
218 Chapter 9: The Pseudocode Programming Process

9.2 Pseudocode for Pros
The term “pseudocode” refers to an informal, English-like notation for describing how
an algorithm, a routine, a class, or a program will work. The Pseudocode Program-
ming Process defines a specific approach to using pseudocode to streamline the cre-
ation of code within routines.

Because pseudocode resembles English, it’s natural to assume that any English-like
description that collects your thoughts will have roughly the same effect as any other.
In practice, you’ll find that some styles of pseudocode are more useful than others.
Here are guidelines for using pseudocode effectively:

■ Use English-like statements that precisely describe specific operations.

■ Avoid syntactic elements from the target programming language. Pseudocode
allows you to design at a slightly higher level than the code itself. When you use
programming-language constructs, you sink to a lower level, eliminating the
main benefit of design at a higher level, and you saddle yourself with unneces-
sary syntactic restrictions.

Cross-Reference For details
on commenting at the level
of intent, see “Kinds of Com-
ments” in Section 32.4.

■ Write pseudocode at the level of intent. Describe the meaning of the approach
rather than how the approach will be implemented in the target language.

■ Write pseudocode at a low enough level that generating code from it will be
nearly automatic. If the pseudocode is at too high a level, it can gloss over prob-
lematic details in the code. Refine the pseudocode in more and more detail until
it seems as if it would be easier to simply write the code.

Once the pseudocode is written, you build the code around it and the pseudocode
turns into programming-language comments. This eliminates most commenting
effort. If the pseudocode follows the guidelines, the comments will be complete and
meaningful.

Here’s an example of a design in pseudocode that violates virtually all the principles
just described:

Example of Bad Pseudocode
increment resource number by 1

allocate a dlg struct using malloc

if malloc() returns NULL then return 1

invoke OSrsrc_init to initialize a resource for the operating system

*hRsrcPtr = resource number

return 0

What is the intent of this block of pseudocode? Because it’s poorly written, it’s hard to
tell. This so-called pseudocode is bad because it includes target language coding
details, such as *hRsrcPtr (in specific C-language pointer notation) and malloc() (a spe-

CODING
HORROR

9.2 Pseudocode for Pros 219

cific C-language function). This pseudocode block focuses on how the code will be
written rather than on the meaning of the design. It gets into coding details—whether
the routine returns a 1 or a 0. If you think about this pseudocode from the standpoint
of whether it will turn into good comments, you’ll begin to understand that it isn’t
much help.

Here’s a design for the same operation in a much-improved pseudocode:

Example of Good Pseudocode
Keep track of current number of resources in use

If another resource is available

 Allocate a dialog box structure

 If a dialog box structure could be allocated

 Note that one more resource is in use

 Initialize the resource

 Store the resource number at the location provided by the caller

 Endif

Endif

Return true if a new resource was created; else return false

This pseudocode is better than the first because it’s written entirely in English; it
doesn’t use any syntactic elements of the target language. In the first example, the
pseudocode could have been implemented only in C. In the second example, the
pseudocode doesn’t restrict the choice of languages. The second block of pseudocode
is also written at the level of intent. What does the second block of pseudocode mean?
It is probably easier for you to understand than the first block.

Even though it’s written in clear English, the second block of pseudocode is precise
and detailed enough that it can easily be used as a basis for programming-language
code. When the pseudocode statements are converted to comments, they’ll be a good
explanation of the code’s intent.

Here are the benefits you can expect from using this style of pseudocode:

■ Pseudocode makes reviews easier. You can review detailed designs without
examining source code. Pseudocode makes low-level design reviews easier and
reduces the need to review the code itself.

■ Pseudocode supports the idea of iterative refinement. You start with a high-level
design, refine the design to pseudocode, and then refine the pseudocode to
source code. This successive refinement in small steps allows you to check your
design as you drive it to lower levels of detail. The result is that you catch high-
level errors at the highest level, mid-level errors at the middle level, and low-level
errors at the lowest level—before any of them becomes a problem or contami-
nates work at more detailed levels.

220 Chapter 9: The Pseudocode Programming Process

Further Reading For more
information on the advan-
tages of making changes at
the least-value stage, see
Andy Grove’s High Output
Management (Grove 1983).

■ Pseudocode makes changes easier. A few lines of pseudocode are easier to change
than a page of code. Would you rather change a line on a blueprint or rip out a
wall and nail in the two-by-fours somewhere else? The effects aren’t as physically
dramatic in software, but the principle of changing the product when it’s most
malleable is the same. One of the keys to the success of a project is to catch errors
at the “least-value stage,” the stage at which the least effort has been invested.
Much less has been invested at the pseudocode stage than after full coding, test-
ing, and debugging, so it makes economic sense to catch the errors early.

