 CCONSTANT LBUF 160 CA! 

( 3 ) : LLBUF LBUF @ LENGTH 4- 1 - ; 

( 4) : LCLEAR LBUF @ DUP 7F 4- ERASE ; 

( 5) : 15TH SCREEN @ @ 3C0 1 ; 

( 6) : L15TH 15TH LENGTH 4- I- ; 

( 7) : BSTART DUP 0< OVER F > OR IF QUESTION ELSE LENGTH * 

SCREEN @ DUP 1 - IF QUESTION ELSE @ E THEN THEN ; 

( 9) CREATE INLINE 2EB CA! 

( 10) : REPLACE BSTART INLINE LBUF @ LLBUF LROT MOVE LCLEAR ; 

( 11) : CLEAR BSTART DUP LENGTH 4- 1 ERASE ; 

( 12) : DELETE BSTART DUP LENGTH \ LI5TH LROT MOVE F CLEAR 

LCLEAR ; 

( 14) : INSERT DUP BSTART 15TH - IF REPLACE ELSE DUP BSTART 

15TH 1- OVER LENGTH f MOVE REPLACE THEN ; 1 LOAD 

( SCREEN 1 - EDITOR, SCREEN 2 OF 2 ) 

( 1 ) : TYPE CRET BSTART DUP LENGTH 4- SWAP DO I > C@ ECHO LOOP ; 

( 2) : SHOW CRET L1STH SCREEN @ @ DO I> C@ ECHO LOOP HIDE ; 

( 3) : LIST 14- SWAP CRET CDO CI> 4 * 14 @LBUF GETIT DUP 40 4- 

SWAP DO I> C@ ECHO LOOP CLOOP LCLEAR ; 

( 14) : EMSG CRET [ EDITOR LOADED, DECIMAL BASE 1 ; DECIMAL 

( 15) EMSG 

Listing 7.1: EDITOR screens. 

The method of addressing screens is by screen number. Screen numbers are 

in the set (0...N) where N is a system configuration-dependent number. 

Screens are always stored on the disk in consecutive disk blocks. There is a 

mapping between screen numbers and the block number of the first of the con¬ 

tiguous blocks that form the screen. The mapping is: 

Block # = (Screen #) X 8 + (Offset #) -I- 1 

The offset number is a system variable used to control the location of the first 

defined screen. Typically this is desirable to allocate low-order blocks as data 

blocks and high-order blocks as a screen block area. Usually the offset is con¬ 

tained in the system variable SCRNOFF but is sometimes arbitrarily set to a 

constant. In any event remember that OFFSET is also applied by GETIT and 

PUTIT. 
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The purpose of having text screens is to use them as system inputs precisely 

as if they had been typed in by the operator. The outer interpreter of Section 2 

(figure 2.2) had provisions for loading the input buffer from a mass storage 
device and for echo displaying the OK message when the input buffer is 

empty, only if the keyboard is the input device. Consider this outer interpreter 

and the design of the MASS keyword: in our present design, MASS will per¬ 

form the input from the disk screen to the input buffer . . . not a block buffer. 
To begin our design, first consider the initiation of the screen loading event. 

A keyword name LOAD is defined to initiate the loading of the screen number 

that is the top stack entry. The LOAD keyword simply sets two system 

variables. The system variable SCRN is set equal to the screen number at the 

top of the stack. The system variable LINE is set to 0. When the line in which 

the keyword LOAD appears is complete, the outer interpreter returns to get 

the next input. It first tests LINE to see if it is positive. If it is, MASS is called. 

Otherwise, the keyboard input routine INLINE is called. 

The keyword MASS can be defined many ways, one of which follows: 

: ■ MASS ■ 7LINE ■ IF ■ LBUF ■ @ ■ GETIT ■ DROP ■ ELSE ■ 
BT OL ■ THEN ■ LBUF ■ @ BLBPB! ■ ; 

A fairly careful look at the undefined keywords should reveal the game plan. 

The keyword 7LINE first computes a block number based on LINE, SCRN 

and SCRNOFF. It next increments LINE by one and resets LINE to —1 if it 

equals 8. 7LINE then searches SBUF to see if the block is already system- 

resident. If it is, the address of the block buffer and a False flag are pushed to 

the stack. This will cause a branch to BTOL which will move the block buffer 

to the input buffer. If the block is not system-resident, the block number and a 

True flag are pushed to the stack. This will cause a branch to 

LBUF■@BGETITBDROP which will load the line buffer with the disk 

block. The DROP removes the input buffer address, which was returned by 

GETIT, from the stack. Finally, the line buffer pointer is reset to point to the 
start of the input buffer. 

When the outer interpreter regains control from MASS, it cannot tell how 

the input line buffer was loaded. Whatever is in the line will be executed 

precisely in accordance with the TIL syntax. If an executable token is scanned, 

it will be executed just as if it had been typed by the operator. When the input 

line is entirely scanned, the LINE variable is tested to insure it is negative 

before the OK message is displayed. This prevents a sequence of OK messages 

from appearing as the lines are executed. One final note: the error routine must 

set SCRN negative if an error is detected. This forces operator response if an 

error occurs during screen loading. 

The above scheme allows eight successive blocks (or sixteen display lines) to 

be executed. After the eighth block is executed, LINE will be negative and the 

OK message will be displayed. If only a partial screen of source text is 

available, a method to cause early return to the INLINE input can be designed. 

Consider a ;S keyword that sets LINE to — 1. By embedding ;S in a screen 

block, forced exit to INLINE occurs on the completion of block execution. If a 
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LOAD command is embedded in a screen, it will terminate loading of the cur¬ 

rent screen and initiate loading of the new screen. This allows screens to be 

chained together so that vocabularies or user programs are not constrained to 

be a single screen in length. 

One feature that is important in a virtual memory system of this type is 

some means of identifying screen contents. This can be done by defining a 

comment medium, placing descriptive comments on the first line of each 

screen and defining a keyword that will display the first line of successive 

screens. 

Since there is no way to retain source text, a comment keyword makes little 

sense in a system without the virtual memory mechanization. Assume that the 

comment keyword is defined as "(” (left parenthesis). The keyword "(" sets the 

token separator to ")" and scans the next token from the input line. It does 

nothing with the token it scans. This allows text to be entered in a screen 

following the ■ after the initial until terminated by a ")" or the end of the 

line. This text will be ignored by the system when the comment is encountered 

in the input buffer. I usually include the screen number in the comment as well 

as a brief description of the screen contents and note if more than one screen is 

chained by the screen. See listing 7.1 for typical screen comment usage. 

The keyword that displays the first line of successive screens is LIST. This 

keyword expects a starting and ending screen in the input range. To allow the 

operator to stop the display, a call to the WAIT keyword is coded after each 

line is output. LIST needs at least one empty buffer to hold the first block of 

each screen as it is read from the disk. The first sixty-four characters of each 

block are then displayed. Since there is no reason to make the first lines of the 

screens permanently system resident, the buffer is marked empty after each ac¬ 

cess. 

A keyword that is very similar to LIST is SHOW. This keyword shows the 

entire screen contents on the display rather than just the first line. At the end of 

each screen display, a keyword named HIDE is called rather than WAIT. 

HIDE not only waits for the next keyboard entry but also suppresses the cur¬ 

sor. This allows the entire screen to be displayed without a hole at the cursor 

point. 

The protocol for screen residency is somewhat analogous to block residen¬ 

cy. The keyword that loads a screen to the system is OPEN. OPEN expects a 

screen number on the stack and will attempt to load the screen to one of two 

sets of eight contiguous blocks. There are four important system variables 

associated with the operation as follows: 

SCRN — The target screen. 

SCRNO — SCRNl — The screen number of the screen resident in the nth 

set of eight blocks (if resident) or —1 (if not). 

