
Z 80 EDITOR
ASSEM BLER PACKAGE
FOR THE
NASCOM 1 COMPUTER

Copyright © 1978 by Sigma Accounting & Management Services Ltd.
All rights are reserved. This manual may not be reproduced in whole or in
part by any means nor may it be reproduced by Xeroxy, photography,
transmitted by electronic or mechanical means, or stored in any
retrieval system without the express written permission of the publisher.

e
 Published by:

SIGMA ACCOUNTING
I & MANAGEMENT SERVICES LTD

* Software Unit
c/o Nascom Microcomputers
92 Broad Street, Chesham, Bucks.JANUARY 1979

1

SECTION CONTENTS PAGE
1 INTRODUCTION 4
1.1 AIMS OF ZEAP 5
1. 2 COMPARISON WITH THE ZILOG ASSEMBLER 7
1. 3 MACHINE REQUIREMENTS 8
2 THE ZEAP EDITOR 9
2.1 EDITOR OPERATION 10
2.2 ZEAP EDITOR COMMANDS 13
3 THE ZEAP ASSEMBLER 24
3. 1 ASSEMBLER OPERATION 25
3. 2 EXPRESSIONS 26
3.3 SOURCE STATEMENT SYNTAX 28
3. 3.1 LABELS 28
3.3.2 INSTRUCTION FORMAT 29
3.3.3 COMMENT LINES 30
3.4 ASSEMBLER OPTIONS 31
3.5 ASSEMBLER DIRECTIVES 32
3. 6 ASSEMBLY LISTING 33
3. 7 OBJECT GENERATION 34
3.7.1 TAPE OBJECT 34
3.7.2 MEMORY OBJECT 34
APPENDICES
A ZEAP OPERATION 35
B ZEAP ERROR CODES 36
C ZEAP EDITOR COMMANDS 39
D ASSEMBLER DIRECTIVES 42
E ASSEMBLER OPTIONS 43
F Z 80 INSTRUCTION SET 45
G ZEAP INTERNAL REGISTERS 49
H ASCII CODE TABLE 50
I OBJECT CODE LISTING 51
J COMMENT FORM 56

2

PREFACE

This manual is laid out in two complementary parts.
Sections 1 to 3 describe the ZEAP package informally and are
designed to be read in order.
The appendices following provide a useful reference section,
and define all the elements of ZEAP formally, directing the
user to the appropriate section in the first half of the
manual where more information and examples are to be found.
Those familiar with the workings of micro-computer assemblers
and BASIC-type line editors may find it easier to read the
appendices first, although this is not recommended to those
who do not fully understand the terms used.
The reader should not be dismayed, however. ZEAP is easy
to use and yet powerful enough for his requirements.
If information or guidance is required on the Z80 Assembly
Language itself, you are advised to consult the Mostek or
Zilog Z80 Assembly Language manual. Other publications which
may prove helpful include:

The Z80 Microcomputer Handbook by William Barden
(Published by Howard W Sams & Co., Inc.)
Z80 Instruction Handbook by Nat Wadsworth
(Published by Scientific Computer Consultants Inc.)
Z80 Programming for Logic Design by Adam Osborne et al
(Published by Osborne & Associates Inc.)

3

NOTATION

The following notation is used in this manual:
£ hexadecimal number
(x) x is optional
(x) . . .

In general, output
input is not.

x is optional and may be repeated
indefinitely

from ZEAP is underlined whereas user

1. INTRODUCTION

ZEAP (Z-80 Editor/Assembler Package) is a memory resident text
editor and symbolic assembler designed for use with the NASCOM 1
microcomputer.
The assembler translates mnemonic codes as defined in the Z-80
microcode language into executable machine instructions, allowing
user control over memory allocation, and symbolic names for MPU
registers and instruction or data addresses. It incorporates
comprehensive syntax checking and error message generation,
and allows object code to be generated on cassette tape or
stored directly in memory.
The editor allows for entry, examination, correction and permanent
storage of source programs which are held in memory during editing
and assembly.
The memory resident nature of ZEAP allows entry, assembly, testing,
correction and re-assembly of source programs without the
necessity of using cassette tape at any stage, since editor,
assembler, source program and object program may reside in memory
simultaneously. This makes ZEAP very easy and quick to use.

5

1.1 AIMS OF ZEAP
ZEAP was produced with the intention of providing a
compact editor/assembler package for the NASCOM 1
microcomputer. The following requirements were laid
down during the design of the package:
* Minimum memory requirements
* Minimum extra hardware requirements
* Maximum compatibility with existing assemblers

Lc'l?* Ability to edit, assemble, execute and then re-edit
the program with the minimum use of external storage
(eg. cassette tape)

* Ability to store source programs on cassette tape and
then re-load them at a later stage

* Ability to store more than one source program at a
time in memory

* Maximum use of NASBUG sub-routines
* Ability to drive an ASCII terminal attached to the UART
* Ability to generate object code in NASBUG format, to

be subsequently loaded using NASBUG's LOAD function
The result is an editor/assembler package requiring 5K
bytes of user RAM (IK basic + 4K expansion kit), of which
ZEAP uses under 3K bytes, leaving 2K bytes spare for
source programs and object code.
The ZEAP editor provides the following functions:
* Fully dynamic source buffer allocation
* Insertion, deletion and replacement of lines
* Context editing of individual lines
* String searching
* Automatic line number generation for block entry of

source programs
* Complete resequencing of source program line numbers
* Loading and dumping of source programs to and from

cassette tape
* Listing of selected source program lines on the screen

or on an ASCII terminal

6

* Self checking checksum for easy detection of hardware
faults or user program malfunction

The ZEAP assembler provides the following functions:
* Full range of options including control of source

listing, object generation and error processing
* Numbered error messages pin-pointing the exact cause

of the error
* Object generation in NASBUG format onto cassette tape,

or directly to memory
* Formatted source listing on the screen or on an

ASCII terminal
The editor, assembler, source program and optional object
program may all reside in memory at the same time, enabling
maximum ease of entry, assembly, testing, correction and
re-assembly of source programs with minimum use of
external storage.
The assembler source code follows closely that defined in
the ZILOG assembler, the differences being noted in
section 1.2.
Editor operation is described in section 2, while the
assembler's function is defined in section 3.
It should be noted that because of the commitment to
minimum memory requirements, error checking of user input
is kept to an absolute minimum. Failure to follow the
instructions precisely will thus in some cases result in
unpredictable errors or ZEAP itself becoming corrupted.
Limits, formats, arguments, etc must be adhered to
precisely.

7
ii* sit ‘.ü

1.2 COMPARISON WITH THE ZILOG ASSEMBLER
The operation of the ZEAP assembler is very similar
in most respects to the ZILOG Z80 assembler. The
following differences should be noted, however:
* Expressions may cfontaip only the operators " + "

and and no paVenrnetical grouping is
allowed. Expressions may be enclosed in parentheses
to represent memory addresses. Evaluation is from
left to right. A leading is allowed.

* Hexadecimal numbers must be preceded by a "£".
The "H" suffix form is not suf>Ap{örted. The default
number base is decimal. Octal and binary numbers
are not supported.

* Labels must begin in the first column at the
source line, directly after the single space
following the sequence number. Only one label is
permitted on a line. The use of a suffix
to indicate a label is not supported. Statements
without labels must leave the first column blank,
except for comments, which may begin in the first
column with a

*

*

The following assembler directives
are not supported:

(pseudo-ops)

MACRO
ENDM
COND
ENDC
DEFL
END

tlrCL Ü W f Srt

(b k l
A single ASCII cl^aract^r code may be included in an
expression by ^reofeainq,it with ad̂puble ljuote sign,
e.g. "A = £41. This faöilxßy replaces the DEFB
's' assembler directive.

* Fields and/or expressions may be separated by one
or more spaces and/or commas. The space and the
comma are syntacticalJ.v equivalent in all contexts
within the assembly language.

8

1.3 MACHINE REQUIREMENTS
ZEAP uses under 3K bytes of memory, not including
source program storage. Thus a minimum of 4K bytes
of memory is required in addition to the basic
NASCOM 1.
With a cassette recorder the user can store source
programs on cassette tape for reloading at a later time.
The assembler can output NASBUG format object code to
tape which can be subsequently loaded using NASBUG's
LOAD function.
ZEAP contains routines to drive an ASCII terminal
attached to the UART for hard copy or source listings.
However, this item is entirely optional and ZEAP will
function perfectly without it.
The minimum system is:

A working basic NASCOM 1
A television or monitor
A minimum of 4K bytes of additional memory
A cassette recorder

THE ZEAP EDITOR
The ZEAP editor provides the means by which source
programs may be entered, examined and altered by
the user.

10

2.1 EDITOR OPERATION
After ZEAP has been loaded, control is passed to the editor
as described in APPENDIX A.

The editor prompt will be displayed indicating that
the ZEAP editor is ready to accept editor commands.
The editor is a line editor in which source lines are
identified by line numbers (sequence numbers), each line
of source code being identified with a unique
number. The editor also has powerful context editing
capabilities not normally available with this type of
editor.
A sequence number may be any decimal number from 1 to 9999.
Leading zeros may be omitted. The sequence number is
always followed by a single space to separate it from the
actual source line, eg.

1000 SAMPLE LINE
The actual source line is "SAMPLE LINE". The source line
itself may of course contain leading spaces, eg.

2000 ANOTHER LINE
The space after "2000" is the separator, but the next
two spaces are part of the source line.
A line of source code may be entered by typing a sequence
number, followed by a space, followed by the source line,
followed by the New Line key. The editor stores the line
of source code in memory and prompts for the next
editor command.
The source program is sorted automatically in ascending
sequence number order. Thus

:20 THIS IS THE THIRD LINE
TlO THIS IS THE FIRST LINE
712 THIS IS THE SECOND LINE

would cause the lines to be stored in the order indicated.
Typing a sequence number directly followed by a New Line
causes that line to be deleted. Thus

l12
would cause line 12 to be deleted.

11

Typing the sequence number of a line which already exists
followed by a new source line causes the old line to be
replaced by the new line. Thus

:20 THIS IS NOW THE SECOND LINE

would cause line 20 to be replaced with the indicated text.
Thus all requirements for inserting, deleting and changing
lines of source code are provided by the above techniques.
In addition to the above facilities, there are a number
of commands for examining and manipulating the source
program. To take full advantage of NASBUG's command
decoding routines, these commands have been implemented
with single letter mnemonic codes. These commands are
described below in section 2.2.
All source lines are stored in an area of memory called
the EDIT BUFFER. All editor commands operate on the
information contained in the Edit Buffer. The size of
the source program is limited only by the amount of
memory available.
At all times during ZEAP operation the address of
first free memory location is displayed in
hexadecimal in the top right hand corner of the
screen. This address is that of the first location
not used by ZEAP for the source program and the
symbol table. It is also the default origin
address for the assembler. Care must be taken that
this number does not exceed the address of the
highest memory location.

Any time before the New Line key is depressed, a line may
be edited using the Backspace key as described in the
NASCOM 1 Software Notes. In addition, the character " "
(Shift "1") may be used to delete the entire line. When
"I" is depressed, a "!" will appear on the screen at the
current cursor position, indicating that the line has been
deleted, and the editor prompt is displayed ready for
the next user input, eg.

J_50 THIS LINE IS WRONKl ("I" key pressed)
(prompt displayed)

In this case, line 50 would not have been entered into
the Edit Buffer.
At any time when ZEAP is in the process of displaying
information (eg. when listing or assembling the source
program) the user may interrupt the process by depressing
the "!" key. ZEAP will immediately abandon its current
processing and display the editor prompt to indicate
that it is ready to process editor commands.

u

12

Alternatively the "?" key (Shift "/") may be used under
the same circumstances to temporarily hold the execution
of ZEAP so that the contents of the screen can be
examined at length. When the user wishes to resume
execution, depressing any key will restart ZEAP where
it left off, and processing will continue. In summary:

"!" Delete line; abandon execution
"?" Hold execution (resumed by pressing any key)

Error messages from the ZEAP editor are of the form
ERROR nn

where nn is the error number. An explanation of ZEAP
error codes is given in Appendix B. The most common
editor message is

ERROR 99
meaning that the last line of user input was illegal
or unrecognisable as an editor command or line of source
code.

If the first character of an input line is blank, the line is ignored by the editor.