■ Pseudocode minimizes commenting effort. In the typical coding scenario, you
write the code and add comments afterward. In the PPP, the pseudocode state-
ments become the comments, so it actually takes more work to remove the com-
ments than to leave them in.

■ Pseudocode is easier to maintain than other forms of design documentation.
With other approaches, design is separated from the code, and when one
changes, the two fall out of agreement. With the PPP, the pseudocode state-
ments become comments in the code. As long as the inline comments are main-
tained, the pseudocode’s documentation of the design will be accurate.

As a tool for detailed design, pseudocode is hard to beat. One survey found that pro-
grammers prefer pseudocode for the way it eases construction in a programming lan-
guage, for its ability to help them detect insufficiently detailed designs, and for the
ease of documentation and ease of modification it provides (Ramsey, Atwood, and
Van Doren 1983). Pseudocode isn’t the only tool for detailed design, but pseudocode
and the PPP are useful tools to have in your programmer’s toolbox. Try them. The
next section shows you how.

9.3 Constructing Routines by Using the PPP
This section describes the activities involved in constructing a routine, namely these:

■ Design the routine.

■ Code the routine.

■ Check the code.

■ Clean up loose ends.

■ Repeat as needed.

Design the Routine
Cross-Reference For details
on other aspects of design,
see Chapters 5 through 8.

Once you’ve identified a class’s routines, the first step in constructing any of the class’s
more complicated routines is to design it. Suppose that you want to write a routine to

KEY POINT

9.3 Constructing Routines by Using the PPP 221

output an error message depending on an error code, and suppose that you call the rou-
tine ReportErrorMessage(). Here’s an informal spec for ReportErrorMessage():

ReportErrorMessage() takes an error code as an input argument and outputs
an error message corresponding to the code. It’s responsible for handling
invalid codes. If the program is operating interactively, ReportErrorMessage()
displays the message to the user. If it’s operating in command-line mode,
ReportErrorMessage() logs the message to a message file. After outputting the
message, ReportErrorMessage() returns a status value, indicating whether it
succeeded or failed.

The rest of the chapter uses this routine as a running example. The rest of this section
describes how to design the routine.

Cross-Reference For details
on checking prerequisites,
see Chapter 3, “Measure
Twice, Cut Once: Upstream
Prerequisites,” and Chapter 4,
“Key Construction Decisions.”

Check the prerequisites Before doing any work on the routine itself, check to see that
the job of the routine is well defined and fits cleanly into the overall design. Check to
be sure that the routine is actually called for, at the very least indirectly, by the
project’s requirements.

Define the problem the routine will solve State the problem the routine will solve in
enough detail to allow creation of the routine. If the high-level design is sufficiently
detailed, the job might already be done. The high-level design should at least indicate
the following:

■ The information the routine will hide

■ Inputs to the routine

■ Outputs from the routine

Cross-Reference For details
on preconditions and post-
conditions, see “Use asser-
tions to document and verify
preconditions and postcon-
ditions” in Section 8.2.

■ Preconditions that are guaranteed to be true before the routine is called (input
values within certain ranges, streams initialized, files opened or closed, buffers
filled or flushed, etc.)

■ Postconditions that the routine guarantees will be true before it passes control
back to the caller (output values within specified ranges, streams initialized, files
opened or closed, buffers filled or flushed, etc.)

Here’s how these concerns are addressed in the ReportErrorMessage() example:

■ The routine hides two facts: the error message text and the current processing
method (interactive or command line).

■ There are no preconditions guaranteed to the routine.

■ The input to the routine is an error code.

■ Two kinds of output are called for: the first is the error message, and the second
is the status that ReportErrorMessage() returns to the calling routine.

■ The routine guarantees that the status value will have a value of either Success or
Failure.

222 Chapter 9: The Pseudocode Programming Process

Cross-Reference For details
on naming routines, see Sec-
tion 7.3, “Good Routine
Names.”

Name the routine Naming the routine might seem trivial, but good routine names
are one sign of a superior program and they’re not easy to come up with. In general, a
routine should have a clear, unambiguous name. If you have trouble creating a good
name, that usually indicates that the purpose of the routine isn’t clear. A vague, wishy-
washy name is like a politician on the campaign trail. It sounds as if it’s saying some-
thing, but when you take a hard look, you can’t figure out what it means. If you can
make the name clearer, do so. If the wishy-washy name results from a wishy-washy
design, pay attention to the warning sign. Back up and improve the design.