SCREEN — A pointer to the start of the SBUF low-order or high-order 

set of block buffers of the current screen. 

OPEN will first test SCRNO and SCRNl to determine if the screen is resident. 

If it is, SCREEN is set to point to the start of the appropriate set of buffers. If 
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the screen is not resident, and one of the two available screens is open, the 

screen is loaded to the system and both SCREEN and SCRNn are updated with 

the screen number. If both screens are in use, an error message is called in¬ 

dicating that the screens are full. The operator is thus forced to free a screen 

area to load the new screen. 

The screens, when loaded to the system, result in the block number of each 

screen block being stored in SBUF. This effectively prevents BLOCK calls from 

overwriting screens. Both one screen and one or more blocks can be system- 

resident if at least two screen buffers are available. Screens differ somewhat 

from blocks in that screen keywords do not set update bits in SBUF. Screen can 

be written to the disk only by explicitly calling the WRITE command. 

The keyword WRITE will always write eight consecutive blocks to the disk. 

The target screen number is assumed to be on the stack and whichever screen 

was opened last will be written to the disk. In short, SCREEN is used as the 

pointer to the appropriate screen to write. This particular scheme will allow 

easy duplication of screens (ie: ]■ OPENB4BWRITE will duplicate screen 0 

as screen 4). When screens are written to the disk, no changes to the residency 

status of the screens takes place. Screens are deleted from the system only by 

using the CLOSE keyword. CLOSE expects a screen number on the stack and 

will set SCRNO and SCRNl to —1 if the screen is system-resident. If the screen 

is not resident, an error message results. 

There are a number of additional keywords that can be defined to 

manipulate screens. For example, SCREENS could be defined to display which 

screens are currently resident. There are any number of additional keywords 

that can be defined. Remember too that screens need not be accessed simply by 

number but may be given aliases. For example, the editor vocabulary is ac¬ 

cessed simply by the EDITOR keyword which is defined as: 

: ■ EDITOR ■ n ■ LOAD ■; 

The keyword that accesses the ASCII file SANDI is defined as: 

: ■ SANDI ■ n ■ OPEN ■ SHOW ■; 

This definition both loads the file (screen) to the system and displays the entire 

file. 

7.3.5 Data Manipulation 

The virtual memory system contains the core keywords for transparent disk 

accessing. These keywords will allow easy data manipulation just as they 

allow easy screen manipulation. Data storage is very applications-dependent. 

Several techniques for using data blocks will be considered, albeit lightly. 
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Data files can be defined to hold either ASCII data or numerical data. The 

format is fully controlled by the application. Actually, the main reason that 

block numbers start at 1 rather than 0 is that the system uses block 0 as an 

ASCII data file. Block 0 is used to store operator messages that are seldom 

used but need to be available somewhere. The messages that are displayed to 

the operator on system start-up or when a system error occurs are examples. 

The error message block is loaded to the input line buffer and an offset number 

is expected on the stack when the message is evoked. The message keyword is: 

: BDISKMESSAGE BO B LBUF B @ B GETIT ■ + BTYPE ■; 

This is a typical application of a block as a special file. Actually this block con¬ 

tains records where each record is a message which is evoked by the address 

offset loaded to the stack by the error-handling routine which calls 

DISKMESSAGE. 

Although the basic unit of storage is a block of 128 bytes, it is easy to define 

data files of different sizes. A record is a subunit of a file where a file consists of 

some multiple number of blocks. An integer number of records may not com¬ 

pletely fill a file. The easiest case to consider is the case where an integer 

number of records of n bytes each equals 128 bytes or one block. The more dif¬ 

ficult case is where a record crosses a block boundry. 

To consider the easier case, assume that records consist of 32 bytes. The 

records will be stored in consecutive blocks on the disk starting at the block 

number stored in the constant DATA. A record can be transparently accessed 

by the operator given the following definition sequence: 

n ■ CONSTANT ■ DATA 

DECIMAL ■: ■ RECORD ■ 32 ■ 128 ■ * /MOD ■ 
SWAP ■ DATA ■ + ■ BLOCK ■ + ■; 

The sequence nB RECORD will leave the address of the first byte of the record 

on the stack. The operator need not worry about the residence status of the 

block, since the system will load the correct block if it is not system-resident 

using the RECORD keyword via the BLOCK call. 

Accessing records that cross a block boundary is a much more difficult feat. 

There are several ways to attack the problem. They fall into two categories. 

One method is to design the record allocation scheme so that records always 

begin on block boundaries and must contain an integer number of records. 

The other procedure is to always load two disk blocks to two consecutive 

block buffers if the boundary could be crossed. The design of the keywords is 

not extremely difficult. The intent is to always load a complete record to the 

system. 

In turn, a record can contain subfields where specific items in the record are 

stored. These subfields can also be accessed transparently with a suitable set of 

keyword definitions. The fundamental reason for always loading a complete 

record is to insure that all record subfields are available. The overall intent is 

to allow record and subfield definitions that always return the address of the 

data regardless of its location in the system when it is requested. Thus blocks. 
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records, and subfields are precisely like arrays defined in the core, always 
available simply by their keyword names. 

When a data block, record, or subfield is updated it is important that D! be 

used rather than if the update is to be marked for later storage to the disk. 

As previously described, a SAVE command is required to actually update the 

disk. 

7.3.6 Loose Ends 

At this point we have considered most of what is required to implement the 

virtual memory system. There are, however, still a few loose ends to tidy up. 

The virtual memory system is usually made a part of the CORE vocabulary. 

There is little point in establishing a separate vocabulary for the basic disk ac¬ 

cessing routines. When the editor is discussed, several other disk (as opposed 

to purely editing) functions will also be covered. This is simply a convenient 

place to hide the routines, since the editor vocabulary is usually disk-resident. 

A system is usually designed from its inception to include the virtual 

memory extension. This isn't surprising since most people remember spending 

the several hundreds of dollars that disk hardware costs. Even if the expensive 

part isn't acquired until later, the existing language is not lost. The INLINE 

keyword address of the outer interpreter of Section 5 could be replaced by the 

word address of the keyword INPUT as an example. INPUT is a secondary 

which is designed to choose between INLINE and MASS. A change to QUES¬ 

TION also needs to be implemented to suppress the OK message appropri¬ 

ately. 

7.4 Editor 

The threaded interpretive language editor is the tool for generating and 

modifying screens of source text. Unlike the assembler and virtual memory 

keywords, the EDITOR vocabulary keywords are not system-resident but 

must be loaded to the system when needed. The keyword EDITOR ac¬ 

complishes this by pushing the screen number of the initial editor screen to the 

stack and then calling LOAD. The first definition in the editor screen is a 

redefinition of the keyword EDITOR so that the EDITOR vocabulary can be 

discarded using FORGET when all editing tasks are completed. 
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7.4.1 Line by Line 

The basic (not BASIC) editor is line-oriented. That is, it manipulates entire 

lines of text rather than the characters within a line. The editor always 

operates on a screen of data which is loaded to the block buffers using the 

OPEN command. To modify an existing screen or to generate a new screen, 

the screen must be loaded to the buffers before editing begins. To locate 

screens or display screens, the keywords LIST and SHOW are available. 

The editor commands are fairly simple. The commands all assume that a 

line number between 0 and 15 is on the stack when the command is evoked. 

Any textual data to be input to the block buffers is done by calling the normal 

INLINE input routine. If INLINE was implemented in the core language as a 

headerless primitive, it can be given a header in the EDITOR vocabulary as 

follows: 

CREATE ■ INLINE ■ nn ■ C A! ■; 

Here nn is the address of the first instruction of the INLINE primitive, not its 

word address. (See line 9 of screen 1 in listing 7.1). One other point does bear 

on this use of INLINE; only the first 64 characters may be used rather than the 

usual 128 input characters. For example, the command to replace line 0 of the 

current screen is: 

OB REPLACE ■ 

Note that a carriage return follows REPLACE and the cursor point will im¬ 

mediately drop to the start of the next line. Any text following REPLACE will 

be ignored by the system since the input buffer is first cleared by INLINE. At 

the occurrence of the next carriage return, the contents of the first sixty-four 

characters in the input buffer are moved to the appropriate block buffer half. 

