
SPARC OpenBoot and the Forth Language
by Boris Loza, PhD

From time to time as a UNIX system administrator, I’ve had to work in the Solaris Open Boot
environment. It’s useful for booting the operating system (boot –r, boot cdrom –s, etc.), modifying system
start-up configuration parameters (input-device, output-device, setenv, etc.), troubleshooting (probe-scsi-
all, show-devs, etc.), or running diagnostics (test net, test /memory, etc.). But sometimes, it isn’t enough to
use predefined commands and utilities. For this purpose, OpenBoot provides a very powerful environment
based on the ANS Forth programming language.

Some Forth history

The name Forth was intended to suggest software for the fourth (next) generation
computers, which Charles Moor (a programmer who invented it) saw as being characterized by
distributed, small computers. The operating system he used at the time restricted filenames to
five characters, so U was discarded. The first Forth interpreter was written in 1968. For the next
five years, Forth was implemented on various CPUs and became widely known because of its
high performance and economy of memory.

In 1988 Sun Microsystems invented Open Firmware technology—hardware-independent boot
code, firmware, and device drivers. Open Firmware, then called OpenBoot, allows one version of the Boot
ROM to run on any configuration of hardware and software. Such technology uses Forth as the official
language.

Why Forth for all this?

Forth is a stack-based, extensible language without type-checking. It uses “reverse
Polish” (postfix) arithmetic notation, familiar to users of HP calculators. To add two numbers in
Forth, you’d type 2 3 + instead of 2 + 3 . If you’re using Forth, you don’t need to recompile your
program to add new functionality. You can define a new command and it will instantly be
available for you to use. Because of this, the Forth compiler is simpler, smaller, and faster than
other compilers. So the interactive Forth system, including an editor, assembler, and even
multitasking support, can easily be put in an 8K EPROM!

The Forth language

The fundamental program unit in Forth is the word—a named data item, subroutine, or
operator. Actually, OpenBoot commands such as boot, printenv, and probe-scsi-all are
Forth-defined words. Programming in Forth consists of defining new words in terms of an
existing one.

You can start programming in Forth at the OpenBoot ok prompt (ok is the usual prompt on Forth):

ok : average (a b – avg) + 2/ . ;
ok 10 20 average
ok 15
ok : .ASCII (end start -- , dump characters)
 do
 cr i . i emit \ Print ASCII characters
 loop ;
ok 70 65 .ASCII
ABCDEF
ok

OpenBoot 3.x contains about 2,450 Forth words. All words belong to the dictionary that also

contains vocabularies (consisting of related words and variables).
The new commands created above would be lost after rebooting a machine. OpenBoot provides a

way to prevent this by saving into NVRAM using nvedit:

ok nvedit
0: : hello (--) cr
1: .” Welcome to OpenBoot!” cr ;
2: ^C
ok nvstore
ok setenv use-nvramrc? true
ok reset-all
--
ok hello
Welcome to OpenBoot!
ok

By creating customized scripts, you can modify the OpenBoot start-up sequence.

Unfortunately, you can’t use the following commands here: boot, go, nvedit, password, reset-
all, and setenv security-mode. OpenBoot provides various facilities for debugging Forth
programs and loading and executing programs written in Forth from Ethernet, a hard disk, or a
floppy device.

One of the Forth utilities that we’d like to mention here is the built-in Forth language
decompiler—see. It can be used to re-create the source code for any previously defined Forth word. For
instance:

ok see scan-subtree
: scan-subtree
[‘] scan-subtree guarded-execute drop
;
ok see probe-scasi-all
(ffd60c5c) [‘] (ffd88b08) scan-subtree
;

The preceding listing shows that scan-subtree is composed only of Forth source words that
were compiled as external or as headers with fcode-debug? set to true. probe-scsi-all is a different
word. It also contains words that were compiled as hederless and are, consequently, displayed as hex
addresses surrounded by parentheses. For more information on how to use Forth development tools, consult
the OpenBoot Reference Manual.

Forth and shell scripting

On the Internet, you can find various shareware ANS Forth compilers for a number of Operating
Systems. One of the most interesting is pForth (a portable ANS stile Forth). After compiling and
linking it on /usr/local/bin/forth, you can run standalone scripts like the one shown in Listing
A. To run this program, just type the name of the file.

 get-menu-item

Listing A:

A simple Forth script that can run on Solaris
#!/usr/local/bin/forth
\ \\
\ Enter a number: \
\ 1. Item number one \
\ 2. Item number two \
\ 3. Item number three \
\ \
\ 0. Exit \
\ \\
: get-menu-item (-- n) \ Query user for a menu option.
 begin
 .” Enter a number: “ cr
 .” 1. Item number one” cr
 .” 2. Item number two” cr
 .” 3. Item number three” cr cr
 .” 0. Exit” cr
 key dup emit cr ascii 0 – dup 0 3 between not
 while
 drop
 .” Not a valid menu number! Try again.” cr cr
 repeat
case (case-value --)
 1 of .” This is number one” endof
 2 of .” This is number two” endof
 3 of .” This is number three” endof
 0 of .” Exit!” bye endof
endcase ;

get-menu-item

In our opinion, Forth cannot replace Perl and UNIX shell programming facilities for System

Administration needs. These languages are specially designed for parsing strings and I/O
manipulation. But you can practice with Forth scripting in order to be more comfortable with creating
power tools in the OpenBoot environment.

References
1. “Scientific FORTH: a modern language for scientific computing” Julian V. Noble, Mechum

Banks Publishing, 1992, 300 pages, ISBN: 0-9632775-0-2, disk included. (This book contains
many serious examples of Forth programming style and useful programs.)

2. “Forth: The New Model—A Programmer’s Handbook” Jack Woehr, M & T Publishing, 1992,
315 pages, ISBN: 0-13-036328-6, DOS disk included. (Describes features of ANS Forth and
how to use it to write Forth programs. Currently the only book about ANS Forth.)

3. www.forth.org/ – Forth Interest Group Home Page
4. http://pisa.rockefeller.edu:8080/FORTH/ - Forth on the Web