13

2.2 ZEAP EDITOR COMMANDS
The following discussion is independent of any knowledge
of the Z80 assembly language, and therefore the source
lines shown are not suitable for assembly by the ZEAP
assembler.

"V" Suppose the following lines are entered:
£20 LINE 2
j_10 LINE 1
:30 LINE 3

The user can examine the contents of part or all of the
Edit Buffer using the "V" editor command. ("V" is a
mnemonic for VDU List). Thus

IV 10 10 OOIO LINE 1
:V 10
0010

20
LINE 1

0020 LINE 2
:V 20
0020 LINE 2
0030 LINE 3
:V
0010 LINE 1
0020 LINE 2
0030 LINE 3

Also note
:V 5 15
0010 LINE 1
:V 1 9
£V 20 10
:V 1000

The last three commands cause no display.

In summary:
V m n Display lines m to n inclusive
V m Display lines from m to the end of the

buffer
V Display the entire contents of the

source buffer
The space following "V" is optional, but if both m and n
are specified, they must be separated by one or more
spaces.

14

"U" When a source program has been entered by the user using
the ZEAP editor, it is useful to be able to store all or
part of it on cassette tape. This is achieved by the "U"
editor command ("U" is a mnemonic for UART List). Its
syntax is the same as that of the "V" command. Its
operation is identical except that each line displayed is
also output to the UART in a format which allows the
line to be reloaded subsequently by the editor. Thus

JU
0010 LINE 1
0020 LINE 2
0030 LINE 3

would cause those lines displayed to be stored on an
attached cassette recorder.
There is no identifiable Load command provided with ZEAP.
Loading of source programs stored on tape using the "U"
editor command is performed simply by switching the
cassette recorder on while the editor prompt is displayed.
ZEAP scans both the keyboard and the UART input during
editor operation, and so source lines input from tape
will be interpreted as if they had been entered manually.
Thus playing back the above tape when the ZEAP editor
prompt is displayed would cause the following display:

: 0010 LINE 1
: 0020 LINE 2
: 0030 LINE 3

and the three lines would be entered into the Edit Buffer
as if they had been typed on the keyboard.
If the user attaches an ASCII terminal (teletype or
equivalent) to the UART the "U" editor command can be
used to obtain hard copy of all or part of the source
program. The output of the "U" editor command is
formatted with both NASBUG New Line characters and
ASCII Carriage Return and Line Feed characters to support
this facility. Thus, with an attached ASCII terminal

£U 10 20
0010 LINE 1
0020 LINE 2

and the two lines displayed are also printed on the terminal.

The ZEAP editor provides a convenient facility for the
manual entry of blocks of source code, namely the "I"
editor commandC'I" is a mnemonic for Auto Input). If
the user enters

jl 40
the editor responds

: 0040
and any input up to the New Line key is interpreted as
Line 40. Suppose the following is typed:

:0040 LINE 4
: 0050

After New Line is depressed the editor increments the
sequence number by 10 and displays the new sequence
number, ready for the entry of the next line of code,
and so on:

:0050 LINE 5
:0060 LINE 6
: 0070

Note that the necessary space following the sequence
number is inserted by ZEAP, so that the user need not
type it.
It is possible to edit the sequence number using the
Backspace key. Entering these backspaces, followed by
95, followed by a space at this stage would result in
the display

:0095
and then line 95 could be entered

:0095 LINE 7
: 0105

Note that the increment of 10 is applied to the sequence
number of the last line entered, and not of the last line
displayed by ZEAP.
Exit from Auto Input mode (which is the name given to
the above behaviour) is achieved by typing
(Shift "1") which deletes the current line and causes
the usual editor prompt to be displayed, thus:

:0105 I (user types "!")

16

Note that if it had existed prior to the above sequence
of commands, line 105 would not have been deleted. Only
the line of entry displayed would be deleted. To delete
line 105, it would be necessary to enter the number 105
followed by the New Line key, not the "!" key as above.
If the number after the "I" is omitted, the editor
displays

: 0010

initially.
If a second number is typed after the "I", it is used
as the sequence number increment. It must be less
than 100. Thus:

j_I 100 3
0100
0103
0106 !

(New line pressed)
(New line pressed)
("1" pressed)

So in summary
I Enter Auto

increments
Input
of 10

mode at line 10 with

I s Enter Auto
increments

Input
of 10

mode at line s with

I s i Enter Auto
increments

Input
of i

mode at line s with

17

"X" Deleting a block of source code is made easier by the
"X" editor commandC'X" is a mnemonic for eXpunge).
"X"must always be followed by two numbers, separated by
a space, which are the sequence numbers of the first
and last lines to be deleted. All lines between and
including these lines are deleted. Thus

: V
0010 LINE 1
0020 LINE 2
0030 LINE 3
0040 LINE 4
0050 LINE_ 5
0060 LINE 6
0095 LINE 7
:X 36 70
: V
0010 LINE 1
0020 LINE 2
0030 LINE 3
0095 LINE _7
}X 9 5

ERROR 99
lX 95 95
: V
0010 LINE 1
0020 LINE 2
0030 LINE 3

Note that an attempt to use X with only one line number
produced an error message.
To delete the entire edit buffer, the user should enter

:X 1 9999

This command does the job of a NEW or CLEAR utility in
similar editors.
In summary

X m n Delete lines m to n inclusive

18

"Z" The limitation of line replacement as a method of
correcting minor mistakes is clear from the following
example:

:40 ILNE 4

To interchange the "I" and the "L" requires that the
whole line be re-entered. A powerful alternative is
provided in the ZEAP editor. Entering

iZ 40
causes the following two lines to be displayed:

:0040 ILNE 4
ZEAP has now entered Edit mode. The arrow under the first
digit of the sequence number is the cursor. The user
can advance the pointer to the position where the
correction is to be made by depressing the space bar
appropriately. After pressing it six times the display
is :

:0040 ILNE 4
t (6 spaces typed)

Now the offending letter "L" can be deleted by typing
M<" (shift thus

:0040 INE 4
+ ("<" typed)

Note that all the characters to the right of the cursor
have been moved up to fill the gap left by the deleted
"L" Now, using the backspace key, the cursor can be
positioned under the "I", before which an L is to be
inserted:

:0040 INE 4
1 (Backspace typed)

Now to make room for the L the ">" (shift ".") is used:
:0040 INE 4

t

Note that all the characters above and to the right of
the cursor are shifted one place right to make room for
the insertion. Finally typing "L" will give

:0040 LINE 4
1The "L" is inserted at the position of the cursor,

which is then advanced one place.

19

Now that editing is completed, the New Line key is
pressed to signify that fact

:0040 LINE 4

The cursor arrow disappears, and the editor prompts for
the next command. The new line 40 is entered just as if
it had been typed manually.
The space and backspace keys cause the cursor to move
one place right or left respectively. Moving the
cursor beyond the limits of the bottom line of the
screen will have unpredictable effects. These keys
cannot be used to enter spaces or delete characters in
the line being edited as they do in normal editor
operation. The ">" and "<" keys must be used for these
purposes, respectively.
The ">" (insert) key causes all characters above and to
the right of the cursor to be shifted one place right
to allow insertion of text. Repeated depressions cause
more space to be left. Characters shifted off the right
hand end of the line are lost. The cursor remains where
it is.
The "<" (delete) key causes the character above the
cursor to be deleted and all characters to the right
of the deleted character to be moved one place left to
fill the gap left by the deleted character. Repeated
depressions cause more characters to be deleted. Spaces
enter from the right hand end of the line. The cursor
remains where it is.
The New Line key causes Edit mode to be terminated, and
the edited line is interpreted as a line of source code
entry.
The "!" key causes Edit mode to be abandoned.
The edited line is ignored and the original version of
it remains intact in the Edit Buffer.
Depressing any other key causes the appropriate character
to replace the character currently above the cursor, and
the cursor is advanced one place to the right.
A space may be entered into the line being edited by
depressing the "<", ">" and space keys in sequence.
In Edit mode the sequence number itself can also be
edited. Thus

1Z 40:0040 LINE 4
1

20

Typing two spaces followed by a "7" gives
:0070 LINE 4

i_ (space space "7"
Now typing New Line gives

;0070 LINE 4

And now
: V
0010 LINE 1
0020 LINE 2
0030 LINE 3
0040 LINE 4
0070 LINE 4

Note that the original

i40 : V
0010 LINE 1
0020 LINE 2
0030 LINE 3
0070 LINE 4

line still exists, so
(deletes line 40)

In summary
Z y edit line y

and then the following keys may be used:
Space
Backspace»I > II
II ̂ II
New LineII I II
other

cursor right
cursor left
insert
delete
leave Edit mode
abandon Edit mode
replace current character

typed)

21

"F" The "F" editor command ("F" is a mnemonic for Find)
enables the user to find the first and thereafter
subsequent occurences of any string of up to six
characters in the source program. Thus

2 5 ABC
'55 ABCDEF
V

0010 LINE 1
0020 LINE 2
0025 ABC
0030 LINE 3
0055 ABCDEF
0070 LINE 4
:F/ABCD/
:0055 ABCDEF
1

In this example the string "ABCD" is found in line 55,
which is displayed and Edit mode is entered automatically.
The "/" character is used as a delimiter. Any non-blank
character may be used. In the examples that follow it
is assumed that Edit mode was left immediately after the
display of the cursor arrow by typing New Line, so that
no change occured to the edited line.

^0055 ABCDEF
j_F*ABC*
;0025 ABC
j_F

: 0055 ABCDEF
£FT
:002 5 ABC

The command "F" above causes the next occurence of the
last mentioned string to be found. The command "FT"
(a mnemonic for Find from the Top) causes the search
to be restarted from the beginning of the Edit Buffer.
If no occurence of the string is found, the editor
merely prompts for the next line of input.
In summary:

Clrt. 1 ̂F/string/ finds first occurence of "string"
F finds next occurence of last "string"
FT finds first occurence of last "string"

22

"P" The "R" editor command ("R" is a mnemonic for Resequence)
allows the entire source program to be remembered. Thus

: V
0010 LINE 1
0020 LINE 2
0025 ABC
0030 LINE 3
0055 ABCDEF
0070 LINE 4
: R 100
: V
0100 LINE 1
0110 LINE 2
0120 ABC
0130 LINE 3
0140 ABCDEF
0150 LINE 4

Only the order of the source lines is maintained. The
first line is given the line number entered after the
"R", and subsequent lines are numbered sequentially
in increments of 10. The arguments are the same as for
the "I" editor command.
In summary

R Resequence program starting with sequence

by the assembler under the MEMORY option to be placed
at a physical address -different from the logical address
of the assembly, to facilitate generation of ROM

added to the logical address to obtain the physical
address where the object code is to be stored. Thus

jP 4000
will cause the following program to be placed physically
at location £4000.

ORG 0
JP START

XX DEFS 30

Note that the object code is only stored in memory if
the MEMORY assembler option is on. Object code stored
in memory with any non-zero offset is unsuitable for

number 10 in increments of 10
R s Resequence program starting with sequence

number s in increments of 10
R s i Resequence program starting with sequence

number s in increments of i
up» t2 ^The "P" editor command allows object code generated

programs. A single hexadecimal argument mû |- be
(the default is zero) which specifies the amoqht to be

etc.

>
o

23

direct execution. It must first be moved to the logical
address of the assembly.

"Q" The "Q" editor command allows both the rate at which
information is displayed on the screen, and the pause
at the end of a line of listing sent to the UART, to
be controlled. The format is

j_Q ccdd
where ccdd is a 4 digit hexadecimal number (with no
space between cc and dd), and cc is the delay to be
inserted between each character sent to the VDU, and
dd the delay to be inserted after a carriage return
when either the "U" editor command or the "TTY"
assembly option is in operation. A value of 0
signifies no delay. A value of 1 signifies a delay
of about 7 ̂ milliseconds, and so on - dd should be
set to at least £80 when the "U" editor command is
being used to save the source program on tape.

"N" The "N" editor command returns control to NASBUG ("N"
is a mnemonic for NASBUG). ZEAP can be re-entered by
following the procedure described in APPENDIX A, at
which point the editor prompt will be displayed thus

The contents of the Edit Buffer will be intact.
Two editor commands, "0" and "A" are documented in
section 3, since their use is related to assembler
operation.
A formal account of the editor commands is given in
APPENDIX C.