As a result of the manner in which INLINE was designed, the backspace, line 

delete, and carriage return functions work as always. In fact, an editor com¬ 

mand to clear a line is not required since a replaced line with a single carriage 

return will clear the line. The line editing commands include: 

REPLACE — Pops a line number from the stack, fills the line with spaces, and 

then replaces the line with the textual string following the REPLACE. Also 

used to clear a line. 

INSERT — Pops a line number from the stack, moves all lines from this line 

through line 14 down one line, and replaces the line originally popped from the 

stack with textual string following as if the REPLACE command were used. 

The fifteenth (last) line is lost. 

DELETE — Pops a line number from the stack, moves all lines from this line 

number plus one up one line, and clears line 15. 

TYPE — Pops a line number from the stack and displays the line. 
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To write the completed screen back to disk, the WRITE command must be 

used. The keyword CLOSE is used to free the screen area. 

Although the LIST and SHOW were presented as screen keywords, I usually 

embed them in the EDITOR vocabulary. Since screens are seldom played with 

except in the edit mode, this is not a very restrictive feature. 

Actually the editor vocabulary is used to generate itself. The editor 

keywords are first designed and then the following sequence is typed in the ex¬ 

ecute mode: 

: ■ EDITOR ■ n ■ LOAD ■; ■: ■EDITORS; ■ BnBOPEN 

This opens screen n (ie: makes it system-resident). Next, the keywords that 

constitute the editor vocabulary are entered in the system. These keywords are 

then used to generate the screen which contains the same definitions. The first 

line of the screen is defined as: 

(■ SCREEN ■ n ■ - ■ EDITOR ■) ■: ■ EDITOR ■ ; 

Note that EDITOR in both this definition and the second occurrence in the 

previous definition are simply placeholders used to forget the definitions after 

the EDITOR screen(s) are generated. This editor is the minimum configuration 

that should be considered. It can be assembled/compiled to the current dic¬ 

tionary space in less than one second (typically) and occupies about 350 bytes. 

Listing 7.1 lists the two editor screens associated with ZIPD. The editor is 

loaded by typing EDITOR and responds: 

EDITOR LOADED, DECIMAL BASE 

when loading completes. Note that ZIPD disk blocks are 256-bytes long. 

7.4.2 In a Line 

A more advanced line editor can be easily added to the line-oriented editor. 

The line editor will allow the characters within a line to be modified without 

retyping the whole line. The editor does not directly modify the block buffer. 

Rather it is used to generate a new line. When the new line is correct, it is 

moved to the block buffer to incorporate the line in the screen. 

The line editor function requires a sixty-four character array and two 

pointers. The line pointer points to the block buffer where the line being edited 

is stored. The array pointer points to the array where the modified line is being 

built. The line editor is called from the EDITOR using the command keyword 

EDIT. The keyword will first display the line whose address is on the stack, 

clear the array to ASCII spaces, set the line pointer to the first address of the 
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buffer half where the line to be modified is stored, set the array pointer to the 

first address of the array, and enter a special input mode. In this special input 

mode, all commands to the editor are ASCII control codes. The control codes 

and the action they evoke follow: 

CNTL-@(At). Echoes a CRLF, the screen line, a CRLF, and the array line up 

to the array entry point. Neither pointer is changed. 

CNTL-A (Advance). Moves the character pointed to by the line pointer to the 

location pointed to by the array pointer; echo displays the character and ad¬ 

vances both pointers. 

CNTL-B (Back). Enters a space at the current array point, decrements both 

pointers, and echo displays the backspace command. This command will not 

allow either pointer to be decremented past its starting address. 

CNTL-C (Copy). Moves the remaining characters in the line from the block 

buffer to the array buffer. Terminates when the end of either buffer is reached. 

CNTL-D (Delete). Advances only the line pointer and echo displays a delete 

symbol to the screen. (I use an 2 symbol, but this is arbitrary.) 

CNTL-E (Enter). Echoes a < symbol to the display and enters an entry mode. 

All characters entered via the keyboard except CNTL-E are moved to the array 

buffer at the array pointer location and the array pointer is advanced. A 

CNTL-E input results in the display of a > symbol and the entry mode is ter¬ 

minated. 

CNTL-F (Find). The command expects a second keyboard input. When the in¬ 

put is received the line buffer characters are copied to the array buffer until the 

line buffer character equals the second keyboard input character. Always ter¬ 

minates if the end of either buffer is reached. 

CNTL-G (Go). Moves the array buffer to the line buffer (sixty-four characters) 

and exits the line edit mode. 

CNTL-H (Home). Exits the line edit mode. 

The line editor design sketched above is but one of many approaches. It has 

one very important feature: the original line is not modified until all editing 

functions are complete. An escape command (CNTL-H) allows the current line 

to remain untouched and returns control to the editor to allow for a re-edit in 

case one becomes totally confused. For me, such touches are a requirement. 

In case you didn't notice, the commands are in the set 0 thru 8 (the ASCII 

codes for CNTL-@ thru CNTL-H). This allows a case construct to be built to 

control the calls to the various keywords that implement the actions. It is not 

important that the editor be either super-fast or super-small. It can be defined 

using existing CORE keywords rather than using a group of primitives. After 

all, its main use is to generate and modify source text which is to be saved on 

the disk. It is seldom called when any task program is actually system-resident. 

More time is lost due to the operator's snail-like pace than to keyword execu¬ 

tion. 
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7.5 Cross-Compilation 

Cross-compilation of a threaded interpretive language program refers to the 

process of generating a stand-alone program capable of executing some given 

task. The program is always generated and stored on the disk rather than in 

memory. The target address for the program being cross-compiled may be any 

memory location in the system in which it will be resident, including the 

memory space of the TIL being used to generate the program. The object of the 

cross-compilation is to generate a threaded program which can be loaded to 

the target system and which will autonomously perform some specific task. 

The programs may be developed and tested using the TIL before being cross- 

compiled. The intent is to delete all of the unnecessary features of the CORE 

language and produce the smallest possible object program. For example, the 

entire outer interpreter is the executive for the TIL and is not required by most 

programs. It need not be resident in the autonomous program. 

7.5.1 The End Result 

The easiest way to understand the cross-compilation process is to consider 

what the final object program will be like. Obviously the object program will 

contain an inner interpreter, primitive and secondary keywords, and some 

type of executive program to control execution. It will not contain the TIL 

outer interpreter (the TIL executive) nor will it contain any keyword headers. 

Keyword headers are designed to allow the TIL to thread keywords together. 

This is not required of the object program since the scope of the program is 

fixed. 

The program being generated will be stored on the disk rather than in 

memory. Actually it will be built in the block buffers and transferred to the 

disk. The target address of the program maps directly to a disk block address. 

That is, if the target address of the object program is hexadecimal 0000 to 

01FF, and the program is to be stored in block 6, there is a constant offset of 

hexadecimal 0600 between the block "address" and target memory address (ie: 

the program will be stored in blocks 6, 7, 8, and 9). 

Since the object program does not have headers in its keyword definitions, 

the "dictionary" for the object program is not available in the usual sense. The 

vocabulary for the object program is actually stored in the generating system. 

When it is searched, it will return the word address of some keyword in the ob¬ 

ject program. The object program vocabulary is essentially a symbol table of 

the word addresses for the object program. 