In the example, ReportErrorMessage() is unambiguous. It is a good name.

Further Reading For a dif-
ferent approach to construc-
tion that focuses on writing
test cases first, see Test-
Driven Development: By
Example (Beck 2003).

Decide how to test the routine As you’re writing the routine, think about how you
can test it. This is useful for you when you do unit testing and for the tester who tests
your routine independently.

In the example, the input is simple, so you might plan to test ReportErrorMessage()
with all valid error codes and a variety of invalid codes.

Research functionality available in the standard libraries The single biggest way to
improve both the quality of your code and your productivity is to reuse good code. If
you find yourself grappling to design a routine that seems overly complicated, ask
whether some or all of the routine’s functionality might already be available in the
library code of the language, platform, or tools you’re using. Ask whether the code
might be available in library code maintained by your company. Many algorithms
have already been invented, tested, discussed in the trade literature, reviewed, and
improved. Rather than spending your time inventing something when someone has
already written a Ph.D. dissertation on it, take a few minutes to look through the code
that’s already been written and make sure you’re not doing more work than necessary.

Think about error handling Think about all the things that could possibly go wrong
in the routine. Think about bad input values, invalid values returned from other rou-
tines, and so on.

Routines can handle errors numerous ways, and you should choose consciously how
to handle errors. If the program’s architecture defines the program’s error-handling
strategy, you can simply plan to follow that strategy. In other cases, you have to decide
what approach will work best for the specific routine.

Think about efficiency Depending on your situation, you can address efficiency in
one of two ways. In the first situation, in the vast majority of systems, efficiency isn’t
critical. In such a case, see that the routine’s interface is well abstracted and its code is
readable so that you can improve it later if you need to. If you have good encapsula-
tion, you can replace a slow, resource-hogging, high-level language implementation
with a better algorithm or a fast, lean, low-level language implementation, and you
won’t affect any other routines.

9.3 Constructing Routines by Using the PPP 223

Cross-Reference For details
on efficiency, see Chapter 25,
“Code-Tuning Strategies,”
and Chapter 26, “Code-
Tuning Techniques.”

In the second situation—in the minority of systems—performance is critical. The per-
formance issue might be related to scarce database connections, limited memory, few
available handles, ambitious timing constraints, or some other scarce resource. The
architecture should indicate how many resources each routine (or class) is allowed to
use and how fast it should perform its operations.

Design your routine so that it will meet its resource and speed goals. If either
resources or speed seems more critical, design so that you trade resources for speed or
vice versa. It’s acceptable during initial construction of the routine to tune it enough to
meet its resource and speed budgets.

Aside from taking the approaches suggested for these two general situations, it’s usu-
ally a waste of effort to work on efficiency at the level of individual routines. The big
optimizations come from refining the high-level design, not the individual routines.
You generally use micro-optimizations only when the high-level design turns out not
to support the system’s performance goals, and you won’t know that until the whole
program is done. Don’t waste time scraping for incremental improvements until you
know they’re needed.

Research the algorithms and data types If functionality isn’t available in the avail-
able libraries, it might still be described in an algorithms book. Before you launch into
writing complicated code from scratch, check an algorithms book to see what’s
already available. If you use a predefined algorithm, be sure to adapt it correctly to
your programming language.

Write the pseudocode You might not have much in writing after you finish the pre-
ceding steps. The main purpose of the steps is to establish a mental orientation that’s
useful when you actually write the routine.

Cross-Reference This discus-
sion assumes that good
design techniques are used to
create the pseudocode ver-
sion of the routine. For details
on design, see Chapter 5,
“Design in Construction.”

With the preliminary steps completed, you can begin to write the routine as high-level
pseudocode. Go ahead and use your programming editor or your integrated environ-
ment to write the pseudocode—the pseudocode will be used shortly as the basis for
programming-language code.

Start with the general and work toward something more specific. The most general
part of a routine is a header comment describing what the routine is supposed to do,
so first write a concise statement of the purpose of the routine. Writing the statement
will help you clarify your understanding of the routine. Trouble in writing the general
comment is a warning that you need to understand the routine’s role in the program
better. In general, if it’s hard to summarize the routine’s role, you should probably
assume that something is wrong. Here’s an example of a concise header comment
describing a routine:

Quratek
Typewritten Text
V413HAV

224 Chapter 9: The Pseudocode Programming Process

Example of a Header Comment for a Routine
This routine outputs an error message based on an error code

supplied by the calling routine. The way it outputs the message

depends on the current processing state, which it retrieves

on its own. It returns a value indicating success or failure.