24

3 THE ZEAP ASSEMBLER
The ZEAP assembler translates the source program,
entered by the user into the Edit Buffer using the
ZEAP editor, into executable Z80 microcode
instructions which may be stored in memory for
immediate execution, or on tape for subsequent use.

25

3.1 ASSEMBLER OPERATION
"A" The assembler is entered from the editor by using

the editor command "A"("A"is a mnemonic for Assemble).
Since the portion of the Edit Buffer to be assembled
can be selected in the same way as for the "V" and
"U" editor commands, it is possible to store several
source programs in the Edit Buffer simultaneously,
provided that each occupies a continuous block of
the Edit Buffer, ie. programs do not overlap.
Suppose a complete program is stored in the Edit
Buffer in lines 2000 to 2999. The command

jA 2000 2999
will cause assembly of this program. If only one
program is stored, simply entering

JA
will assemble all lines in the source program.
Similarly

i_A 5000
would assemble from line 5000 to the end of the edit
buffer.
When the assembly is complete, and all output is
finished, control is returned to the ZEAP editor,
and the editor prompt is displayed ready for the
next command.
In summary

A m n assembles from lines m to n inclusive
A m assembles from line m to the end of

the Edit Buffer
A assembles the entire Edit Buffer contents

3.2 EXPRESSIONS

26 " <L t y (f v i { " ’ i *'

'ifhi il" £*W .ix . «"jy11'"n
Ha*
7* 0f „ b . l i t * i > ' « d

(j(L *l<« * i+W f

_ e*(h*(kWherever the form "exp" is ehcounteredt |.n expression involving
label symbols and/or constants is expected. The occuK^ence
of register and/or label symbols must be accordance with
the semantifcs 'laid d'dwh in APPENDIX F. Such an expression is
always ev’a 1’u a*t'6d using"*'16 bit integer two's complement
arithmetic. Expressions may be formed using the following
elements:
label’ symbol

decimal integer
content

a symbolic name of one to six characters,
starting with a letter and thereafter
consisting of letters and/or numbers, which
appears in the label field of a source
procfr^m. The value of the swib£>l is that
associated with it by its appearance in the
label field of some source statement (see
section 3.3).
a decimal number between 0 and 65535. Larger
numbers will be truncated to 16 bits.

V I *

hexadecimal a "£" sign followed by one to four hexadecimal
integer constant digits (0-9, A-F) interpreted as an

unsigned hexadecimal number. Larger numbers
will be truncated to 16 bits.

ASCII code value a double quote character followed by a single
character, whose ASCII code value is used
(bit 7 = 0) .

location counter the charac^e^ "$" which represents the value
of the location counter at the beginning of
assembly of the current line (or current
expression in the case of a DEFB or DEFW assembler
direction; see section 3.5̂) . This is the
address at which the durrent instruction
(or expression) is being assembled.

Any number of elements of the above kind may be combined with
" + "^nd signs to make the expression. A leading sign is
allowed. No parenthetical grouping is allowed. Expressions
may be enclosed entirely in parentheses to represent memory
addresses, in accordance with the semantics defined in APPENDIX F.
Here are sane examples:

TABLE+3
START-$ *
£80+"A-1
END-BEG+1
-273
"Z-"A+l
BIMUNZ+BIMUNZ

Expressions may not contain embedded blanks or commas. A
missing operator is interpreted as a "+". A missing operand is
interpreted as a zero. For example:

27

12ABC is interpreted as
3+-4 is interpreted as

12+ABC
3+0-4

28

3.3 SOURCE STATEMENT SYNTAX
Each line of the source program must be one of the
following:

i) a Z80 instruction
ii) a ZEAP assembler direction

iii) a comment
The first character of a source line is the character
directly after the single space following the sequence
number. The last character of a source line is the last
non-blank character entered before the New Line key is
pressed.

3.3.1 LABELS
L i r fIf the source line is type (i) or (ii) , an optional label

may be present. The label must be a symbolic name of one
to six characters starting in thef f^rst column, the first
character belong1 a letter, and svfeiequent characters being
letters or numbers with no embedded spaces. Examples are:

START
END
TABLE
LI
P3B

The following symbols are improperly formed:
113P
P4 :
LP Q

A label mu^t fcje followed by one or more spaces and/or
commas. If'present, it must start in the first column
of the source statement (ie. the first character of
the label must be the first character of the source line).
If no label is present the first character of the source
line must be a space or a comma, unless, the statement is
type (iii), a comment.

I lv ^In case (i^, the label is given the value of the location
counter prior to the assembly of the rest of the statement,
ie. its value is the address ^t,which the statement is
assembled. In this way the location of any instruction or
sequence, of instructions can be represented symbolically
and referred to elsewhere m the program, eg. in a JP
or CALL instruction.
In case (ii), the label is given the value as defined in
section 3.5 and Appendix D. In this way the address of
a data table or literal string for.display on the,screen
can represented symbolically and referred to elsewhere in
the program, eg. in a LD HL, exp instruction.

29

Each label defined must be unique within the program
being assembled. Each label symbol referenced in the
program must appear in the label field of some source
statement. The following symbolic names are reserved
by ZEAP for registers and condition codes:
A, B, C, D, E, H, I, L, M, P, R, Z,
AF, BC, DE, HL, IX, IY, NC, NZ, PE, PO, SP

3. 3.2 INSTRUCTION FORMAT
Each source statement of type (i) or (ii)
up to four fields which are:

habt*:consists of

(optional) label field
instruction mnemonic or assembler directive

(optional) operand field
(optional) comment field

Each field must be separated from the next by one or
more spaces and/or commas. If the first character of
the source line is a space or a comma, no label is
ä&'Smned to be present. If the first character of the
source line is the line is assumed to be a comment
(see section 3.3. below).
The instruction mnemonic or assembler directive must be
present. It may be any mnemonic listed in Appendix F,
or any directive mnemonic documented in section 3.5 and
Appendix D.
The operand field may or may not be present according to
the syntax of the statement. In case (i) it must follow
the definition given for the appropriate instruction in
Appendix F. In case (ii) it must follow the definition
given for the appropriate assembler directive in section
3.5 and Appendix D. If the field contains more than one
operand, each operand must be separated from the next by
one or more spaces and/or commas.
The comment field is optional. It must begin with
and ends at the end of the line. Any characters after
the are ignored by the assembler, except that they
are reproduced literally in the assembly listing. The

may follow directly after the preceding field, with
no intervening spaces or commas.
Although the assembler interprets the entire operand field,
only the first 17 characters of the operand and/or comment
fields ar^dj^splayed on the assembly listing on the screen.
FM , Mfacili is reason it is suggested that the ull line comment

.ty (see section 3.3.3 below) be utilised so that the
assembly listing is complete. The operand field itself
will rarely if ever need to be longer than 17 characters.fir*

30 ”■

3.3.3 COMMENT LINES
A comment line must begin with a and all characters
thereafter will be ignored by the assembler, except that
they will appear on the assembly listing. The first
29 characters will be displayed on the assembly listing
on the screen.

31 -

3.4 ASSEMBLER OPTIONS
"O" The "0" editor command allows various options to be set

which define the output required from the assembler
(0 is a mnemonic for Options). The "0" may be followed
by a single hexadecimal mask defining which options are
ON and which are OFF. This mask is obtained by adding up
the option codes of those options desired ON. Thus

jO 1A
would set assembler options MEMORY, TAPE and PASS 2 on ,
and NO LIST and TTY off (1A = 1 0 + 0 8 + 0 2 Hex). If no
number follows the "0" all assembler options are set to
the default values (ie. all off).
In summary:

0 x set assembler options from mask x
0 set all assembler options off

Appendix E contains a full account of each assembler
option.

32

3.5 ASSEMBLER DIRECTIVES
t f . 'lLThe six assem^lejr directives support^jd^b^ ZEAP give

the user the ability to control the generation of
object code addresses, and to generate tables or
liberal strings.
DEFB, DEFW and DEFM all cause the generation of
object code for one or more bytes, words (double
bytes) and ASCII characters respectively.

_ /4*»JrfvM't .EQU allows the direct assignment of an expression
value to a symbolic name.
ORG and DEFS alter the assembly address ("$") so
that assembler programs may be assembled at any
address, and to allow for space for storage of
intermediate results and other variable information.
d:\h <A full account of the assembler directives is
given in Appendix D.

i p * j«' Autelt**

j tii> e/ !*- (■*' , cSh Tr<-1 hin' i l f i f

^ (li i/ u / i l t u '*> At< i t h b ' * l l u f i r t t

£ Ai*~ tk /*•'
c ;i l l , c ' n t / r e n * £*•' * 4 * '

33

3.6 ASSEMBLY LISTING
A line of assembly listing takes the following form:
aaaa cccccccc ssss bbbbbb mmmm ppppppppppppppppp
The explanation of the fields is as follows:
aaaa

cccccccc

ssss

4 digit hexadecimal address of the ^
instruction *6elVi'g assembled, except" in
a DEFB, DEFW or DEFM assembler directive,
where it is the address of the first byte
of code generated, and in a EQU, ORG or
DEFS assembler directive, where it is the
value of the expression in the operand field. /♦tjeUwtE.

2 to 8 hexadecimal digits representing^
the object code for the instruction, e*x<*ept
in a DEFB, DEFW or DEFM assembler directive
it contains only the first byte or word
generated as appropriate.
4 digit sequence number of the current
source line.

bbbbbb 1 to 6 character label of the current source
line. If no label is present, this field is
left blank.

mmmm 2 to 4 character instruction mnemonic or
assembler directive.

ppp. Operand and comment fields directly from
source line.

If the source line is a comment (first character
fields aaaa and cccccccc are left blank, and the comment
is copied directly after the sequence number.
If the line contains an error, field cccccccc will contain

ERROR nn
and no object code is generated. A truncation error
is reported on the following line, but the object
generation is not suppressed.
Since the assembler formats the listing, there is no
need to tabulate source programs. The fields of each
source statement will be correctly formatted by the
assembler. For example the source line

0040 BIM LD A, 1
would appear in the assembly listing as

aaaa 3E01 0040 BIM LD A,1

where aaaa is the current value of the location counter (" $") •

34

3.7 OBJECT GENERATION
3.7.1 TAPE OBJECT

If the TAPE assembler option is on , object code is
output through the UART to an attached cassette recorder
in NASBUG format. Any block of object code in which the
number of bytes generated is not an exact multiple of
eight (the length of a NASBUG record) is padded out with
random data. Provided the object code is generated in
strict address order this will cause no trouble to the
user.
Object code generated in this manner can be loaded
using NASBUG's "L" command as if the data had been saved
using "D". The user should make a note of the execution
address of his program from the source listing so that
he may correctly begin execution of his program.
The tape LED is used by ZEAP in the same way as it is
by NASBUG, and may be used as a direct or indirect
indication to start the cassette recorder as described
in the NASCOM 1 documentation.

3.7.2 MEMORY OBJECT
If the MEMORY assembler option is on, object code is
assembled direct to memory. Object instructions and
data are written as they are assembled to the
ajS^Öpr'iate memory address. Great care must be exercised
when using this option, as NO CHECK is made that object
code is not overwriting the Edit Buffer or ZEAP itself,
or even that there is RAM at the address where the
object code is 1^'lTig'written. If no ORG assembler
directive appears in the, source program, assembly will
begin at the first available byte of RAM not being used
by ZEAP, as dispiked jn the corner of the screen, but
the user should bear* in' min a that the object program may
overflow available memory with no warning.
A program so assembled may be executed by entering NASBUG
using the ZEAP "N" editor command and executing the
object code using NASBUG's "E" command. The object
program should set the stack pointer to a free area of
memory if the stack is to be used, so that ZEAP's own
stack does not overflow.
If the object program works incorrectly it may be
necessary to reload ZEAP from tape, and enter the source
program again. For this reason it is recommended that
the source program be saved on tape before testing an
object program, in case valuable data is lost and has to
be typed in again.