Because object program headers will be created in the resident vocabulary 

but the code addresses will be stored in the object virtual space, all defining 

words are redefined in the cross-assembler. The keyword CREATE in the 

cross-assembler generates a header in the OBJECT vocabulary and saves the 
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address of the next available location in the free object program space at word 

address location of the keyword. It then stores a pointer to the word that 

follows the next free object location at the build address and increments the 

free object space location pointer. This creates a primitive code address in the 

object program code whose word address is stored in the word address of the 

header in the OBJECT vocabulary. This is diagrammed in figure 7.2. Note that 

the virtual address where the object code is stored (the build address) is not the 

same as the target memory address where the object code will be located but is 

offset. This offset is the offset from object to virtual memory (0300 in our ex¬ 

ample). 

RESIDENT OBJECT VIRTUAL 
ADDRESS 

Sgure 7.2: A cross-compiled DUP primitive example. 

The point of all of this is not nearly as strange as it first appears. To build a 

secondary implies locating a word address to be enclosed in the object dic¬ 

tionary space. This word address is the word address of the keyword in the ob¬ 

ject program when it is the resident program. The dictionary headers are, 

however, being added to the TIL free dictionary space, not the object space. 

Further, the virtual address of the place where the code is to be stored is dif¬ 

ferent from the object address where it will finally be located. This concept is 

central to understanding the cross-assembler. 

The keywords that enclose data in the object dictionary ("," and C,) also 

must be redefined in the cross-compiler. This impacts the entire assembly pro¬ 

cess. A cross-assembler must be available to build entries to the object pro¬ 

gram and store them to the virtual memory build space. Defining words such 

as VARIABLE and CONSTANT must also be redefined. Even the number¬ 

handling routines of the outer interpreter are different in the cross-compilation 

mode, since the literal handlers are differently located. The cross-compiler is 

very different from the normal compiler/assembler. 
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7.5.2 The Process 

The cross-compilation of TIL programs requires a substantial redefinition of 

the resident TIL program. The cross-compiler is usually disk-resident. When it 

is evoked, the cross-compiler and cross-assembler are loaded to the system. Ef¬ 

fectively an entirely new outer interpreter is contained in the cross-compiler. 

The object program to be cross-compiled is also resident on the disk in source 

text form. 

The usual technique is to define a special load screen for cross-compiler ob¬ 

ject program generation. This screen includes the source text for an inner inter¬ 

preter and several of the most useful keywords. These include the keywords to 

support the branch and loop constructs, the defining words, literals, some 

basic arithmetic, memory reference, relational, stack and interstack keywords. 

(If some of the keywords are known to be unnecessary, this general-purpose 

screen can be copied and edited first.) The screen is loaded by the cross- 

compiler and becomes the core of the object program. 

A second general-purpose screen is then loaded to establish the variable 
storage policy for the object program. If the object code will be placed in read¬ 

only memory, special provision for correctly allocating variables to the pro¬ 

grammable memory must be included. Otherwise the variable storage can be 

in-line. One of two screens is loaded to the system to establish the variable 

storage protocol. 

Unless you are very lucky, the keywords embedded in the object program to 

this point do not match the requirements of the object program load screen. If 

the object program was generated by redefining all those keywords needed to 

support the object code except those known to exist in the core object screen, 

the object program screen can be loaded to produce the final object program. 

In either event, remember that all keywords must be defined before they are 

used in another definition. 

It should be noted that the object program cannot be tested in the normal 

system environment in its final form. The load screen used to generate the final 

object program can be checked out interactively but the final object program 

cannot. By including definition of all the keywords except those known to ex¬ 

ist in the core object screen, a fairly high degree of assurance that the object 

program is correct can be achieved before cross-generation. 

7.6 Widget Sorters 

Because the etiology of widgets is an obscure science, I won't even discuss 

widgets here. Instead, I will discuss something even more vague. 

The system software necessary to control the hardware is generally referred 

to as the system monitor or the operating system. This software may be writ- 
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ten in threaded code just as easily as any other program. The I/O routines 

should still be coded as subroutines to allow access by other programs, but this 

is a minor point. A review of the keywords and extensions will reveal that 

most of the features of a general-purpose system monitor program are 

available in the TIL. 

There are several functions that are usually available in a system monitor 

that have not been considered in the TIL. These include several debugging 

features and utility functions. The core monitor features include the ability to 

generate, display, and test programs, the ability to load programs to memory 

and save programs on mass media, the ability to test the system hardware, and 

the ability to perform housekeeping chores of various types (such as I/O). 

There are several ways to generate a threaded system monitor. The most 

simplistic approach is to design an outer interpreter that has the ability to ex¬ 

ecute keywords but does not have a compile mode. This approach results in a 

substantially smaller outer interpreter with far fewer keywords needed to sup¬ 

port the outer interpreter. This fixes the scope of the monitor at build time. A 

2 K-byte monitor of this type will support an amazing number of features. 

Only the keyword directly available to the operator needs headers, which 

helps shoehorn the system into 2 K-bytes of memory. 

Using this approach, the full-blown compiling outer interpreter must be a 

separate program. The inner interpreter for the system monitor can be used by 

the more comprehensive language exactly as if it were a utility program. All of 

the keywords with headers can also be used if this is done. The primitive 

keywords without headers in the system monitor can be given headers in the 

main language with suitably defined coding addresses. 

It should be noted that even though the system monitor is a threaded inter¬ 

preter, this does not imply that only threaded code can be supported by the 

system. The monitor must be capable of loading a program to memory. It does 

not care what the contents of the memory load are. By defining an uncondi¬ 

tional jump keyword to the address at the top of the stack, any program can be 

executed. I do run BASIC in a system with a threaded system monitor. 

A saner but larger monitor can be constructed using a full compiling version 

of the outer interpreter. The virtual memory features can be included in this 

type of a monitor. Not all of the language features of the general purpose 

language need be contained in the monitor. By concentrating the resources on 

I/O and other essential features, a subset of the language will suffice. The full 

language can be called into play via a load screen. This is somewhat of an ad¬ 

vantage in that only the monitor software need be in a fixed location. By set¬ 

ting the dictionary pointer before calling the load screen, the language may be 

relocated at will to any area of programmable memory. 

There are several tacks that can be taken to achieve the desired goal. Most 

involve bootstrapping. For example, the initial bootstrapping operation for 

my Z80 system started with a 1 K-byte read-only memory monitor on the cen¬ 

tral processing unit board. The monitor was debugged on an 8080 system; the 

read-only memory was programmed and then installed in the Z80 system. 

Using this monitor, the disk system (with its own read-only memory bootstrap 

loader and disk operating system) was then installed. The disk operating soft¬ 

ware was then specialized to the Z80 I/O using the 1 K-byte read-only 
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memory monitor. Using the combined disk operating system/1 K-byte moni¬ 

tor, a new system disk was generated that bootstrapped not the disk operating 

system, but a more extensive system monitor. This monitor was then used to 

develop the threaded system monitor. Finally, a more extensive disk bootstrap 

loader was generated and burned into a 1 K-byte read-only memory, and the 

disk read-only memory and original system monitor read-only memory were 

removed. In the end, a power-on or master reset boot loads the threaded 

monitor from the disk. Other programs, such as BASIC, have their own in¬ 

dividual bootstrap loaders. They can be loaded autonomously or by the 

threaded system monitor. 

By suitable trickery, a fairly universal operating system can be developed. 

The compiling version of the system can even allow the development of 

relocatable system utility software. As an example, a disassembler can be writ¬ 

ten in threaded source code as a load screen. The advantage of this is fairly 

simple to see. A program to be disassembled can generally be located at its in¬ 

tended load point (unless it is located in the system monitor area). The 

disassembler can be loaded to any free memory area by setting the dictionary 

pointer prior to loading the appropriate screen. This leaves the source to be 

disassembled where it should be, resulting in an easier disassembler design. 