After you’ve written the general comment, fill in high-level pseudocode for the routine.
Here’s the pseudocode for this example:

Example of Pseudocode for a Routine
This routine outputs an error message based on an error code

supplied by the calling routine. The way it outputs the message

depends on the current processing state, which it retrieves

on its own. It returns a value indicating success or failure.

set the default status to "fail"

look up the message based on the error code

if the error code is valid

 if doing interactive processing, display the error message

 interactively and declare success

 if doing command line processing, log the error message to the

 command line and declare success

if the error code isn't valid, notify the user that an internal error

has been detected

return status information

Again, note that the pseudocode is written at a fairly high level. It certainly isn’t writ-
ten in a programming language. Instead, it expresses in precise English what the
routine needs to do.

Cross-Reference For details
on effective use of variables,
see Chapters 10 through 13.

Think about the data You can design the routine’s data at several different points in
the process. In this example, the data is simple and data manipulation isn’t a prominent
part of the routine. If data manipulation is a prominent part of the routine, it’s worth-
while to think about the major pieces of data before you think about the routine’s logic.
Definitions of key data types are useful to have when you design the logic of a routine.

Cross-Reference For details
on review techniques, see
Chapter 21, “Collaborative
Construction.”

Check the pseudocode Once you’ve written the pseudocode and designed the data,
take a minute to review the pseudocode you’ve written. Back away from it, and think
about how you would explain it to someone else.

Ask someone else to look at it or listen to you explain it. You might think that it’s silly
to have someone look at 11 lines of pseudocode, but you’ll be surprised. Pseudocode
can make your assumptions and high-level mistakes more obvious than program-
ming-language code does. People are also more willing to review a few lines of
pseudocode than they are to review 35 lines of C++ or Java.

9.3 Constructing Routines by Using the PPP 225

Make sure you have an easy and comfortable understanding of what the routine does
and how it does it. If you don’t understand it conceptually, at the pseudocode level,
what chance do you have of understanding it at the programming-language level? And
if you don’t understand it, who else will?

Cross-Reference For more
on iteration, see Section
34.8, “Iterate, Repeatedly,
Again and Again.”

Try a few ideas in pseudocode, and keep the best (iterate) Try as many ideas as you
can in pseudocode before you start coding. Once you start coding, you get emotionally
involved with your code and it becomes harder to throw away a bad design and start over.

The general idea is to iterate the routine in pseudocode until the pseudocode state-
ments become simple enough that you can fill in code below each statement and leave
the original pseudocode as documentation. Some of the pseudocode from your first
attempt might be high-level enough that you need to decompose it further. Be sure
you do decompose it further. If you’re not sure how to code something, keep working
with the pseudocode until you are sure. Keep refining and decomposing the
pseudocode until it seems like a waste of time to write it instead of the actual code.

Code the Routine

Once you’ve designed the routine, construct it. You can perform construction steps in
a nearly standard order, but feel free to vary them as you need to. Figure 9-3 shows the
steps in constructing a routine.

Figure 9-3 You’ll perform all of these steps as you design a routine but not necessarily in
any particular order.

Start with pseudocode

Write the routine declaration

Write the first and last statements, and turn
the pseudocode into high-level comments

Fill in the code below each comment

Repeat as needed

Clean up leftovers

Done

Check the code

226 Chapter 9: The Pseudocode Programming Process

Write the routine declaration Write the routine interface statement—the function
declaration in C++, method declaration in Java, function or sub procedure declaration
in Microsoft Visual Basic, or whatever your language calls for. Turn the original header
comment into a programming-language comment. Leave it in position above the
pseudocode you’ve already written. Here are the example routine’s interface state-
ment and header in C++:

C++ Example of a Routine Interface and Header Added to Pseudocode
Here’s the header comment
that’s been turned into a
C++-style comment.

/* This routine outputs an error message based on an error code

supplied by the calling routine. The way it outputs the message

depends on the current processing state, which it retrieves

on its own. It returns a value indicating success or failure.

*/

Here’s the interface
statement.

Status ReportErrorMessage(

 ErrorCode errorToReport

)

set the default status to "fail"

look up the message based on the error code

if the error code is valid

 if doing interactive processing, display the error message

 interactively and declare success

 if doing command line processing, log the error message to the

 command line and declare success

if the error code isn't valid, notify the user that an

internal error has been detected

return status information

This is a good time to make notes about any interface assumptions. In this case, the
interface variable errorToReport is straightforward and typed for its specific purpose,
so it doesn’t need to be documented.