35

APPENDIX A
ZEAP OPERATION

ZEAP should be loaded from the tape provided. First the loader
should be loaded using the "L" command. This will cause a short
program to be placed at location E0C50. Object code for this
program is given in the latter part of Appendix I. Zeap itself
is then loaded by executing from E0C50. Any lines containing a
check sum error will be scrolled up on the screen and may be
corrected from the object code listing in Appendix I.
ZEAP loads at £1000 and is about 2.82K bytes in length. The
area from E0F00 to EOFFF is used as ZEAP's register storage
and stack space. The source buffer begins directly after ZEAP.
The area from E0C50 to EOEFF is not used by ZEAP, and may
therefore contain programs or other user information.
To execute ZEAP enter:

>EF00
If the "N" editor command is used to return to NASBUG, ZEAP
may be re-entered by entering:

_>EF00
provided that it has not been corrupted. In this case the edit
buffer will be intact but the assembler options will have been
reset.
A limit on the memory used for source program storage can be
imposed, eg. to stop the edit buffer from overflowing higher
than £3000 enter:

>EF00 3000
when executing ZEAP. The default setting is the last limit
specified (or £5000 initially).

36

APPENDIX B
ZEAP ERROR CODES

ERROR 00 CORE FULL
The source line just entered would cause an overflow
of the edit buffer. The source line was not entered
into the buffer. However, if the line was to replace
an existing line, the original line was deleted.

ERROR 01 RESEQUENCE OVERFLOW
During the execution of a RESEQUENCE editor command
the line number became greater than 9999. The source
file is resequenced starting with line 1 in steps of 1.

ERROR 02 AUTO INPUT OVERFLOW
In AUTO-INPUT mode the line number became greater than
9999. AUTO-INPUT mode is abandoned.

ERROR 03 NON-EXISTENT LINE
An attempt was made to edit a non-existent line with
the "Z" editor command.

ERROR 10 UNRECOGNISABLE STATEMENT
A label is more than 6 characters, or a mnemonic is
more than 4 characters or omitted. The statement is
ignored.

ERROR 20 UNKNOWN MNEMONIC
The op-code field contains an unrecognisable mnemonic.
The statement is ignored.

ERROR 21 CONTEXT ERROR
The combination of op-code and operand types encountered
is illegal or a mnemonic is too short. The statement is
ignored.

ERROR 22 INDEX REGISTER ERROR
IX or IY is used where only HL is permitted, or in a
JP (IX) or JP (IY) instruction, the displacement is
non-zero. The statement is ignored.

ERROR 23 TRUNCATION ERROR
An 8 bit operand is greater than 255 or less than -128
or an index register displacement value is greater than
127 or less than -128, or a relative branch offset is
greater than 129 or less than -126, or a bit number in a
BIT, SET or RES instruction is greater than 7 or less
than 0, or an address in an RST instruction is illegal,
or the mode in an IM instruction is not 0, 1 or 2. The
value in question is truncated and assembly of the
statement continues.

37

ERROR 24 TOO MANY REGISTERS
A register symbol appears in an assembler directive
operand, or more than one register appears in an
instruction operand. The statement is ignored.

ERROR 25 REGISTER MISMATCHED
The combination of first and second operand types is
illegal. The statement is ignored.

ERROR 26 ILLEGAL CHARACTER
The operands field contains a character whose meaning
is unassigned in the syntax of the assembly language.
The statement is ignored.

ERROR 27 ILLEGAL OPERAND
The combination of a register and a label or constant
in this context is illegal. The statement is ignored.

ERROR 28 PARENTHESIS ERROR
A left parenthesis occurs in an assembler directive
operand, or more than one left parenthesis occurs in
an instruction operand. The statement is ignored.

ERROR 30 LABEL NOT FOUND
A symbol in an expression does not occur in the label
field of any statement in the source code. The
statement is ignored.

ERROR 31 LABEL REDEFINED
The symbol in the label field has previously appeared
in a label field, or is a register name. The label is
ignored and the rest of the statement is assembled.

ERROR 40 DIRECTIVE ERROR
In an assembler directive, too few or too many operands
appear. The statement is ignored.

ERROR 41 ILLEGAL FORWARD REFERENCE
A label symbol in an EQU, ORG or DEFS assembler directive
is defined after the directive is encountered. The
statement is ignored.

ERROR 50 ERRORS IN ASSEMBLY
There were errors flagged in the previous assembly.

38

ERROR 90 CHECKSUM ERROR
Part of ZEAP has been corrupted due to hardware errors
or user tampering. If ZEAP is not reloaded,
unpredictable errors may occur.

ERROR 99 ILLEGAL COMMAND ®
An unrecognisable editor command or an ill-formed source
code line was entered. The input line is ignored.

39

APPENDIX C
ZEAP EDITOR COMMANDS

The following symbols are used. All numbers are decimal
unless otherwise stated.

y sequence number (ie. source line number)
m first sequence number to which command is

(default 1)
applied

n last sequence number to which command is
(default 9999)

applied

s starting sequence number (default 10)
i increment (default 10)
X hexadecimal option mask
h hexadecimal number

Numbers are separated from the command letter and from each
other by one or more spaces.
If n is explicitly specified then m must be also.
If i is explicitly specified then s must be also.
A m n ASSEMBLE SOURCE PROGRAM (ASSEMBLE)

Causes assembly of the indicated portion of the
source program, with the options defined by the last
SET ASSEMBLER OPTIONS command in effect. See section 3
for more details.

I s i ENTER AUTO-INPUT MODE (AUTO-INPUT)
Causes the ZEAP editor to enter AUTO-INPUT mode. The
number s is displayed, followed by a space. The user
may then enter a line of source code terminated by
the New Line key, whereupon that line of code is entered
into the edit buffer, i is added to s,
and the new sequence number is displayed. The user may
continue to enter source code as long as the sequence
number remains less than 10000.
Exit from AUTO-INPUT mode is achieved by entering the
line delete character, "!" (shift "1"). The editor
then prompts for the next command.

40

N RETURN TO NASBUG (NASBUG)
Causes ZEAP to return control to NASBUG, allowing any
of NASBUG's monitor commands to be used, for example
to alter any of ZEAP's internal registers in accordance
with Appendix G, or to execute a program assembled in
memory.
Provided the area of memory used by ZEAP is unchanged
during NASBUG operation, ZEAP may be re-entered with
the edit buffer intact, in accordance with the procedure
described in Appendix A.

F/string/FIND STRING (FIND)
FT Searches for a specified string in the edit buffer, and

if found, opens the line containing it for editing.
The form "F/string/" is used to search from the beginning
of the edit buffer for a character string of up to six
characters. The "/" represents a delimeter character,
which may be any character, except space, but which
must follow directly after the "F". If the second
delimeter is omitted or the string is more than six
characters long the command is treated as an "FT"
command (described below). If the string is found, the
line containing it is displayed and opened for editing
(see EDIT SOURCE LINE). If the string is not found the
ZEAP editor prompts for the next command.
The form "F" is used to search for the string specified
in the most recent "F/string/" command, starting from
the last occurence of that string found, instead of from
the beginning of the edit buffer. Otherwise it is
identical to the "F/string/" command described above.
The form "FT" is used to search for the string specified
in the most recent "F/string/" command, starting from
the beginning of the edit buffer. Otherwise it is
identical to the "F/string/" command described above.

0 x SET ASSEMBLER OPTIONS (OPTIONS)
Sets assembler options specified by the hexadecimal
number x. The options and their hexadecimal codes are
as follows. See section 3.4 for more details.

+ 01 SUPPRESS SOURCE LISTING (NO LIST)
+ 02 OBJECT CODE TO MEMORY (MEMORY)
+ 04 SOURCE LISTING TO TTY (TTY)
+ 0 8 OBJECT CODE TO TAPE (TAPE)
+ 10 FORCE SECOND PASS (PASS 2)
+ 20 ADJUST RELATIVE JUMP OFFSETS (ADJUST REL)

Initially all options are off.

41

R s i RESEQUENCE SOURCE CODE (RESEQUENCE)
Remembers all the Statements in the edit buffer so
that the first line is given the number s, and subsequent
lines s+i s+2i, etc. as for the "I" editor command.

U m n LISTING TO UART (SAVE)
Causes the indicated portion of the source program to
be output to the UART, and simultaneously displayed on
the screen.
The output through the UART is formatted to drive either
a cassette tape recorder, so that any portion of the
source program may be stored permanently and loaded
subsequently by ZEAP, or an ASCII terminal to obtain a
hard copy listing of any portion of the source program.

V m n LISTING TO VDU (LIST)
Causes the indicated portion of the source program to
be displayed on the screen.

X m n BLOCK DELETE (DELETE)
Causes all source lines numbered m to n inclusive to
be deleted. Both m and n must be specified.

Z y EDIT SOURCE LINE (EDIT)
Displays line y and opens for edit. The following keys
are available for specified functions:

Space Move pointer right
Backspace Move pointer left
">"(Shift".") Insert
"<" (Shift",") Delete
New line Leave edit
"!" (Shift "1") Abandon edit

P h SET MEMORY OFFSET (OFFSET)
Set to h the number to be added to the logical assembly
address to obtain the physical location of the object
code in memory when the MEMORY assembler option is on.

Qh SET I/O RATES (RATES)
Set the inter-character delay to cc hex and the end of
line delay (for use with the U editor command and TTY
assembler option) to dd hex, where h = ccdd.

42

APPENDIX D
flu Wt‘ J 1 uASSEMBLER DIRECTIVES

label EQU exp (; comment) EQUATE SYMBOL
(1»The label is given the value of the 16f bit expression

in the operand field. All s^jnbols appearing in the
expression must have been previously defined. No object
code is generated. The label may not be redefined.

label ORG exp (; comment) SET ORIGIN
The location counter ($) is given the value of the
16 bit expression in the operand field. All symbols
apSp‘4Ä'fl”ng in the expression must have been previously
defined. No object code is generated. Assembley
continued at the new origin. If a label is present,
it is given the value of the expression.

(label) DEFS exp (; comment) DEFINE SPACE
The location counter ($) is increased by the value of
the 16 bit expression in the operand field. All symbols
appearing in the expression must have been previously
defined. No object code is generated. Assembly
continues after a block of memory of length exp .
If a label is present, it is given the original value
of the location counter ($).

(label) DEFB exp (,exp).... (; comment) DEFINE BYTE
For each 16 bit expression one byte of code is generated
with,the value of that expression. Expressions may
contain föö£ward references. If a label is present,
it is given the value of the address of the first byte
of code generated.

(label) DEFW exp (, exp).... (; comment) DEFINE WORD
For each 16 bit expression two bytes of code are
generated with the value of that expression, the low
order 8 bits occupying the first byte and the high order
8 bits the second. Expression may contain forward
references. If a label is present, it is given the value
at the address of the first byte of code generated.

n'Hi'Uy(label) DEFM /string/ (; comment) DEFINE MESSAGE
ViUtt'Ul- - V 1*»-The "/" may be any character except blank or comma. For

each character after the first delimeter until, the
second delimeter or the end of the line is encountered,
one byte of code is generated having the value of the
ASCII code for that character, with bit 7 zero. Any
characters may 'â peälr between the delimeters. Characters
after the second occurence of the delimeter are ignored.
If a label is present, it is given the value of the
address of the first byte of code generated.

43

APPENDIX E
ASSEMBLER OPTIONS

Assembler options are set by(the^OPTIONS editor command. All
assembler options must be explicitly specified as on or off,
and remain in effect until the next OPTIONS editor command is
issued, or until ZEAP is reloaded. All assembler options are
initially off, and are all switched off whenever ZEAP is re-entered.
Assembler options are selected as ON by adding the hexadecimal
option codes of the desired assembler options together. Thus
the TTY and PASS 2 assembler options would be selected as on
by entering the command "0 14". If no mask is specified, all
options are set to the default off state.
+01 SUPPRESS SOURCE LISTING (NO LISTING)

During the second pass, no source listing will be
displayed on the screen. Lines containing errors
will, however, still be displayed.

+02 OBJECT CODE TO MEMORY (MEMORY)
During the second pass, the object code will be
assembled directly into memory. No check is made to
see that the object code is not overwriting parts of
ZEAP and/or the edit buffer, nor that there is read/
write memory at the address where code is being
written. See section 3.7 for more details.

+04 SOURCE LISTING TO TTY (TTY)
During the second pass, any source listing will be
listed on an ASCII terminal attached to the UART. If
the NO LIST assembler option is on, only those lines
containing errors will be listed. The output from the
UART is not suitable for storage on cassette tape.
This assembler option may not be used in conjunction
with the TAPE assembler option, described below.