The ability to extend the language to system software has a subtle advan¬ 

tage. There exists only one protocol and one set of input commands for both 

the system and the language itself. There is no question about separators being 

commas for one command language and spaces for another. The keywords 

evoke the same response in both languages unless purposefully changed. 

Uniformity has its advantages. 

7.7 Floating Point 

All of the arithmetic keywords considered so far have been restricted to 

signed integers. There is no fundamental reason for not building a floating¬ 

point arithmetic package for the TIL if it is required. If scientific computations 

are needed, the TIL will certainly support your requirements. The only reason 

that my current TIL does not support floating-point is my lack of time to teach 

the beast the basics. A quick sketch of the fundamentals should point the more 

ambitious in the right direction. 

7.7.1 Formats 

There are as many floating-point formats kicking around as there are opin- 
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ions about what constitutes beauty. All of the formats eventually reduce to the 

form: 

N = ± A X B±c 

In this form A is called the mantissa, B is called the exponent base and C is 

called the exponent. After this simple fact is stated, all sanity disappears and 

emotion ensues. 
The mantissa is usually constrained to be in the range: 

B‘ < |A| <B,+1 

where i is an integer. Simply because computers are usually (but not always) 

implemented as binary machines, the exponent base B is usually selected to be 

some power of 2. Because B is selected a priori, it is not explicitly carried 

within the floating-point number format but is implicit in the computational 

routines. What needs to be carried in the floating-point representation is: the 

sign of the mantissa, the mantissa magnitude, the sign of the exponent, the ex¬ 

ponent magnitude, and, finally (because of the mantissa constraint), some in¬ 

dicator of a zero mantissa condition. 

Since computers are computers and generally recognize only integers (and 

usually binary integers at that), there are some fundamentally rational ways to 

define floating-point number formats. The way the format is designed affects 

the attributes of the numbers to be represented. Two common choices for the 

exponent base are 2 and 16. The numbers can be represented for the case i = 

— 1 as: 

±A1X2±C ±A2X16±c 

0.5< |Ai| <1.0 0.0625< |A2| <1.0 

Given a maximum integer value for C, the dynamic range of the A1 format is 

much less than that of the A2 format. This is easy to see since 2128=1038 but 

16128= 10154. The larger the value of B, the fewer bits needed for C in order to 

achieve the same dynamic range. The dynamic range advantage for a larger 

value of B does not come for free. As a scaled binary number, the Al format 

always has a 1 to the right of the binary radix point. The A2 format may have 

up to three leading zeros to the right of the binary radix point before the ap¬ 

pearance of a 1. Given the same number of bits to define A, the Aa format 

always has the same number of significant digits but the A2 format does not. 

To illustrate this, consider a floating point number which is first divided by 2 

and then multiplied by 2. In the Al format, the value of Al would not change 

since the divide and multiply affect the value C only. In the A2 format, the 

divide could result in a right shift of A2 and no change to C. The least signifi¬ 

cant bit of A2, if it were 1 set, would be lost by the divide and not recovered by 

the multiply. In fact, there are variations of up to 3 bits in the significance of 

the A2 format due to the choice of C. 
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Two common formats for floating-point numbers are given in figure 7.3. 

/'-RADIX POINT 

IBM 

p 

MANTISSA SIGN BIT 

V___J ^ j 

24 BIT MANTISSA 8 BIT EXPONENT, 

BASE 2, EXCESS 128 

Figure 7.3: Two common floating-point number formats. One is used by IBM, the other 

is in general use. 

In both formats, the exponent is carried as an excess number and the special 

case of C = 0 indicates that A = 0. For example: 

Exponent Value Exponent Mantissa 

in Hex _ 

FF 2+127 

TFormat 80 2° > 0.5< A<1.0 

01 2~U7 s 

00 - A = 0 

In the IBM format, the mantissa is allocated 24 bits but may have only 21 

significant bits. In the "7" format, the MSB (most significant bit) is known to 

be a 1 so that it is hidden by the sign bit which overlays the MSB. In both for¬ 

mats a mantissa sign bit of 0 indicates a positive mantissa and a mantissa sign 

bit of 1 indicates a negative mantissa. 

If your computer supports hardware floating point, all of this is moot since 

it fixes the format to be used. If not, the ideal format depends on your re¬ 

quirements for precision, dynamic range and the ease with which your format 

can be mechanized on your machine. Since some microcomputers support 

BCD (binary coded decimal) arithmetic, even these forms of floating-point 
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arithmetic are feasible (ie: an exponent base C of 10). 

Within the constraints of most microcomputer instruction sets, the fastest 

floating-point arithmetic routines are usually exponent base 2 formats. If speed 

is not the important criteria, select the format with the right attributes for your 

application. Whatever the criteria, the use of formats with multiples of 16-bits 

are generally preferred for TILs since the stack is 16 bits wide. 

There are actually four different formats associated with TIL floating-point 

numbers: the conceptual format, the format used to store floating-point 

numbers in code bodies or when in threaded code lists as literals, the format 

when the number is on the data stack, and the I/O (input/output) format. 

There are no fixed rules for designing these formats. The 'right" answer 

depends on the microcomputer and the ease of the implementation. 

7.7.2 Floating Keywords 

The keywords required for floating-point manipulation are remarkably 

similar to those required for integer manipulation. The biggest potential 

change to the TIL in adding floating-point involves the I/O. None of the outer 

interpreters considered to this point allowed for the possibility that an input 

number could be a floating-point number rather than an integer number. 

There are several ways to correct the I/O to allow this eventuality. 

The floating-point philosophy is exactly the same as the integer philosophy: 

data type resolution is incumbent on the programmer. All floating-point 

keywords are predicated on the stack being preloaded before the keyword is 

evoked. The necessary keywords for general programming are relatively easy 

to predict. 

The stack-oriented keywords consist of FDROP, FDUP, FOVER and 

FSWAP as a minimum. The only essential difference between these keywords 

and the equivalent integer versions is that a single floating-point number oc¬ 

cupies two (or more) consecutive stack entries. The interstack floating-point 

operators F<R and FR> are simply multiple transfers of floating numbers. 

The memory reference operators F@, F! and F+! involve conversions be¬ 

tween floating-point stack and memory formats. The F+! operator does not 

have the utility of the -I-! operator and may not be needed. 

The floating arithmetic operators include FABS, FMINUS, F + , F —, F*, F/, 

F/MOD, FMOD, FMAX, FMIN, and F10*. Obviously this is where the nitty- 

gritty of the floating-point resides. Oddly enough, FABS and FMINUS are 

easier to implement than ABS and MINUS. If only the remainder were! The 

floating-point relational operator includes F = , F>, F<, F0 = , and F0< . The 

first three of these routines are mildly complex. 

Clearly, floating-point defining words FCONSTANT and FVARIABLE and 

a floating-point number literal handler *F# are required. Routines to convert 
signed integers to floating-point (ITOF) and floating-point to integer (FTOI) 
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are also desirable. A floating-point output routine such as F. would be nice 

too. Except for ITOF and FTOI, these routines are concerned with I/O and 

I/O formats. 

There are several ways to implement the I/O routines. One method is to 

change the outer interpreter to allow floating-point input numbers to be 

generated if a token is one of the following forms: 

N = (X 

( XEY 

where: X =/ i. 

1 i.J for i and j integer base 10 

Y=j i 
(— i for i integer base 10 

This change to the outer interpreter is clearly the preferred implementation 

since the system can decide whether to push the result to the stack (execute 

mode) or add the floating-point literal handler plus the floating-point number 

to the threaded list (compile mode). 