Turn the pseudocode into high-level comments Keep the ball rolling by writing the
first and last statements: { and } in C++. Then turn the pseudocode into comments.
Here’s how it would look in the example:

C++ Example of Writing the First and Last Statements Around Pseudocode
/* This routine outputs an error message based on an error code

supplied by the calling routine. The way it outputs the message

depends on the current processing state, which it retrieves

on its own. It returns a value indicating success or failure.

*/

Status ReportErrorMessage(

 ErrorCode errorToReport

) {

C09619670.fm Page 226 Tuesday, April 12, 2011 2:33 PM

9.3 Constructing Routines by Using the PPP 227

The pseudocode statements
from here down have been
turned into C++ comments.

 // set the default status to "fail"

 // look up the message based on the error code

 // if the error code is valid

 // if doing interactive processing, display the error message

 // interactively and declare success

 // if doing command line processing, log the error message to the

 // command line and declare success

 // if the error code isn't valid, notify the user that an

 // internal error has been detected

 // return status information

}

At this point, the character of the routine is evident. The design work is complete, and
you can sense how the routine works even without seeing any code. You should feel that
converting the pseudocode to programming-language code will be mechanical, natural,
and easy. If you don’t, continue designing in pseudocode until the design feels solid.

Cross-Reference This is a
case where the writing meta-
phor works well—in the
small. For criticism of apply-
ing the writing metaphor in
the large, see “Software Pen-
manship: Writing Code” in
Section 2.3.

Fill in the code below each comment Fill in the code below each line of pseudocode
comment. The process is a lot like writing a term paper. First you write an outline, and
then you write a paragraph for each point in the outline. Each pseudocode comment
describes a block or paragraph of code. Like the lengths of literary paragraphs, the
lengths of code paragraphs vary according to the thought being expressed, and the
quality of the paragraphs depends on the vividness and focus of the thoughts in them.

In this example, the first two pseudocode comments give rise to two lines of code:

C++ Example of Expressing Pseudocode Comments as Code
/* This routine outputs an error message based on an error code

supplied by the calling routine. The way it outputs the message

depends on the current processing state, which it retrieves

on its own. It returns a value indicating success or failure.

*/

Status ReportErrorMessage(

 ErrorCode errorToReport

) {

 // set the default status to "fail"

Here’s the code that’s been
filled in.

Status errorMessageStatus = Status_Failure;

 // look up the message based on the error code

Here’s the new variable
errorMessage.

 Message errorMessage = LookupErrorMessage(errorToReport);

 // if the error code is valid

 // if doing interactive processing, display the error message

 // interactively and declare success

 // if doing command line processing, log the error message to the

 // command line and declare success

228 Chapter 9: The Pseudocode Programming Process

 // if the error code isn't valid, notify the user that an

 // internal error has been detected

 // return status information

}

This is a start on the code. The variable errorMessage is used, so it needs to be declared.
If you were commenting after the fact, two lines of comments for two lines of code
would nearly always be overkill. In this approach, however, it’s the semantic content
of the comments that’s important, not how many lines of code they comment. The
comments are already there, and they explain the intent of the code, so leave them in.

The code below each of the remaining comments needs to be filled in:

C++ Example of a Complete Routine Created with the Pseudocode
Programming Process
/* This routine outputs an error message based on an error code

supplied by the calling routine. The way it outputs the message

depends on the current processing state, which it retrieves

on its own. It returns a value indicating success or failure.

*/

Status ReportErrorMessage(

 ErrorCode errorToReport

) {

 // set the default status to "fail"

 Status errorMessageStatus = Status_Failure;

 // look up the message based on the error code

 Message errorMessage = LookupErrorMessage(errorToReport);

 // if the error code is valid

The code for each comment
has been filled in from here
down.

if (errorMessage.ValidCode()) {

 // determine the processing method

 ProcessingMethod errorProcessingMethod = CurrentProcessingMethod();

 // if doing interactive processing, display the error message

 // interactively and declare success

 if (errorProcessingMethod == ProcessingMethod_Interactive) {

 DisplayInteractiveMessage(errorMessage.Text());

 errorMessageStatus = Status_Success;

 }

 // if doing command line processing, log the error message to the

 // command line and declare success

This code is a good candidate
for being further decom-
posed into a new routine:
DisplayCommandLine-
Message().