+08 OBJECT CODE TO TAPE (TAPE)
During the second pass, the object code will be dumped
in NASBUG format to a cassette tape recorder attached
to the UART. The object program may be subsequently
loaded using NASBUG's LOAD function, and executed under
NASBUG control. No object code is written to memory
(unless the MEMORY assembler option is on) so that
object code cannot overwrite ZEAP or the edit buffer.
This assembler option may not be used in conjunction
with the TTY assembler option, described above.

44

+10

+20

FORCE SECOND PASS (PASS 2)
Normally if errors are deleted during the first pass,
the second pass is t̂t|>5?essed. If this assembler option
is on, however, the second pass will be executed
regardless.

ADJUST RELATIVE JUMP OFFSETS (ADJUST REL)
J J'-'K«'“«*'Different standards in xmp'lementing the JR and similar

instructions,!^ different manufacturers. The assembler
normally Expects the a^r^ime^t to a relative jump
instrv^tiop to be an expression which is the offset from
the location of the current instruction to the
destination, eg.

JR Z,3 ; BRANCH ROUND LD INSTRUCTION
LD (SWITCH), A
RET

...or, more cohveniently
JR Z, RETURN - $
LD (SWITCH), A

RETURN RET
The ADJUST REL assembler option causes the assembler to
automatically subtract the value of $ from the argument
of each relative jump instruction, so that the
presentation of the source code is in line with absolute
jump and call instructions. Thus with the ADJUST REL
assembler option set, the following code now achieves
the desired result

JR Z, RETURN
LD (SWITCH), A

RETURN RET
or

JR 2+3
LD (SWITCH) , A
RET

is set. The convention adopted must be fixed
throughout the whole program.

APPENDIX F
INSTRUCTION SET

Cfcu 4 fr* Sfn * fr'The executable instruction set is defined in the ZILOG
publication Z80-CPU Technical Manual, and in the MOSTEK
publication..2 80 Micro Computer Devices Technical Manual. For
a full explanation of the instruction set one should have
these manuals tô ferV̂ e‘r, with the assembly language programming
manuals published by either company. A summary of the
executable mnemonics is set out below.

EXECUTABLE I NSTRUCTI ONS

ADC HL/ SS
ADC A/ S
ADD A/ N
ADD A/ R
ADD A / (H L)
ADD A / (I X + D)
ADD A / (I Y + D)
ADD HL/ SS
ADD I X / P P
ADD I Y/RR
AND S
BI T B / (H L)
BI T B / (I X + D)
B I T B / (IY + D)
B I T B/ R
CALL CC/NN
CALL NN
CC F
CP S
C PD

C P DR
CPI
C PI R

C PL
D A A
DEC M
DEC I X
DEC I Y
DEC SS
D I
DJ NZ E
El
EX (S P) / HL
EX (S P) / I X
EX (SP) / I Y
EX AF/ AF '
E X DE / HL
EXX

HALT
IM 0
IM 1
IM 2

ADD WITH CARRY REG. PAIR SS TO HL
ADD WITH CARRY OPERAND S TO ACC.
ADD VALUE N TO ACC.
ADD REG. R TO ACC.
ADD LOCATION (H L) TO ACC.
ADD L O C A T I O N (I X + D) TO ACC
ADD LOCATION (I Y + D) TO ACC.
ADD REG. PAIR SS TO HL
ADD REG. PAIR PP TO IX
ADD REG. PAIR RR TO I Y
LOGICAL ’ AND’ OF OPERAND S AND ACC.
TEST B I T B OF LOCATI ON (HL)
TEST B I T B OF LOCATION (I X + D)
TEST B I T B OF LOCATION (I Y + D)
TEST B I T B OF REG. R
CALL SUBROUTINE AT LOCATION NN IF CONDITION CC I F TRUE
UNCONDITIONAL CALL SUBROUTINE AT LOCATION NN
COMPLEMENT CARRY FLAG
COMPARE OPERAND S WITH ACC.
COMPARE LOCATION (HL) AND ACC. DECREME NT HL AND BC
UNTIL CB=0
COMPARE L OC AT I ON(HL) AND ACC. DECREMENT HL AND BC/ REPEAT
COMPARE LOCATION (HL) AND ACC. INCREMENT HL AND DECREMENT
COMPARE LOCATION (HL) AND ACC. INCREMENT H L / DECREMENT BC
UNTI L BC =G
COMPLEMENT ACC. (1 ’ S COMP)
DECIMAL ADJUST ACC.
DECREMENT OPERAND M
DECREMENT IX
DECREMENT I Y
DECREMENT REG. PAIR SS
DISABLE INTERRUPTS
DECREMENT B AND JUMP RELATIVE I F B=0
ENABLE INTERRUPTS
EXCHANGE THE LOCATION (SP) AND HL
EXCHANGE THE LOCATION (SP) AND IX
EXCHANGE THE LOCATION (SP) AND I Y
EXCHANGE THE CONTENTS OF AF AND A F ’
EXCHANGE THE CONTENTS OF DE AND HL
EXCHANGE THE CONTENTS OF BC/ DE/ HL WITH CONTENTS OF B C ' /
HL * / RESPECTIVELY
HALT (WAIT FOR INTERRUPT OR RESET)
SET INTERRUPT MODE 0
SET INTERRUPT MODE 1
SET INTERRUPT MODE 2

BC
REPEAT

DE ' /

46

— LD S P , I X LOAD SP WITH I X
LD S P , I Y LOAD WITH IY
LDD LOAD LOCATION (DE) WITH LOCATION (H L) , DECREMENT DE,
LD DR LOAD LOCATION (DE)

REPEAT UNTIL BC- 0
WITH LOCATION (HL) , DECREMENT DE

LD I LOAD LOCATION (DE)
DECREMENT BC

WITH LOCATION (HL) , INCRFMENT DE

LOIR LOAD LOCATION (DE) WITH LOCATION (HL) * INCREMENT DE
DECREMENT BC AND REPEAT UNTIL BC= 0

NEG NEGATE ACC. (2 ' S COMPLEMENT)
NOP NO OPERATION
OR S LOGICAL ' O R ' OR OPERAND S AND ACC •

OTDR

OTIR

OUT (C) ,R
— OUT (N) , A

OUT D
OUTI

w
POP IX
POP I Y
POP QQ

w PUSH IX
PUSH I Y

(PUSH QQ
— RES B, M

RET
RET CC

W RETI
RETN
RL M
RL A

— RLC (HL)
RL C (I X + D)
RLC (I Y + D)

w RLC R
RLC A
RL D
RR M

W RR A
RRC M
RRCA

w RRD
RST P
S3C A ,S

_ SBC HL , S S
SC F
SET B , (HL)
SET B , (I X + D)

w SET 8 , (I Y + D)
SET B , R
SLA M

V SRA M
SRL M
SUB S
X 0 R S

LOAD OUTPUT PORT (C) WITH LOCATION (H L) DECREMENT HL AND B/
REPEAT UNTI L B=0
LOAD OUTPUT PORT (C) WITH LOCATION (H L) , INCREMENT H L , DECREMENT
B , REPEAT UNTIL B=Q
LOAD OUTPUT PORT (C) WITH REG. R
LOAD OUTPUT PORT (N) WITH ACC.

(C) WITH LOCATIONLOAD OUTPUT PORT (C) WITH LOCATION (HL)
LOAD OUTPUT PORT (C) WITH LOCATION (HL)
DECREMENT 3
LOAD IX WITH TOP OF STACK
LOAD I Y WITH TOP OF STACK
LOAD REG. PAIR QQ WITH TOP OF STACK
LOAD IX ONTO STACK
LOAD IY ONTO STACK
LOAD REG. PAIR QQ ONTO STACK
RESET B I T B OF OPERAND M
RETURN FROM SUBROUTINE
RETURN FROM SUBROUTINE IF CONDITION CC IS TRUE
RETURN FROM INTERRUPT
RETURN FROM NON MASKABLE INTERRUPT
ROTATE LEFT THROUGH CARRY OPERAND M
ROTATE LEFT ACC. THROUGH CARRY
ROTATE LOCATION (HL) LEFT CIRCULAR
ROTATE LOCATION (I X + D) LEFT CIRCULAR
ROTATE LOCATION (I Y + D) LEFT CIRCULAR
ROTATE REG. R LEFT CIRCULAR
ROTATE LEFT CIRCULAR ACC.
ROTATE D I G I T LEFT AND RIGHT BETWEEN ACC.
ROTATE RIGHT THROUGH CARRY OPERAND M
ROTATE RIGHT ACC. THROUGH CARRY
ROTATE OPERAND M RIGHT CIRCULAR
ROTATE RIGHT CIRCULAR ACC.
ROTATE D I G I T RIGHT AND LEFT BETWEEN ACC.
RESTART TO LOCATION P
SUBTRACT OPERAND S FROM ACC. WITH CARRY
SUBTRACT REG. PAIR SS FROM HL WITH CARRY
SET CARRY FLAG (C = 1)
SET B I T B OF LOCATION (H L)
SET B I T d OF LOCATION (I X + D)
SET B I T B OF LOCATION (I Y + D)
SET B I T B OF REG. R
SHI FT OPERAND M LEFT ARITHMETIC
SHIFT OPERAND M RIGHT ARITHMETIC
SHIFT OPERAND M RIGHT LOGICAL
SUBTRACT OPERAND S FROM ACC.
EXCLUSIVE ' OR' OPERAND S AND ACC.

DECREMENT HL AND B
INCREMENT HL AND

AND LOCATION (HL)

AND LOCATION (HL)

47

IN A * (N) LOAD THE ACC. WITH INPUT FROM DEVICE N
IN R , (C) LOAD THE REG. R WITH INPUT FROM DFVICE
INC (H L) INCREMENT LOCATION (H L)
INC IX INCREMENT I X
INC (I X + D) INCREMENT LOCATION (I X + D)
INC IY INCREMENT IY
INC (I Y + D) INCREMENT LOCATION (I Y + D)
INC R INCREMENT REG. R
INC SS INCREMENT REG. PAIR SS

(C)

IMD LOAD LOCATION (H L) WITH INPUT FROM PORT (C) , DECREMENT HL AND B
W I N D R LOAD LOCATION (HL) WITH INPUT FROM PORT (C) , DECREMENT HL AND

DECREMENT B , REPEAT UNTI L B=0
I N I LOAD LOCATION (HL) WITH INPUT FROM PORT (c) ; AND INCREMENT HL

w AND DECREMENT B
I N I R LOAD LOCATION (H L) WITH INPUT FROM PORT (C) , INCREMENT HL AND

DECREMENT B , REPEAT UNTIL B=0
JP
JP
JP
JP
JP
JP
JR
JP
JR
JR
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LF
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

(HL)
(I X)
(I Y)
CC, NN
NN
C ,E
E
NC,E
NZ,E
Z,E
A, (BC)
A/ (DE)
A,l

A, (NN)
A/R
(B C) , A
(D E) ,A
(H L) , N
DD,NN
HL , (NN)
(H L) , R
I , A
I X , N N
I X , (NN)
(I X + D) , N
(I X + D) , R
I Y , NN
I Y , (N N)
(I Y + D) , N
(I Y + D) , R
(N N) , A
(NN) , DD
(N N) , H L
(NN) , I X
(NN) , IY
R , A
R, (HL)
R , (IX+D)
R , (IY + D)
R,N
R,R '
SP, HL

UNCONDITIONAL JUMP TO (H L)
UNCONDITIONAL JUMP TO (I X)
UNCONDITIONAL JUMP TO (I Y)
JUMP TO LOCATION NN I F CONDITION CC I S TRUE
UNCONDITIONAL JUMP TO LOCATION NN
JUMP RELATIVE TO PC + E I F C A R R Y = 1
UNCONDITIONAL JUMP RELATIVE TO PC+E
JUMP RELATIVE TO PC+E IF CARRY=0
JUMP RELATIVE TO PC+E I F NON ZERO (Z=D)
JUMP RELATIVE TO PC+E I F ZERO (Z = 1)
LOAD ACC. WITH LOCATION (BC)
LOAD ACC. WITH LOCATION (DE)
LOAD ACC. WITH I
LOAD ACC. WITH LOCATION NN
LOAD ACC. WITH REG. R
LOAD LOCATION (BC) WITH ACC.
LOAD LOCATION (DE) WITH ACC.
LOAD LOCATION (HL) WITH VALUE N
LOAD REG. PAIR DD WITH VALUE NN
LOAD HL WITH LOCATION (NN)
LOAD LOCATION (H L) WITH REG. R
LOAD I WITH ACC.
LOAD I X WITH VALUE NN
LOAD IX WITH LOCATION (NN)
LOAD LOCATION (I X + D) WITH VALUE N
LOAD LOCATION (I X + D) WITH REG. R
LOAD IY WITH VALUE NN
LOAD IY WITH LOCATION (NN)
LOAD LOCATION (I Y + D) WITH VALUE N
LOAD LOCATION (I Y + D) WITH REG. R
LOAD LOCATION (NN) WITH ACC.
LOAD LOCATION (NN) WITH REG. PAIR DD
LOAD LOCATION (NN) WITH HL
LOAD LOCATION (NN) WITH I X
LOAD LOCATION (NN) WITH (J Y)

WITH ACC.
R WITH LOCATION (HL)
R WITH LOCATION (I X + D)
R WITH LOCATION (I Y + D)
R WITH VALUE N
R WITH REG. R'

LOAD R
LOAD REG,
LOAD REG.
LOAD REG.
LOAD REG.
LOAD RFG,
LOAD SP WITH HL

48

PSEUDO INSTRUCTIONS

w ORG NN SETS LOCATION COUNTER (LC)
EQU NN ASSIGNS VALUE NN TO LABEL
DEFS E INCREMENTS LC BY VALUE OF
DEFB E (/ £) . . . DEFINES B Y T E (S) AS E

w DEFW •••UJV>»✓UJ DEFINES WORD(S) AS E

W

DEFM / s / ASSIGNS STRING S TO LABEL
Siv/t iV*

di. M M /-
EXPRESSION E f r U t k - L C c(i*

fl t> it t.