An alternate approach is to define two separate keywords. A keyword 

named FLOAT could be defined to scan the next token from the input buffer, 

convert the token to the internal floating-point stack format and leave the 

result on the stack. An immediate keyword could perform a similar conversion 

in the compile mode except it would enclose the floating-point literal handler 

plus the converted number to the threaded list of code being compiled. This 

method works but does have the potential for error. 

7.7.3 Summary 

Clearly, there are many additional operands that could be defined to extend 

the system capabilities beyond the level supported by these relatively 

simplistic operands. Once a floating-point capability is available, trigono¬ 

metric and other mathematical functions are reasonable candidates. All of this 

is in the works for my TIL, with a floating-point design half complete and my 

eye on cordic-based mathematical algorithms. 
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7.8 Extension Summary 

The extensions to the language are a somewhat mixed blessing. As more and 

more features are added, the language becomes bigger and bigger. On the 

other hand the language utility increases. However, the good part is that an 

initial threaded interpretive language of size 4 K can grow and grow as the 

system grows. A 12 K-byte TIL should support an absolutely incredible set of 

capabilities. I simply cannot imagine a TIL of that size. 
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8 | Life With a TIL 
When it comes down to brass tacks, living with most pro¬ 

gramming languages is like living with your mother-in-law: 

tranquility interspersed with moments of incredible rage. 

The most insidious aspect is getting the "thing" to do what 

you want. For "thing" read mother-in-law, BASIC, FOR¬ 

TRAN.but not TIL. 

8.1 Starting Out 

The aspect of the TIL which is most enjoyable and also the most hazardous 

is its interactive nature. TILs love to "talk" to people and are extremely adept 

at learning (given proper guidance). TILs are very happy to reveal their inner¬ 

most secrets and show you their home. There is no part of the system which 

can't be displayed, changed, manipulated, and occasionally messed up in your 

conversations with the TIL. The problem is the very ease with which new 

keywords can be added to the language. It leads to the "design-at-the- 

keyboard" (DATK) syndrome. 

The only known cure for the "design-at-the-keyboard" syndrome is a 

deliberate effort on the part of the programmer to design a program before the 

keyboard is touched. Designing a TIL program is not much different than 

designing in other languages. A TIL does demand a modest amount of struc¬ 

ture in a program: that is, a keyword cannot be used before it is defined, and it 

does demand that the structured construct syntax be complete (ie: a LOOP or 

+ LOOP must terminate a DO). The actual structure of a program must be en¬ 

forced by the programmer. 

In designing a TIL program, I generally attack the problem in a very rigid 

fashion; design the keywords from the top-down and then enter the program 

in a fixed format. The fixed format for program entry is a self-enforced, 

disciplined technique, rather than something demanded by the language itself. 

The other steps are simply common sense. (Programming does demand a cer¬ 

tain amount of common sense, although I will admit that some programs 

reflect more than others.) It should be pointed out that the techniques I will 
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espouse are designed to preserve my sanity, since they work and work very 

well. 

8.2 Program Structure 

There are several reasons for insisting on a fixed structure for a program. 

Fundamentally it allows one to reconstruct the crime at some later point in 

time from the scattered remnants of keywords covering the battleground. 

There is nothing worse than trying to figure out some program post-facto. 

Ideally the program should be a source code version stored on the mass media 

rather than an embedded program in some vocabulary. In any event some 

type of listing of the program should be created during the build process to 

allow later program modification or simply to allow precise determination of 

what the code actually does. 

The structural aspects of the program are designed both to satisfy the 

undefined keyword problem and to put items that are declared in a logical 

order. All programs are arranged as follows: 

• Vocabulary definitions. 

• Data type definitions. 

• Global data definitions. 

• Procedure definitions. 

• Main program. 

While this is the general format of a program, a certain amount of 

precedence must exist within each category. This will become obvious later 

(hopefully), since it is part of the design process. 

8.2.1 Vocabulary Definition 

Defining the vocabulary is fundamental to determining the resources 

available for program design. Almost all programs (except for cross-compiled, 

stand-alone programs) are linked back to the core vocabulary. How the pro¬ 

gram is linked to the core language can seriously affect the attributes of the 

program. For example, consider that a complete floating-point arithmetic 

package exists as a separate vocabulary that is linked to the core vocabulary. 

The floating-point vocabulary could contain a complete set of keywords for 

the generation, manipulation, and display of floating-point data types. By 

linking the new program vocabulary to the floating-point vocabulary rather 

than directly to the core vocabulary, the new program could contain both in- 
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teger and floating-point data types. 
The rationale for linking indirectly to the core vocabulary through a 

vocabulary such as the floating-point vocabulary only makes sense if the 
linking vocabulary is always system-resident or if the linking vocabulary 
redefines keywords that also exist in the core vocabulary. In the case of the 
floating-point vocabulary, both the floating-point data declaration types and 
other definitions are contained in the vocabulary. The data declaration types 
need to be available before global data definitions are attempted. 

In cases where it is desired to include an entire library of standard functions 
in a new program, an alternate technique to vocabulary linking can also be 
used. How this is done is dependent upon whether the new program is being 
built on disk or is being interactively defined. If the program is being built on 
the disk, the library screens are first duplicated, the first screen of the library 
routine is reidentified as the first screen of new program and the screen load 
linkages are redefined to incorporate all of the library screens. The reiden¬ 
tification should include the name of the new program as a keyword definition 
to allow FORGET < new program> to delete the entire program. It is simply 
required to type in the names of the library functions desired after the 
vocabulary is established. Simply including the names of the desired library 
functions on a screen will not work. The screen calls are not nested so that the 
appearance of the library-loading keyword in another screen will load the 
library but will not return to the calling screen. If you want, a routine called 
LIBRARY could be defined to initiate a screen-load nesting operation. The 
final screens in each library vocabulary would have to contain the denesting 
code to complete this scenario. 

The important point about the vocabulary definition step is that it defines 
the basic capabilities available to the new program. Keywords that are unique 
to the new program are not placed in libraries or added to the resident 
vocabularies to allow linking via the unique vocabulary. The vocabulary 
definition simply establishes the basic keywords available as resources to 
define the unique keywords of the new program. 

8.2.2 Data Type Definitions 

The basic TIL language contains only limited predefined data types. De¬ 
pending on how you have defined the language, arrays, strings, user blocks, 
and other data types may not be available to a particular applications pro¬ 
gram. If required, they must be added. Data files unique to the program and 
the record structure of the data files must be defined along with any unique 
data type definitions. The keywords for the data and file definitions must 
precede the definition of the global data. In this case the appearance of the data 
type definitions before data declaration is required. Simply demanding that 
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they all appear in one place is not required; it is common sense. 

8.2.3 Global Data Definitions 

Although it has not been stressed to this point, a TIL distinguishes between 

local and global data. Any named data such as a variable is globally available 

via its keyword name and occupies dictionary memory space. Data passed to a 

procedure or program on the stack or stack data internal to the procedure is 

local to the procedure and occupies stack memory space. Local data may be 

nothing more than a copy of global data, but once the quantity is on the stack, 

it is local data. 

One other interesting feature of a TIL is that it allows data passage by value, 

by address, by pointer to an address, or by any other conceivable means. Ex¬ 

amples of the first three methods are constants, variables, and user variables. 

In all cases the correct resolution of the data rests with the programmer and 

not the system. 

In defining global data, I generally define the keywords in the order of in¬ 

creasing complexity. Constants are defined first, followed by variables, ar¬ 

rays, pointers, strings (messages), data files and records, etc. An important 

point about defining data keyword names is to make them descriptive. Proper 

keyword names and suitable usage of the keywords in subsidiary definitions 

lead to much more lucid programs. The use of a constant keyword with a 

descriptive name is much preferred, for example, over the isolated appearance 

of some number in the middle of a keyword definition. Although this is at 

odds with the desire to conserve memory, a self-documenting keyword is a 

boon to understanding the intent of the program. 