 else if (errorProcessingMethod == ProcessingMethod_CommandLine) {

 CommandLine messageLog;

 if (messageLog.Status() == CommandLineStatus_Ok) {

 messageLog.AddToMessageQueue(errorMessage.Text());

 messageLog.FlushMessageQueue();

 errorMessageStatus = Status_Success;

 }

9.3 Constructing Routines by Using the PPP 229

This code and comment are
new and are the result of
fleshing out the if test.

 else {

 // can't do anything because the routine is already error processing

 }

This code and comment are
also new.

 else {

 // can't do anything because the routine is already error processing

 }

 }

 // if the error code isn't valid, notify the user that an

 // internal error has been detected

 else {

 DisplayInteractiveMessage(

 "Internal Error: Invalid error code in ReportErrorMessage()"

);

 }

 // return status information

 return errorMessageStatus;

}

Each comment has given rise to one or more lines of code. Each block of code forms a
complete thought based on the comment. The comments have been retained to provide
a higher-level explanation of the code. All variables have been declared and defined
close to the point they’re first used. Each comment should normally expand to about 2
to 10 lines of code. (Because this example is just for purposes of illustration, the code
expansion is on the low side of what you should usually experience in practice.)

Now look again at the spec on page 221 and the initial pseudocode on page 224. The
original five-sentence spec expanded to 15 lines of pseudocode (depending on how
you count the lines), which in turn expanded into a page-long routine. Even though
the spec was detailed, creation of the routine required substantial design work in
pseudocode and code. That low-level design is one reason why “coding” is a nontrivial
task and why the subject of this book is important.

Check whether code should be further factored In some cases, you’ll see an explo-
sion of code below one of the initial lines of pseudocode. In this case, you should con-
sider taking one of two courses of action:

Cross-Reference For more
on refactoring, see Chapter
24, “Refactoring.”

� Factor the code below the comment into a new routine. If you find one line of
pseudocode expanding into more code that than you expected, factor the code
into its own routine. Write the code to call the routine, including the routine name.
If you’ve used the PPP well, the name of the new routine should drop out easily
from the pseudocode. Once you’ve completed the routine you were originally cre-
ating, you can dive into the new routine and apply the PPP again to that routine.

� Apply the PPP recursively. Rather than writing a couple dozen lines of code
below one line of pseudocode, take the time to decompose the original line of
pseudocode into several more lines of pseudocode. Then continue filling in the
code below each of the new lines of pseudocode.

C09619670.fm Page 229 Tuesday, April 12, 2011 2:34 PM

230 Chapter 9: The Pseudocode Programming Process

Check the Code

After designing and implementing the routine, the third big step in constructing it is
checking to be sure that what you’ve constructed is correct. Any errors you miss at this
stage won’t be found until later testing. They’re more expensive to find and correct
then, so you should find all that you can at this stage.

Cross-Reference For details
on checking for errors in
architecture and require-
ments, see Chapter 3,
“Measure Twice, Cut Once:
Upstream Prerequisites.”

A problem might not appear until the routine is fully coded for several reasons. An
error in the pseudocode might become more apparent in the detailed implementation
logic. A design that looks elegant in pseudocode might become clumsy in the imple-
mentation language. Working with the detailed implementation might disclose an
error in the architecture, high-level design, or requirements. Finally, the code might
have an old-fashioned, mongrel coding error—nobody’s perfect! For all these reasons,
review the code before you move on.

Mentally check the routine for errors The first formal check of a routine is mental.
The cleanup and informal checking steps mentioned earlier are two kinds of mental
checks. Another is executing each path mentally. Mentally executing a routine is diffi-
cult, and that difficulty is one reason to keep your routines small. Make sure that you
check nominal paths and endpoints and all exception conditions. Do this both by
yourself, which is called “desk checking,” and with one or more peers, which is called
a “peer review,” a “walk-through,” or an “inspection,” depending on how you do it.

One of the biggest differences between hobbyists and professional programmers is
the difference that grows out of moving from superstition into understanding. The
word “superstition” in this context doesn’t refer to a program that gives you the creeps
or generates extra errors when the moon is full. It means substituting feelings about
the code for understanding. If you often find yourself suspecting that the compiler or
the hardware made an error, you’re still in the realm of superstition. A study con-
ducted many years ago found that only about five percent of all errors are hardware,
compiler, or operating-system errors (Ostrand and Weyuker 1984). Today, that per-
centage would probably be even lower. Programmers who have moved into the realm
of understanding always suspect their own work first because they know that they
cause 95 percent of errors. Understand the role of each line of code and why it’s
needed. Nothing is ever right just because it seems to work. If you don’t know why it
works, it probably doesn’t—you just don’t know it yet.