49

APPENDIX G

ZEAP INTERNAL REGISTERS

The contents of a number of memory locations used by ZEAP may
be of interest to the user. The user is cautioned to use
these registers only as directed. Any uses other than those
documented below may cause unpredictable results.
All 16 bit values are stored with the least significant 8 bits
first.
£F09 - £FOA BUFP

This 16 bit value is the address of the edit buffer.
The first two bytes of the edit buffer itself
contain a 16 bit value which is one more than the
address at the end of the edit buffer. Thus if
BUFP contained £1B0D and £1B0D - £1B0E contained
£1B83, then the extent of the edit buffer would
be £1B0D to £1B82, and could be dumped under NASBUG
control using

>D 1B0D IB82
or

>W IBOD 1B83 (using B-Bug or NASBUG 4)

£F22 - £F23 OUTCH
This 16 bit value is the address of the external
output routine. It is initially set /to, the, NASBUG
entry point, SRLOUT. The user may substitute the
address of a routine which outputs the ASCII
characte^^o^ntained, in register A. All registers
must be preserved through this routine, except AF.
^routine for driving a high speed parallel printer
might be substituted for example. All output from
the "U" editor command and under the TTY assembler
option is rotated through OUTCH, but output from the
TAPE assembler option is directly through SRLOUT.

- 50

APPENDIX H
ASCII CODE TABLE

All values in hexadecimal. Bit 7 (parity) is zero.

NUL 00 ' DLE 10 20 0 30 40 P 50
!----
1 60 P 70

SOH 01 DC1 11 1 21 1 31 A 41 Q 51 a 61 q 71
STX 02 DC2 12 II 22 2 32 B 42 R 52 b 62 r 72
ETX 03 DC3 13 £ 23 3 33 C 43 S 53 c 63 s 73
EOT 04 DC 4 14 $ 24 4 34 D 44 T 54 d 64 t 74
ENQ 05 NAK 15 % 25 5 35 E 45 U 55 e 65 u 75
ACK 06 SYN 16 & 26 6 36 F 46 V 56 f 66 V 76
BEL 07 ETB 17 1 27 7 37 G 47 W 57 g 67 w 77
BS 08 CAN 18 (28 8 38 H 48 X 58 h 68 X 78
HT 09 EM 19) 29 9 39 I 49 Y 59 i 69 Y 79
LF OA SUB 1A * 2A z 3A J 4A Z 5A j 6A z 7A
VT OB ESC IB + 2B 7 3B K 4B L 5B k 6B { 7B
FF OC FS 1C / 2C < 3C L 4C \ 5C 1 6C 1 7C
CR OD GS ID - 2D = 3D M 4D 5D m 6D } 7D
SO OE RS IE 2E > 3E K 4E t 5E n 6E 7E
SI OF VS IF / 2F 3F 0 4F 5F o 6F DEL 7F

The following control codes are used by NASBUG:
ID
IE
IF

Backspace
Clear screen
New line

51

APPENDIX I
OBJECT CODE LISTING

Location 100E, 100F, 1010 & 1011 contain the Ascii equivalent
of your copy no. If you enter ZEAP manually from the listing
below, please substitute the correct Ascii values for your
copy number.

1. ZEAP LISTING

ZEAP 1 . 0 (C) 1 97 9 S I Gl* A ACCOUNTING & MGMT SERVICES LTD

0 1 / 1 9 / 7 9 2 10 5 HRS PAGE 1

LOC 0 1 2 3 4 5 6 7 8 9 A B C D E F
OF 00 C 3 09 18 1 A 18 1 A 1 8 00 - 50 OD 1 B 00 00 00 00 10
OF 10 jZOU AG 20 20 20 20 20 20 - AO 00 00 10 1B ü i V 4 B

0F20 C 3 22 u 80 00 -0Ü - 32 OF 56 OF 21 10 F 2 11
OF 30 57 12 56 70 16 55 66 16 - 4 E 00 00 52 78 16 4 F 4E
0F40 16 41 14 19 46 9C 16 58 - 4 E 17 5 A E8 16 49 D 5 17
0 F 50 50 5E 16 51 56 16 00 68 - 17 91 20 2C 98 3B 00 82
0F60 2B 29 27 CO 24 A0 23 22 - 80 00 J7«' c (t /] t v ' f t t

1000 C 3 09 18 5A 45 41 50 20 - 20 20 31 2E 31 2 F 30 30
1010 30 30 20 20 20 20 4 6 52 - 45 45 20 4 D 45 4 D 20 41
1 020 54 80 00 01 4 C 44 60 83 - 78 04 F 4 3 E 04 31 OA 04
1030 E5 1 A 04 F 3 3A 14 EC 57 - 14 EE 5 F 03 00 83 40 04
1040 F 4 06 03 62 F 2 21 04 F 3 - 2A 03 6 A F2 31 04 E 2 F9
1050 14 F3 7B 03 OC F 2 01 14 - F3 4B 03 73 E2 22 14 8C
1060 43 04 E0 32 03 31 E0 02 - 03 65 EG 12 13 C 9 AO 14
1070 D2 B0 13 C 4 A8 14 D2 B8 - 13 6C EO 47 13 6E EO 4 F
1080 01 4 A 52 F8 18 03 09 F8 - 20 02 50 F2 C 3 03 06 F2
1090 C2 43 E3 E 9 01 50 55 53 - 4 8 8 F C5 02 4 F 50 8 F C1
10A0 01 43 41 4 C 4 C F 2 CD 05 - 06 F 2 C4 02 50 83 B8 03
1 0BQ F 4 FE 03 CC 2F 13 C 9 A1 14 D2 B 1 13 C 4 A9 14 D 2
10C0 B9 02 43 C 6 3 F 81 45 51 - D5 00 02 58 68 E8 08 03
10D0 64 E2 EB 03 6B E2 E3 03 - D 8 D 9 02 C 9 FB 01 49 4 E
1 0 E0 43 80 04 04 8C 03 03 60 - F 5 DB 14 E 7 78 13 00 E7
10F0 40 13 C9 A 2 14 D 2 B2 13 - C4 AA 14 D2 BA 12 4 D FE
1100 46 31 44 45 46 C 2 04 84 - D7 05 84 CD 03 84 D 3 02
1110 03 43 80 05 04 8C OB 02 - 4 A 4E 5A F 8 10 02 41 C1
1120 27 02 C 9 F3 11 53 42 43 - 62 8 C 42 04 60 83 98 05
1130 F4 DE 02 55 42 83 90 04 - F 4 D6 OA 4 C 41 83 20 OA
1 140 52 41 83 28 0B 4 C 83 38 - OA 45 54 7 A 83 CO 02 43
1150 C6 37 01 52 45 D4 C 9 04 - 86 CO 14 C 9 4 D 14 CE 45
1160 0B 53 7 A 83 80 0A 4 C 43 - 83 00 04 C1 07 OB 83 10
1170 03 C1 17 13 C 4 6F ÜA 52 - 43 83 08 04 C1 OF OB 83
1180 18 03 C1 1 F 13 C4 67 02 - 53 54 FC C 7 01 4 F 52 83
1190 B0 03 F4 F6 83 C 7 01 02 - 55 54 75 EO D3 14 67 80
11 A0 41 14 C9 A3 14 C 4 AB 12 - 54 49 D2 B3 13 44 D 2 B8
11 BO 01 41 44 44 60 83 60 05 - F 4 C 6 04 62 8C 09 03 43
11 CO 60 83 88 05 F 4 CE 14 62 - 8C 4 A 02 4 E 44 83 AO 04
11 DO F 4 E 6 01 58 4 F 52 83 A8 - 04 F 4 EE 09 42 49 54 7 A
1 1E0 83 40 11 4 E 45 C7 44 02 - 4 F DO 00 01 48 41 4 C D4
11 F0 76 00 80 00 01 C 8 26 02 - CC 62 01 C1 60 02 C6 68
1200 01 C4 22 02 C 5 64 01 C 2 - 20 02 C 3 30 01 DA 2C 01

52

ZEAP 1 . 0 (C) 1979 SIGMA ACCOUNTING & MGMT SERVICES LTD

0 1 / 1 9 / 7 9 2 10 5 HRS PAGE 2

LOC 0 1 2 3 4 5 6 7 8 9 A B C D E F
1210 C 3 66 01 4 E DA 2A 02 C 3 - 2E 01 53 DO 6A 81 A4 00
1 220 01 C 5 24 01 CC 28 01 C9 - 6C 12 D8 62 32 D 9 62 01
1230 CD 38 01 DO 36 02 C 5 34 - 02 C F 32 01 D 2 6E 00 60
1240 63 28 26 24 22 66 20 38 - 36 34 32 66 2E 2C 2 A 6 A
1250 62 64 30 68 62 64 30 38 3 F 1 2 08 3 F 12 38 47 12
1 260 34 4B 12 44 4 F 12 44 53 - 12 D 9 E 1 D 1 E 3 47 14 CB
1270 7E 20 77 23 7 E E 6 7 F FE • 70 38 32 4 F A8 OF FE 08
1280 30 62 FE 05 38 73 08 FD - 7 E F 5 B 7 20 1 B 08 FE 06
1290 FD 7E F 4 38 OB 28 OC FE “ 03 3D 30 OC 3 C 28 01 3C
1 2 AO 07 07 07 FD 77 F 3 E6 C 7 - C 4 18 13 18 4 F FE 20 30
1 2B0 30 E 5 2 A 30 OF 85 OF 30 - 01 24 78 08 7E E6 OF 4 F
1 2 C 0 7E 08 23 4 6 23 66 68 06 - 00 ED B 1 El 47 20 15 08
1 2 DO CB 21 D 6 10 30 FA CB 39 - F D 7E F 3 B 1 FD 77 F 3 18
12E0 1B B 8 28 18 CB 7 E 23 28 - FB 2B 23 23 7 E 5 F E6 07
1 2 FO BA CA 73 12 23 30 ED D9 - C9 FD 77 F 2 E 3 D5 E5 D9
1 300 B 7 C 9 D 9 E 1 D 1 E 3 7 E FE - 80 23 56 D5 D 9 D1 7 A C 9
1310 7 A F6 7 F A3 07 9 F 92 C3 - FD CB 00 4 E CO FD CB F 6
1 320 F 6 C9 D3 31 DB 02 87 F 8 - 18 FA E5 2A 1 B OF 37 ED
1330 52 C1 D5 CD 90 13 38 04 - 23 22 1 B OF EB D1 B 7 ED
1340 42 C 5 E3 C1 C 5 ED BO CD 98 13 C1 C9 21 00 00 1 A
1350 D6 30 D8 FE OA DO D 5 54 - 5 D 29 29 19 29 16 00 5 F
1360 19 D 1 13 18 EA 2 A OC OC - 3 A OB OC FE 02 3E 10 20
1370 03 3 A OE OC 32 OF OF 7 C - B 5 CO 3 A OF OF 85 27 6 F
1 380 7 C CE 00 27 67 C 9 23 23 - AF 47 4 F ED B 1 3D BE C 9
1 390 2A 09 OF 5 E 23 56 23 C9 - 2 A 09 OF 73 23 72 C9 CD
1 3 AO 51 00 3E FF B7 C 8 C 5 47 - CD 35 00 CD F 6 18 10 F 8
13B0 C1 C 9 3E OD CD OA 19 3E - OA CD OA 19 3 E 1 F CD OA
1 3 CO 19 3 A 24 OF 18 DE C5 2 B - E 5 ED 5B 2E OF D 5 16 00
13 DO D 5 CD 88 14 CB 71 28 OD - CD 69 12 30 F 4 CD 90 13
13 E 0 2 A 1 D OF 18 2D CD 02 13 - 38 F3 CB 7B 28 3D ED 5B
1 3 FO 1 F OF 18 37 CD 88 1 3 3E - 30 CA E3 17 23 CD 88 14
1400 30 F2 13 1 3 E 3 CD 88 14 - E3 CB 71 28 OA BE 23 28
1410 F 3 C1 C1 C 5 C 5 18 DD CD - 89 14 CB 71 20 F 3 DD E 5
1 420 E 3 37 ED 52 E 1 EB 2B 56 - 2B 5 E E1 C1 C1 C9 2 A 09
1430 OF CD 86 13 C 8 5 E 23 56 - 2B E 5 2 A OC OC B 7 ED 52
1440 E1 3 F DO C8 18 EB 23 B7 - 3 E AO 12 C8 28 CD 82 14
1450 18 F 4 CD 71 14 D 8 E 5 EB - CD 32 02 E 1 23 CD 88 14
1460 CB 7 F 11 00 08 E 5 2 A 18 - OC 36 20 EB 22 18 OC E1
1470 C9 7E C 6 01 9 F DP 5 E 23 - 56 2B E 5 2 A CE OC ED 52