8.2.4 Procedure Definitions- 

The procedural definition phase is where all of the keywords required to 

support the main program are defined. Procedures may be operands, func¬ 

tions, subroutines, program control directives, or other actions required by 

the main program. Because a keyword cannot be referenced before it is de¬ 

fined, it is not unusual to observe a natural precedence in the entry order for 

procedures. The "natural" precedence order is from the most primitive level to 

the most sophisticated level. Usually this is precisely the order demanded by 

the define-before-use criteria. 

During the procedure definition phase, it is not unusual to incorporate 

library routines by stealing the source code from the disk and merging it with 
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the program source code. A library of such source code routines is very helpful 

in generating programs. As an example, trigonometric floating point routines 

could be stored on the disk in a library file. Those routines required by a given 

application program could be copied to the procedural definition area of the 

program. This process limits the resulting program size since only the subset of 

the library really needed for the application is added to the program. Devel¬ 

oping the library is not easy, but it is easier than regenerating the same 

routines each time an application stumbles by. 

As in the case of the global data, names of the procedures are important. 

Comments are also helpful. Anything that supports an understanding of the 

procedures will turn out to be useful in the final analysis. 

8.2.5 Main Program 

The TIL main program will always turn out to be the final keyword defini¬ 

tion in an applications program. There may actually be several interrelated 

main programs, but this is an exception rather than the rule. The editor 

vocabulary can be viewed in this context, for example. The more usual situa¬ 

tion is to have a single main program. The appearance of the main program as 

the last entry is consistent with the fact that keywords cannot be used before 

they are defined. 

A TIL main program is often a loop which returns to the outer interpreter 

only on operator command. Whatever its design, it is a stand-alone program 

which is not constrained to have the same characteristics as the outer in¬ 

terpreter. The operator's interactions with the program are defined by the pro¬ 

gram design. 

8.2.6 Physical Records 

Any TIL application program must exist somewhere as a source code listing. 

This may be in program screens on disk or it may be on the back of a laundry 

ticket or it may be only in the mind of the programmer. The above list is in 

decreasing order of preference. The subtle inference that a disk system is 

available is embedded in the entry structure discussion. The fundamental ad¬ 

vantage to the disk is that it produces a self-documenting file when the entry 

takes place. This is not true of the other methods of listing generation. 

If the mass media supported by your system is cassette storage, source file 

generation and program retrieval are much more difficult. Usually hand 

documentation combined with recording of the object file (the entire TIL 
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language with the application program already entered) is required. Other 

methods that allow saving or loading only the source file could be designed but 

they usually require fairly large memory blocks for the source code. At that, it 

is to be preferred over hand documentation. 

Given that a disk system is available, one important factor must be raised. 

Store your applications programs on a disk different from your system disk. 

The system disk should contain a bootstrap loader for the TIL, the basic TIL 

language, the operator message block, system utilities such as the editor, and 

the library routines. An application program should be on a separate disk 

which contains only the operator message block, applications programs, and 

possibly the application data files. Intermixing the system and applications 

programs on a single disk is rarely an advantage. 

The physical records of any program determine the long-term utility of the 

code. Undocumented or poorly documented programs are as useful as a JSW 

(jump somewhere) assembler mnemonic. 

8.3 Program Design 

As has been noted, the disadvantage of a TIL is that its interactive nature 

can lead to poor programming practice. It is so easy to add, check-out, and re¬ 

tain code that program design tends to occur at the keyboard rather than at the 

desk (the DATK syndrome). Program entry must be bottom-up, but a bottom- 

up program design leads to a poor design. The design stage must be top-down 

if a reasonable design is to result. 

So much has been written about top-down design that I hesitate to muddy 

the water with my oar. Suffice to say that there are advocates of flowcharts, 

structure charts, ALGOL-like languages, HIPOs, Wamier-Orr diagrams, and 

numerous other techniques, all of which are advertised as being the technique 

for top-down design. Use whatever technique you feel comfortable with. 

Whatever design approach you use, if it isn't straight-out TIL code, a conver¬ 

sion to TIL code format is necessary before a real design exists. I shall concen¬ 

trate on the TIL code format. 

8.3.1 Vertical Design 

The top-down design of a TIL program or procedure (ie: a keyword) should 

ideally result in both a syntactically and semantically correct design. Although 

there are no quick and easy rules for determining the total correctness of a 

given definition, there are some guidelines that help during the design phase. 

The TIL entry format of tokens separated by spaces does not readily indicate 
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the underlying structure of the definition. During the design phase, I use a ver¬ 

tical format with setbacks to more clearly indicate the structure. For example: 

: ■ JOB BBEGIN ■ WORD1 ■ WORD2 BTEST ■ 
IF BTASK1 ■ ELSE BTASK2 ■ THEN ■ FLAG ■ END ■; 

: IJOB 

BEGIN 

WORD1 

WORD2 

TEST 

IF 

TASK1 

ELSE 

TASK2 

THEN 

FLAG 

END 

Although both definitions are precisely the same, clearly the vertical format 

with setbacks is far more informative of the keyword structure than the 

horizontal format. In the vertical format it is much more obvious that the syn¬ 

tax of the constructs is complete. Simple syntax completeness will not prove 

program integrity, but the lack thereof will assure problems. 

Given that the top-level form of the main program keyword is defined, the 

local (stack) data at the completion of each keyword in the definition is noted 

to the right of each keyword used in the definition. This is a fairly simple way 

to display the stack input/output requirements. The changes to the global data 

are every bit as important, but not as evident at any given stage in the program 

design. It is clear, however, that local data disagreements are fatal. In noting 

the keyword stack data I/O requirements, I distinguish between flags, 

numbers, addresses, pointers, and other data types. It is important that the 

stack depth and types be in agreement with the keyword I/O needs. If the 

keyword is undefined at the next lower level, the I/O requirements are in¬ 

dicative of the algorithmic transfer function needed to define the keyword. If 

the keyword is defined, the I/O and computational functions must match the 

keyword definition. 

The identification of the I/O and processing requirements of all the unde¬ 

fined keywords in the main program completes the top level design of the pro¬ 

gram. The total design of the program is not complete until all of the keywords 

have been completely detailed. This involves exactly the same techniques as 

used on the top-level keyword. 

At the top-level design stage, the use of macroinstruction secondary 

keyword definitions greatly simplifies the overall design. A macroinstruction 

secondary keyword is simply a keyword that serves as an alias for a group of 

keywords (ie: a subroutine or subprogram). The outer interpreter of Section 5 

has several examples of macroinstruction secondaries (eg: 7NUMBER, ?EX- 

ECUTE, etc). 
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The identification of global data requirements is among the more difficult 

tasks in program design using any language. A threaded interpretive language 

will not make this aspect any easier. The subject of data structures is so impor¬ 

tant that many texts are devoted solely to the data structure aspects of pro¬ 

gram design. A list of the keywords which initialize, use, or change each global 

parameter is very helpful. This is aided by noting, to the right of the stack I/O 

for each keyword in the total program, a list of the global parameters used 

directly by the keyword. Unfortunately there is no ready way for the system 

itself to aid in the documentation of the global data changes. 

8.3.2 Program Executives 

A TIL program does not necessarily use the outer interpreter as the control¬ 

ling executive. It is perfectly feasible to design a TIL program which, when 

evoked, never returns control to the outer interpreter. This implies that the en¬ 

tire I/O protocol for a TIL program can be redefined and need not follow the 

interactive protocol established by the outer interpreter for program genera¬ 

tion and execution. In short, the TIL is only a resources base for the design of a 

program and does not constrain the program/user interactions. 