Bottom line: A working routine isn’t enough. If you don’t know why it works, study it,
discuss it, and experiment with alternative designs until you do.

Compile the routine After reviewing the routine, compile it. It might seem inefficient
to wait this long to compile since the code was completed several pages ago. Admit-
tedly, you might have saved some work by compiling the routine earlier and letting
the computer check for undeclared variables, naming conflicts, and so on.

1
2
3

HARD DATA

KEY POINT

9.3 Constructing Routines by Using the PPP 231

You’ll benefit in several ways, however, by not compiling until late in the process. The
main reason is that when you compile new code, an internal stopwatch starts ticking.
After the first compile, you step up the pressure: “I’ll get it right with just one more
compile.” The “Just One More Compile” syndrome leads to hasty, error-prone changes
that take more time in the long run. Avoid the rush to completion by not compiling
until you’ve convinced yourself that the routine is right.

The point of this book is to show how to rise above the cycle of hacking something
together and running it to see if it works. Compiling before you’re sure your pro-
gram works is often a symptom of the hacker mindset. If you’re not caught in the
hacking-and-compiling cycle, compile when you feel it’s appropriate. But be con-
scious of the tug most people feel toward “hacking, compiling, and fixing” their way
to a working program.

Here are some guidelines for getting the most out of compiling your routine:

■ Set the compiler’s warning level to the pickiest level possible. You can catch an
amazing number of subtle errors simply by allowing the compiler to detect them.

■ Use validators. The compiler checking performed by languages like C can be
supplemented by use of tools like lint. Even code that isn’t compiled, such as
HTML and JavaScript, can be checked by validation tools.

■ Eliminate the causes of all error messages and warnings. Pay attention to what
the messages tell you about your code. A large number of warnings often indi-
cates low-quality code, and you should try to understand each warning you get.
In practice, warnings you’ve seen again and again have one of two possible
effects: you ignore them and they camouflage other, more important, warnings,
or they simply become annoying. It’s usually safer and less painful to rewrite the
code to solve the underlying problem and eliminate the warnings.

Step through the code in the debugger Once the routine compiles, put it into the
debugger and step through each line of code. Make sure each line executes as you
expect it to. You can find many errors by following this simple practice.

Cross-Reference For details,
see Chapter 22, “Developer
Testing.” Also see “Building
Scaffolding to Test Individual
Classes” in Section 22.5.

Test the code Test the code using the test cases you planned or created while you
were developing the routine. You might have to develop scaffolding to support your
test cases—that is, code that’s used to support routines while they’re tested and that
isn’t included in the final product. Scaffolding can be a test-harness routine that calls
your routine with test data, or it can be stubs called by your routine.

Cross-Reference For details,
see Chapter 23, “Debugging.”

Remove errors from the routine Once an error has been detected, it has to be
removed. If the routine you’re developing is buggy at this point, chances are good that
it will stay buggy. If you find that a routine is unusually buggy, start over. Don’t hack
around it—rewrite it. Hacks usually indicate incomplete understanding and guarantee
errors both now and later. Creating an entirely new design for a buggy routine pays
off. Few things are more satisfying than rewriting a problematic routine and never
finding another error in it.

232 Chapter 9: The Pseudocode Programming Process

Clean Up Leftovers

When you’ve finished checking your code for problems, check it for the general char-
acteristics described throughout this book. You can take several cleanup steps to
make sure that the routine’s quality is up to your standards:

■ Check the routine’s interface. Make sure that all input and output data is
accounted for and that all parameters are used. For more details, see Section 7.5,
“How to Use Routine Parameters.”

■ Check for general design quality. Make sure the routine does one thing and does
it well, that it’s loosely coupled to other routines, and that it’s designed defen-
sively. For details, see Chapter 7, “High-Quality Routines.”

■ Check the routine’s variables. Check for inaccurate variable names, unused
objects, undeclared variables, improperly initialized objects, and so on. For
details, see the chapters on using variables, Chapters 10 through 13.

■ Check the routine’s statements and logic. Check for off-by-one errors, infinite
loops, improper nesting, and resource leaks. For details, see the chapters on
statements, Chapters 14 through 19.

■ Check the routine’s layout. Make sure you’ve used white space to clarify the log-
ical structure of the routine, expressions, and parameter lists. For details, see
Chapter 31, “Layout and Style.”