53

ZEAP 1 . 0 (C) 1979 SIGMA ACCOUNTING ft MGMT SERVICES LTD

Ü 1 / 1 9 / 7 9 2 10 5 HRS PAGE 3

LOC 0 1 2 3 4 5 6 7 8 9 A B C D E F
1480 E1 C 9 7E 12 13 CD EC 18 - 23 7E FE 30 38 13 FE 41
149C 38 OA OE CO FE 5B D8 OE - 98 FE AO C 8 OE EO FE 3A
1 4 AO D8 E 5 32 69 OF 21 59 OF - 4 E 23 CB 7 E 20 FA BE 20
14BÜ F 8 E 1 C 3 61 CO 37 C 9 C 3 - 59 CO 06 05 CB 61 20 07
1 4 CO CD 82 14 10 F 7 04 C9 1 3 - 10 FD CD 89 14 CB 41 C 8
1 4 DO CD 88 14 18 F 8 06 00 E 5 - FD 66 F 6 2E 70 E3 11 00
1 4 EG 00 CD 89 1 4 FE 28 20 2D - E 3 CB 54 20 68 CB D 4 2 C
14F0 CB 98 E 3 CD 88 14 38 1 D - E3 FD 74 F6 CB 60 20 0 A
1500 CB 48 20 OD ED 53 F 2 OF 18 07 7B CD 14 13 FD 73
1510 F 7 45 E 1 18 B 5 ED 53 OD - OF CB 69 23 29 FE 22 20
1520 OF CD 88 14 16 00 5 F FE - AO 20 18 1 E 20 2 B 18 13
1530 EB FE 23 28 05 CD 4 C 13 - 18 07 13 CD 5 A 02 2 A 13
1540 OC EB 2B E 3 18 51 CB 71 - 28 6 D CD C6 13 2B E3 20
15 50 3E CB 4 ö 3 E 24 20 oE CB - 50 20 6 A CB C 8 7 A FE 62
1560 20 21 7B E 6 30 F 5 BO 47 - OF OF OF OF A 5 E 6 01 B 4
1570 67 F 1 CB 7 C 20 06 CB FC - B4 67 1 8 07 AC E 6 30 3 E
1580 25 20 42 7 D E 6 01 B2 6 F - ED 5B OD OF C 3 FO 14 30
1590 06 CB 40 3E 41 20 2 E E 5 - CB 58 2 A OD OF 20 03 19
1 5 AO 18 03 B 7 ED 52 EB E1 CB - 48 28 E 1 CB 60 3E 27 2 8
15B0 14 CB 45 28 10 18 D 5 C 3 - D 8 E 3 FE 2D CA F 2 14 CB
15C0 49 20 C9 3 E 26 C 3 E3 17 - D9 2 A 1 F OF FD CB GO 4 E
1 5 DO 20 6 F FD CB 01 5 E 28 54 - BF 01 OF 19 ED 43 4B OC
1 5E0 ED 4B OB OF 5 F 20 UA 04 - 05 28 1 F FD CB 00 5 E 2 0
1 5 FO 20 F 5 04 10 02 F1 C 9 CD - 2B 02 CD 3 C 02 10 F 8 CD
1600 47 16 F 1 28 05 E F 2 E 1 F - 00 C 9 OE 00 CD 32 02 06
1610 08 7B CD 2 B 02 CD 3C 02 - 05 C C 47 16 ED 43 OB OF
1620 01 E 1 18 ED 43 4B OC 7B - FD CB 00 DE FD CB 01 4 E
1630 28 08 E 5 ED 5B 19 OF 19 - 77 E 1 FD CB F 6 5E cc 44
1640 02 23 22 1 F OF D9 C 9 79 - CD 44 02 C3 40 02 3 A OC
1650 OC FD 77 01 E 1 C 9 2 A OC - OC 22 24 OF E 1 C 9 2A OC
1660 OC 22 19 OF E 1 C 9 F D CB - 00 D 6 CD 9F 13 CD B2 13
1670 CD 2 E 14 CD BD 1P 18 FB - E 1 CD 65 13 EB 2 A 09 OF
1680 23 CD 87 13 C 8 73 23 72 - EB CD 7 A 13 EB 30 F2 3 E
1690 01 32 OF OF CD E 7 1 7 11 - 01 00 18 E 1 E1 3 A 4 C OB
1 6 AO FE 20 23 34 21 53 OB 01 - 09 00 ED B9 23 21 4 C OB
16BQ 11 11 OF ED BO 1 B 3E AO - 12 CD 90 13 23 7E 3C C 8
1 6 CO 22 1 B OF 23 23 E 5 1 1 12 - OF 1 A 13 FE AO 28 13 BE
1 6D0 23 28 F6 E1 7E B 7 20 EC - 2 A 1 B OF 7E 3C C 4 86 13
1 6EC 18 DD E 1 2 A 1 B OF 18 09 - E1 C D 2 E 14 3 E 03 D2 E3
1 5 FO 17 EF 3 A 00 CD RD 1 8 21 - 4 A OB 36 20 23 E 5 7 E E6

54

ZEAP 1 . 0 (C) 1979 SIGMA ACCOUNTING 8 MGMT SERVICES LTD

0 1 / 1 9 / 7 9 210 5 HRS PAGE 4

LOC 0 1 2 3 4 5 6 7 8 9 A B C D E F
1700 7F 77 11 40 00 19 36 5E - CD 3 E 00 36 20 D 1 D 5 21
1 710 79 OB 36 20 E 5 B7 ED 52 - E 3 C1 FE 3E 20 09 54 5D
1720 2B ED B 8 23 36 20 2 F FE 3 C 20 06 62 6B 23 ED BO
1730 2 F El FE 20 20 02 23 2F - FE 1 D 23 02 2 B 2 F FE 1 F
1 740 28 26 FE 21 CA 1 A 1 8 B7 - FA FD 16 77 18 E8 E1 3 A
1750 OB OC FE 02 20 1 B CD 2E - 14 E 5 CD 71 14 38 05 CD
1 76U 86 13 18 F 6 D 1 C 3 2 A 13 - 11 4B OB D 5 CD 4C 13 C 6
1 770 10 20 6E D 1 CD 5 A 02 2 A - 13 OC 7 C B 5 28 63 22 OC
1730 OC 21 76 08 3E 20 36 AO 2B AE E 6 7 F 28 F 6 E 5 B 7
1790 ED 52 E 5 08 CD 2 E 14 54 - 5 D DC 86 13 CD 2 A 1 3 08
1 7 A 0 36 24 E1 E 5 19 EB 1 3 13 - 13 E 5 2 A 07 OF AF ED 52
17B0 38 31 CD 96 13 E 1 03 ED - B 3 12 1B C 1 E 1 ED B 3 21
1 7C0 14 OC ED AS ED A 8 2 A OC OC CD 7 A 13 3 E 02 38 13
1 7D0 22 1 D OF 18 49 FD CB 00 E 6 CD 65 13 22 1 D OF 18
1 7 EG 3D 3E 99 2 A 03 OF E 5 11 - 8F OB CD 65 14 5 F EF 45
1 7F0 52 52 4 F 52 20 00 7 B CD - 44 02 FD CB 00 FE 7 B FE
1800 23 3E AO CC 3B 01 C 3 C 6 - 1 8 AF 32 FF OF 3 A OB OC
1810 FE 02 20 06 2 A OE OC 22 - 07 OF AF 32 FE OF AF 67
1820 6F 22 OC OC 2 B 22 UE OC - 32 00 OC 3D 32 BA OB 2 A
1 830 28 OF 22 45 OC 21 t 1 18 - 22 4B OC 21 1 A. 18 22 05
1840 OF 22 03 OF FD 21 FE OF - FD F 9 21 00 10 01 OD OB
1850 AF AE ED A 1 E A 51 18 47 - 2 A 2 A OF 7E 21 10 OF B 7
1860 28 07 7 E A8 3 E 90 C 4 E 7 - 1 7 70 CD 90 13 CD 38 13
1870 28 OA 23 CD 88 14 30 F 5 - 13 13 18 F 1 EB 22 1 F OF
1680 11 EE 03 CD 65 14 CD 32 - 02 11 3A OB C D 65 14 21
1890 03 10 11 CF OB 01 1 E 00 ED BO EF 3 A 00 FD CB 00
18A0 66 2S 06 2 A 1 D OF C D 32 - 02 CD DE 01 21 1 A 18 E 5
1ÖBQ 3A 4B OB 2 A 2A OF 7 7 FE - 20 C 3 C 3 89 02 CD 52 14
1 SCO C2 1 A 18 CD 4 6 14 FD CB - 00 56 23 13 CD 62 14 11
18 D 0 8 A UB 1 A CD OA 19 13 1 A - B7 F 2 D3 18 CD B2 13 3 E
1 BED 1 F E 6 7 F FE 1 D D 4 3B 01 - FE 21 28 1 8 3A 25 OF FD
1 8 FO CB 00 56 CC A4 13 CD 4 D - OC DO FE 21 28 06 FE 3 F
1900 CO C 3 3E 00 2 A 05 OF E 5 - 18 D 5 CD 21 OF 18 E 7 CD
1910 22 13 18 E 2 21 06 1 P 22 - 03 OF 2 A 30 01 22 45 OC
1920 E 1 E 1 E 1 2 E OB E 5 2 A 1 F - OF E 5 CD 67 19 E1 22 1 F
1930 OF E1 CB 7 D 28 04 CB 64 - 28 29 CB 5 C C 4 9 F 13 7 C
1940 E6 OD 6 F CB 55 C 4 B2 13 - E 5 21 00 00 22 OB OF E 5
1950 CD 67 19 E 1 E 1 3 E 50 C 9 - 7D E 5 C 4 E 7 17 E 1 CB 5 C
1960 C4 D 9 15 E 5 C3 1 A 18 CD - 90 1 3 D 5 DD E 1 CD 2 E 14
1970 2 B 22 1 D OF 23 11 3 A OB - 06 30 3E 20 12 13 10 FC