A more useful situation involves a program executive which will return con¬ 

trol to the outer interpreter only if a specific event occurs. The design of such 

an executive is not difficult. The fundamental program executive is designed as 

a loop with a jump out of the loop embedded within an IF construct. Escape 

code such as this is desirable particularly during the program checkout phase. 

A program executive serves as the main program in most designs. This outer 

executive can cause a lower-level executive to be called as the result of some 

event. This nesting of executives commonly occurs to cause changes to I/O 

protocols. As an example, the EDIT command of the EDITOR evokes a lower- 

level command structure in which a subset of the ASCII control codes is 

recognized. The CNTL-E (ENTER) command in this structure then evokes a 

still lower-level executive with an entirely different set of I/O protocols. In 

both the EDIT mode and the ENTER submode of the EDIT mode, the code 

design uses the primitive keyword KEY to access the I/O device: the keyboard. 

The existence of primitive I/O keywords such as KEY is the attribute of the 

TIL which allows designs of this type to be mechanized. 

8.4 Entry and Test 

Entering the code really involves more than typing in the keywords. I use a 

more complex approach in that keyword testing is intermixed with keyword 
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entry. Although the design was top-down, the coding and testing will occur in 

a bottom-up fashion. 

8.4.1 Keyword Contention - 

The very first step in any program entry after the establishment of the 

vocabulary linkage is a test for keyword duplication. The proposed keyword 

names are tested using the sequence ■' ■ < name > ■. ■. If the keyword is 

present in the vocabularies, the word address of the keyword will be displayed 

to the operator. At this point the choice is to rename the keyword or to allow 

the definition in the new program to take precedence. This latter course will 

eliminate use of the older keyword in the current program. If the keyword is 

not present, an error message will be echoed to the operator and the name is 

known to be acceptable. This simple test avoids grief. More than once I have 

discovered duplicate keywords and/or contending keyword names simply by 

not following this procedure. 

8.4.2 Keyword Testing 

Each keyword is tested as it is entered. If the program is being built on a 

screen, keyword definitions are added one at a time. After each new definition 

is added, the current program is deleted from the system using FORGET, and 

then the screen is reloaded for testing using the LOAD command. The newest 

keyword is then tested and debugged before the next definition is added to the 

screen. 

Keyword testing is unusually simple for any TIL. First, any global data 

manipulated by the keyword is initialized. Input stack parameters are then 

typed in while in the execute mode, followed by the name of the keyword be¬ 

ing tested. Any results left on the stack can then be examined using the 

keyword. Always attempt to output one more stack item than is expected. If a 

stack error message does not result, a problem exists with the definition. Any 

global data manipulated by the keyword is then examined to confirm data in¬ 

tegrity. All keywords are tested including the global parameters. 

The most difficult part of keyword testing is the design of the local and 

global data values needed to completely test the keyword. All possible paths 

through the keyword code should be exercised and the various extremes of all 

algorithms should be tested. This usually requires a good deal of thought on 

the part of the programmer/designer and may explain why most "tested" code 

comes asunder at embarrassing moments. 
When approached in this rather methodical manner, most, but not all. 
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errors of oversight and negligence are revealed. This level of testing will not 

uncover all possible programming errors. A bad algorithm carefully coded and 

tested is still a bad algorithm. Further, an exhaustive test of all possible paths 

through a program may not be feasible. At this point you might as well resort 

to prayer beads because I can guarantee that if you don't test them all, an error 

will occur in a path you did not check. 

8.5 Tricks of the Trade 

As in any programming language, operating system, or other substantial 

chunk of code that interacts with a user, a degree of familiarity is required to 

become truly comfortable with the operator protocol. An advantage to de¬ 

signing your own language is that you have complete control over the pro¬ 

tocol. There is absolutely nothing sacred about any part of a TIL. If you really 

want to emulate the operator protocol of some system you are familiar with, 

do it. It may require a substantial amount of work to design the parser, but it 

can be done. The capabilities of a TIL are in how ingeniously you can define 

what you need for your problem, given your environment. 
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Bibliography and Notes 

Part of the problem in writing a bibliography for a text of 
this nature is the broad range of subjects one would like to 
cover. This is much easier said than done. The other part of 
the problem is the dearth of material on threaded inter¬ 
pretive languages. 

Of the potential number of subjects which could be covered, a very limited 

number will be considered. This is partially due to the vast amount of 

computer-related literature and partially due to my own laziness. The selected 

references cover most of the threaded interpretive language sources that I used 

in the development of the TIL I use. I am aware that others exist, but I do not 

have access to them. The other references are mostly background material or 

material useful to extending a TIL in new directions. 

Interpreters and TILs 

The simple utility of interpreters is well-known. The use of interpreters is as 

old as the art of computer programming. Gries, for example, devotes a chapter 

in a compiler design text to the subject of interpreters and their utility. Almost 

all BASIC languages are implemented as interpreters rather than as compilers. 

Allison, et al, present a fairly simple method for generating an interpreter for 

Tiny BASIC. It is relatively simple to extend this concept to other languages. 

The interpretive language or y/onion" approach espoused is very similar to the 

threaded code approach. Forsyth and Howard discuss trade-offs of inter¬ 

preters, threaded interpreters, and compilers on microprocessors, but con- 
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elude that threaded code is "troublesome" to implement on an 8-bit 

microprocessor. It might be well not to press this point with an experienced 

FORTH programmer. 

Most of the literature on threaded interpretive languages is very FORTH- 

specific. Variations on basic FORTH semantics and syntax appear in languages 

such as IPS and in STOIC, a language that I have not investigated. James gives 

an excellent overview of FORTH and a brief description of how it is mechan¬ 

ized. There is not quite enough description to allow a variation of FORTH to 

be implemented. The microFORTH PRIMER is also descriptive, particularly 

with regard to register assignments, but does not come close to a full discus¬ 

sion of the language. I am sure that FORTH has fully descriptive documents, 

but they are not publically available. The DEC Users' Society Program Library 

document is available and contains a great deal of mechanization detail for a 

PDP-11 version of FORTH. Still another version of FORTH is discussed by 

Rather and Moore (the latter being the original developer of FORTH). The 

reference gives timing comparisons between BASIC and FORTH, although it is 

difficult to judge benchmarks when the absolute test conditions are unknown. 

Background and Extensions- 

The design of the screen keywords implies at least a basic understanding of 

file structures. I have never been particularly enthralled with the screen 

keywords I designed for ZIPD, my current TIL. Klein explains at least the fun¬ 

damentals of file structures and management, which could serve as a point of 

departure for a screen keyword redesign. Files are not my strong point and I 

can easily envision improvements being made by someone with a better 

perspective on files. 

The design of the assembler is somewhat primitive, mostly because of its in¬ 

tended use simply as a keyword extension tool. Extending the assembler to a 

fully relocatable, macroassembler would be nice. Fylstra and Emmerichs are 

references which introduce the assembler problems and offer solutions to some 

of the more common problems. Both of the texts are tutorial, but present 

useful approaches. 

The extension that I most want is floating-point arithmetic keywords. Time 

to design the keywords has been the problem. The essentials are available in 

Hashizume and Rankin and Woziak. The former presents flowchart-level 

designs for floating-point routines while the latter presents a code design for a 

6502. A modest amount of conversion should yield a code design for some 

other microcomptuer (such as my Z80). 

Widget Sorters 

The definitive reference to widgets is Kripke. This text depicts the conver- 
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sion of lignite glop, anthracite glop, and hard glop into high-grade and low- 

grade muckle by the Acme Muckle Mfg. Co., and the subsequent use of the 

muckle by the Amalgamated Widget Works to manufacture widgets. 

Although an overabundance of time is spent discussing the partial derivatives 

involved in widget production, little thought is devoted to the problem of 

sorting and grading the widgets produced. If anyone finds the definitive widget 

sorting reference, please put it in a bottle addressed to the author. 
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