■ Check the routine’s documentation. Make sure the pseudocode that was trans-
lated into comments is still accurate. Check for algorithm descriptions, for doc-
umentation on interface assumptions and nonobvious dependencies, for
justification of unclear coding practices, and so on. For details, see Chapter 32,
“Self-Documenting Code.”

■ Remove redundant comments. Sometimes a pseudocode comment turns out to be
redundant with the code the comment describes, especially when the PPP has been
applied recursively and the comment just precedes a call to a well-named routine.

Repeat Steps as Needed

If the quality of the routine is poor, back up to the pseudocode. High-quality pro-
gramming is an iterative process, so don’t hesitate to loop through the construction
activities again.

9.4 Alternatives to the PPP
For my money, the PPP is the best method for creating classes and routines. Here are
some different approaches recommended by other experts. You can use these
approaches as alternatives or as supplements to the PPP.

9.4 Alternatives to the PPP 233

Test-first development Test-first is a popular development style in which test cases
are written prior to writing any code. This approach is described in more detail in
“Test First or Test Last?” in Section 22.2. A good book on test-first programming is
Kent Beck’s Test-Driven Development: By Example (Beck 2003).

Refactoring Refactoring is a development approach in which you improve code
through a series of semantic preserving transformations. Programmers use patterns of
bad code or “smells” to identify sections of code that need to be improved. Chapter
24, “Refactoring,” describes this approach in detail, and a good book on the topic is
Martin Fowler’s Refactoring: Improving the Design of Existing Code (Fowler 1999).

Design by contract Design by contract is a development approach in which each
routine is considered to have preconditions and postconditions. This approach is
described in “Use assertions to document and verify preconditions and postcondi-
tions” in Section 8.2. The best source of information on design by contract is Bertrand
Meyers’s Object-Oriented Software Construction (Meyer 1997).

Hacking? Some programmers try to hack their way toward working code rather
than using a systematic approach like the PPP. If you’ve ever found that you’ve coded
yourself into a corner in a routine and have to start over, that’s an indication that the
PPP might work better. If you find yourself losing your train of thought in the middle
of coding a routine, that’s another indication that the PPP would be beneficial. Have
you ever simply forgotten to write part of a class or part of routine? That hardly ever
happens if you’re using the PPP. If you find yourself staring at the computer screen not
knowing where to start, that’s a surefire sign that the PPP would make your program-
ming life easier.

cc2e.com/0943 CHECKLIST: The Pseudocode Programming Process
Cross-Reference The point
of this list is to check
whether you followed a
good set of steps to create a
routine. For a checklist that
focuses on the quality of the
routine itself, see the “High-
Quality Routines” checklist in
Chapter 7, page 185.

❑ Have you checked that the prerequisites have been satisfied?

❑ Have you defined the problem that the class will solve?

❑ Is the high-level design clear enough to give the class and each of its rou-
tines a good name?

❑ Have you thought about how to test the class and each of its routines?

❑ Have you thought about efficiency mainly in terms of stable interfaces and
readable implementations or mainly in terms of meeting resource and
speed budgets?

❑ Have you checked the standard libraries and other code libraries for appli-
cable routines or components?

❑ Have you checked reference books for helpful algorithms?

234 Chapter 9: The Pseudocode Programming Process

❑ Have you designed each routine by using detailed pseudocode?

❑ Have you mentally checked the pseudocode? Is it easy to understand?

❑ Have you paid attention to warnings that would send you back to design
(use of global data, operations that seem better suited to another class or
another routine, and so on)?

❑ Did you translate the pseudocode to code accurately?

❑ Did you apply the PPP recursively, breaking routines into smaller routines
when needed?

❑ Did you document assumptions as you made them?

❑ Did you remove comments that turned out to be redundant?

❑ Have you chosen the best of several iterations, rather than merely stop-
ping after your first iteration?

❑ Do you thoroughly understand your code? Is it easy to understand?

Key Points
■ Constructing classes and constructing routines tends to be an iterative process.

Insights gained while constructing specific routines tend to ripple back through
the class’s design.

■ Writing good pseudocode calls for using understandable English, avoiding fea-
tures specific to a single programming language, and writing at the level of
intent (describing what the design does rather than how it will do it).

■ The Pseudocode Programming Process is a useful tool for detailed design and
makes coding easy. Pseudocode translates directly into comments, ensuring
that the comments are accurate and useful.

■ Don’t settle for the first design you think of. Iterate through multiple approaches
in pseudocode and pick the best approach before you begin writing code.

■ Check your work at each step, and encourage others to check it too. That way,
you’ll catch mistakes at the least expensive level, when you’ve invested the least
amount of effort.