55

ZEAP 1 . 0 (C) 1979 SIGMA ACCOUNTING S MGMT SERVICES LTD

01 n9 / 7 9• 2105* HRS PAGE 5

LOC r< 1 2 3 4 5 6 7 p 9 A B C D F F
1980 11 98 OB CD 65 14 CD 52 - 14 CO F5 30 OF E5 2 A 1 F
1 990 OF DD 75 00 DD 74 01 DD - 23 DD 23 E1 FE 3 B 28 08
1 9 AO 06 07 CD BC 14 CC B7 14 - F 5 CD 46 14 F 1 D1 E 5 D 5
19B0 3E 10 C 2 E 3 17 F 1 F 5 21 - 00 00 E 5 E 5 E 5 30 OB 21
19C0 9D CB CD C 6 13 3 E 31 D 2 - E 3 17 FE 3 B 28 79 1 1 BA
1 9D0 OB CD 65 14 2 A 1 F OF CD - 32 02 2 A 2 C OF E 5 16 00
1 9 E 0 D 5 21 A3 OB 1 8 08 C D 69 - 12 3 E 20 DA E3 1 7 CD 88
1 9F0 14 38 F 3 CD CD 14 FD CB - EE 7 E CA 89 1 A 3 E 40 30
1A 00 C 6 CD 02 13 FD CB F 6 D6 - 33 D F F 5 FE C3 28 3B 30
1 A10 57 F 5 06 05 CD D 7 1 4 3 F - 30 E 3 EB 11 PA OB CD 65
1A20 14 CD 32 02 F1 FE 01 28 - 07 38 OC ED 5B 1 F OF 19
1 A30 22 1 F OF FD CB 00 9E FD - CB F 8 46 2 8 OA FE 02 28
1 A AO 06 DD 75 FE DD 74 F F C 3 - F 7 1 A 46 CD 8 8 1 4 BP 28
1A 50 F 6 FE AO 28 F 2 CD C8 15 - FD CB F 6 DE 1 fe ED CD 1 0
1 A60 13 08 30 E 3 FD CB F 6 DE - 06 04 CD D 7 14 08 7B CD
1 A70 C8 15 FD CB F 1 46 28 E6 - 7 A CD C 8 15 18 E3 CD D 5
1A80 14 78 CD 69 12 3 E 21 38 - 52 CB 59 28 F 1 CD 02 13
1 A90 38 F3 C1 E 1 CB 51 28 10 - 2 B 2B FD CB 01 6E 28 08
1 A AO D 5 ED 5B 1 F OF ED 52 D1 - EB 7B CB 51 C 4 14 13 CB
1 ABO 49 C 4 10 13 79 B 7 76 08 7 A CB 41 EB E 1 E 5 37 F5
1 ACO 3F F 5 08 F 5 7 A PO o c F 5 - 3 E CB CR 5 B 23 01 F 5 CB
1 ADO 65 28 1 A 7 C CB 73 2 8 08 - B 7 3 E 22 C 2 E3 17 18 05
1 AEO C1 CB 45 F 5 C5 3 E DD B5 - F5 CB 63 20 EC 3E ED CB
1 AFO 63 C 4 C 8 1 5 F 1 30 FA FD - CB 00 46 CC C 6 18 FD CB
1 B 00
1910

F 6
F F

76 3E 23 2 0 D 5 31 F 3 OF E 1 C 3 75 19 11 1 B GO

LOADER PROGRAM

OC 50 31 00 50 CD 51 00 CD 3E 00 FE FF 20 F9 06 03 CD
0C60 3E 00 FE FF 20 FO 10 F7 - 2A 18 OC 36 20 21 8 A OB
OC 70 22 18 OC CD 3E 00 B 7 20 - 4E E F 1 F 2E 1 F 00 CD 51
0C80 00 31 33 OC C3 86 02 OE - 00 CD 3E 00 67 CD 3E 00
OC 90 6F CD 3C 02 CD 3 C 02 CD - 32 02 E5 21 00 08 E 5 06
OCAO 08 CD 3 E 00 77 CD 2 B 02 - CD 3C 02 23 10 F3 CD 3E
OCBO 00 B9 F5 CD 2B 02 F 1 E 1 - D 1 28 05 CD 40 02 18 A8
OCCO 01 08 00 ED BO 18 A 1 FE - 01 28 BC 18 9B 00

2 * ZEAP LOADER PROGRAM

Pl
ea

se
 t

ea
r

al
on

g
do

tt
ed

 l
in

e

IIII
I•II!IIIII!II
I

- 56 -

APPENDIX J
ZEAP COMMENT FORM

To: Sigma Accounting & Management Services Ltd
c/o Nascom Microcomputers
92 Broad Street
Chesham
Bucks

COPY NO
9 A 6

Date

■i From: Name
iii| Address
;!
i|IIil
|ij«I
j Comments/Bugs (Fullest possible explanation please including
| listings - even if written out by hand)
l

iiI

l

iil

ii
i

/iiI

li

ii
NB: We regret that no correspondence can be entered into over

particular queries/suggestions. The aim of the comment form
is to enable your opinions, etc to be incorporated in updates.

PTO for more space
k

SIGMA ACCOUNT!MG & MANAGEMENT SERVICES LTD

Information Bulletin

Welcome to ZEAPl You have bought an extremely powerful software
product which we hope you will enjoy using. It enables you to
edit and assemble Z80 Assembly language programs on the
NASCOM 1 computer.
It is important that you complete your software registration
.form and return it promptly. Only if this form is returned
are we able to provide you with updates, patches or other
information about ZEAP, or a replacement for a corrupted tape.
ZEAP has been extensively tested, but few packages as powerful
as this are completely free of bugs. If you come across
anything you believe to be a bug, please complete and return
the ZEAP Comment Form in the back of your manual. We will
try to take your comments into account on future updates.
Further enhancements to ZEAP are planned including a ROM based
version with additional capabilities. These will be announced
via your NASCOM dealer and the INMC newsletter.
If you have difficulty, please first check that you are
following the correct procedures. The ZEAP manual should be
read at least twice. It is a terse document. Similarly other
documentation should be carefully studied. Some users have
experienced difficulty because they have been accustomed to
hand assembly in which abbreviations are followed and they
have not used the Z80 Assembly language code in the exact manner
defined - eg:

L A
IN A, 2 instead of IN A,(2) (latter is correct)

If you cannot identify the cause of a coding error, study one
of the Assembly Language manuals/books listed in the manual.
After you have loaded ZEAP into your NASCOM from the ZEAP tape,
you are advised to make a back up copy by dumping ZEAP in
NASBUG format (0F00 - IBll) to another tape. Then keep your
original ZEAP tape in a clean, dry, dust free and (if possible)
controlled temperature environment. Do not store it near
mains power points, etc. Please remember that you may make
back up copies of ZEAP for your own personal use. You may not
make copies for use by others, as gifts, loans, or for sale.
We hope that ZEAP will help you write some good programs easily
and quickly.

Directors: G W Roughton M A , P j .W a r d FCA
Regd. Office: 12 John Street. London WC1 Regd. No.11B8510 England

6) Type in the load command (L) on your Nascom
followed by hitting the "new line" key.

7) Set the output volume control on your recorder
fairly low and then hit the "play" or
equivalent button on your machine.

8) The loader program will now be placed in
memory locations 0C50 - OCCF by the Nasbug
loader. As soon as the loader program has
been placed in memory (ie. the LED is out),
press the "stop" button on your recorder.
DO NOT REWIND.

9) If you do not get valid loading of the loader
program, increase the volume on your cassette
slightly, rewind the tape and repeat stages
7 & 8 again. Do this as many times as is
necessary (seldom more than 2 or 3) to get
the volume control setting just right on your
cassette. Incorrect volume setting is by far
the most common reason for errors/difficulties
in loading programs from cassette tapes.

10) Any errors in reading the loader program will
have been scrolled up on your screen.
Providing that there are only a small number
of these, you can use the modify memory
command (M) to patch memory by referring to
the listing of the loader program object code
in the ZEAP manual. However, it is best to
ensure that you can load the loader program
without errors since you are then much less
likely to encounter loading errors when
loading ZEAP itself.

11) Assuming that the loader program is now
correctly located in memory and that the tape
has been stopped after it, you should execute
the loader program by typing in response to
the Nasbug prompt:

EC50

The LED will come on and you should now press
the "play" or equivalent button on your
cassette recorder.

12) The ZEAP object code will be displayed on the
bottom line of the screen in the same format
as that of Nasbug with error lines being
scrolled upwards. Stop the cassette immediately
on completion (ie. when the LED goes out).
DO NOT REWIND.

13) If there have been no error lines you may now
proceed to execute ZEAP. If there have been
a relatively small number and they are all
contained on your screen, then they may be
corrected through the modify (M) command by
referring to the object code listing of ZEAP
in the manual. However, if there are a large
number you may then re-execute the loader
program to continue reading the tape which
contains a second copy of ZEAP. To do this
repeat stages 11 & 12 above. However, if you
have rewound the tape you will need to start
from stage 6 above. Similarly if there are a
significant number of errors, it is probable
that the volume control setting is still
incorrect. If you have followed the procedure
above of starting with it set fairly low, and
have moved slowly up, you should increase the
volume a little bit more, and repeat from
stage 6.

14) If ZEAP is ready to use, you enter it after
reset by typing in:

EFOO

15) The first thing that ZEAP does is to carry out
a checksum on itself to ensure that it is not
corrupt. If you have followed the instructions
above correctly and dealt with all of the errors
concerned, and you still get a checksum error
(error 90), it is almost certainly due to
defective memory on your Nascom. The listing
of the ZEAP object code will enable you to
check this by displaying successive blocks of
memory using the tabulate (T) command.

16) However, once you find that you can enter ZEAP
without a checksum error, we advise you to
make a back up copy in Nasbug or Be-bug format
which should be the one that you normally use
for loading ZEAP. Please note that ZEAP is
supplied on the strict understanding that any
copies you may make are solely for your own
use for back up or other purposes. They may
not be given, sold or lent to others.

INSTRUCTIONS FOR LOADING THE ZEAP TAPE

1) The enclosed tape contains a loader program in
standard Nasbug format followed by two copies
of ZEAP in a special compressed format. This
tape has been created and checked individually
on two separate machines. The loader program
enables ZEAP to be loaded in just over
4 minutes.

2) The programs on the tape have been recorded at
\ \ i.p.s. on a Hitachi TRQ-265R cassette
recorder. The read/write heads of the
machines used for recording have been specially
aligned and the recording levels checked.

3) After recording the programs the tapes have
been read back under program control on a
different cassette recorder.

4) Only tapes passing this test without error are
released. A sample of tapes are additionally
read on another cassette recorder on an
independent Nascom machine. These procedures
ensure that providing your equipment is in good
order and you follow these instructions, you
will be able to load ZEAP into your Nascom
without difficulty. Instructions for doing so
are given below. These apply regardless of
whether your monitor is Nasbug, Nasbug 4, or
Be-bug.

5) After powering up your Nascom (and clearing
the breakpoint if Nasbug is used), you should
connect your cassette recorder and make it
ready. Then place the ZEAP tape into the
recorder, label side up. The tape should
already be rewound.

ZEAP 1.1 - ADDENDA

1) LOADER PROGRAM
The loader program listing (P.55) shows the stack pointer
as being set to £5000 in locations 0C51 and OC52. In
tapes currently being shipped (but not manuals), this has
been modified to £2000 to allow the loader to operate in
Nascoms with as little as 4K additional memory. If,
however, your loader does not appear to work, please check
the value contained in location OC52 and change it, if
necessary, from 50 to 20 by use of the Nasbug Modify (M)
command before executing from 0C50.

2) OPERAND SEPARATOR
In certain circumstances an error is flagged when two
operands are not separated by a comma:

20 ADD A B
results in an error whereas

20 ADD A ,B
assembles correctly. Use the latter format if an error
occurs.

3) SET MEMORY OFFSET (P) COMMAND
The argument to this command is a hexadecimal offset value
without the pound (£) sign in front. Note that an offset
in excess of available memory is likely t^'w^ap round' and
place the generated code elsewhere than intended. This is
likely to have unpredictable results.

4) AUTO LINE NUMBER INCREMENTATION
In certain circumstances, incrementation results in a
hexadecimal number being output to the screen. This will
generate an error. If this occurs, exit from auto
increment mode, and enter line numbers manually. This
condition was experienced by a user after making several
extended DEFM entries.

GWR/ksh/13:2:79

