Z80 EDITOR
ASSEMVMBLER PACKAGE
FOR THE

NASCOM 1 COVPUTER

Copyright © 1978 by Sigma Accounting & Management Services Ltd.

All rights are reserved. This manual may not be reproduced in whole or in
part by any means nor may it be reproduced by Xeroxy, photography,
transmitted by electronic or mechanical means, or stored in any

retrieval system without the express written permission of the publisher.

Published by:

SIGIMIA ACCOUNTING

, &S VIANAGEMENT SERVICES LTD
Software Unit

c/o Nascom Microcomputers

92 Broad Street, Chesham, Bucks.

JANUARY 1979

SECTION

=
W

N

NN

.
w N -

.

.

WWWwWwwwwwwwwww
. . o e . .
NN U wWwWwwwN -
.

N

APPENDICES

UHITOOEHEBOOQOWP

CONTENTS

INTRODUCTION
AIMS OF ZEAP
COMPARISON WITH THE ZILOG ASSEMBLER
MACHINE REQUIREMENTS

THE ZEAP EDITOR
EDITOR OPERATION
ZEAP EDITOR COMMANDS

THE ZEAP ASSEMBLER
ASSEMBLER OPERATION
EXPRESSIONS
SOURCE STATEMENT SYNTAX

LABELS

INSTRUCTION FORMAT

COMMENT LINES
ASSEMBLER OPTIONS
ASSEMBLER DIRECTIVES
ASSEMBLY LISTING
OBJECT GENERATION

TAPE OBJECT

MEMORY OBJECT

ZEAP OPERATION

ZEAP ERROR CODES

ZEAP EDITOR COMMANDS
ASSEMBLER DIRECTIVES
ASSEMBLER OPTIONS

Z80 INSTRUCTION SET
ZEAP INTERNAL REGISTERS
ASCII CODE TABLE
OBJECT CODE LISTING
COMMENT FORM

PAGE

0 ~J O

13

24
25
26
28
28
29
30
31
32
33
34
34
34

35
36
39
42
43
45
49
50
51
56

PREFACE

This manual is laid out in two complementary parts.

Sections 1 to 3 describe the ZEAP package informally and are
designed to be read in order.

The appendices following provide a useful reference section,
and define all the elements of ZEAP formally, directing the
user to the appropriate section in the first half of the
manual where more information and examples are to be found.

Those familiar with the workings of micro-computer assemblers
and BASIC-type line editors may find it easier to read the
appendices first, although this is not recommended to those
who do not fully understand the terms used.

The reader should not be dismayed, however. ZEAP is easy
to use and yet powerful enough for his requirements.

If information or guidance is required on the Z80 Assembly
Language itself, you are advised to consult the Mostek or
Zilog Z80 Assembly Language manual. Other publications which
may prove helpful include:

The Z80 Microcomputer Handbook by William Barden
(Published by Howard W Sams & Co., Inc.)

280 Instruction Handbook by Nat Wadsworth
(Published by Scientific Computer Consultants Inc.)

280 Programming for Logic Design by Adam Osborne et al
(Published by Osborne & Associates Inc.)

cON

NOTATION

The following notation is used in this manual:

£ hexadecimal number
L ‘((tttt
(x) X is optional
(x)... X 1s optional and may be repeated
indefinitely

ﬂ\shlf'nwnf /“ngc_:tt\r &—L‘

In general, output from ZEAP is underlined whereas user
input is not.

—
‘ —_———

1. INTRODUCTION

ZEAP (Z-80 Editor/Assembler Package) is a memory resident text
editor and symbolic assembler designed for use with the NASCOM 1
microcomputer.

The assembler translates mnemonic codes as defined in the Z-80
microcode language into executable machine instructions, allowing
user control over memory allocation, and symbolic names for MPU
registers and instruction or data addresses. It incorporates
comprehensive syntax checking and error message generation,

and allows object code to be generated on cassette tape or

stored directly in memory.

The editor allows for entry, examination, correction and permanent
storage of source programs which are held in memory during editing
and assembly.

The memory resident nature of ZEAP allows entry, assembly, testing,
correction and re-assembly of source programs without the
necessity of using cassette tape at any stage, since editor,
assembler, source program and object program may reside in memory
simultaneously. This makes ZEAP very easy and quick to use.

AIMS OF ZEAP

ZEAP was produced with the intention of providing a
compact editor/assembler package for the NASCOM 1
microcomputer. The following requirements were laid
down during the design of the package:

*

Minimum memory requirements
Minimum extra hardware requirements

Maximum compatibility with existing assemblers

Foei- ket _
Abidity to edit, assemble, execute and then re-edit
the program with the minimum use of external storage
(eg. cassette tape)

Ability to store source programs on cassette tape and
then re-load them at a later stage

Gev :32* [trwi

Ability to store more than one source program at a
time in memory

Maximum use of NASBUG sub-routines
Ability to drive an ASCII terminal attached to the UART

Ability to generate object code in NASBUG format, to
be subsequently loaded using NASBUG's LOAD function

The result is an editor/assembler package requiring 5K
bytes of user RAM (1K basic + 4K expansion kit), of which
ZEAP uses under 3K bytes, leaving 2K bytes spare for
source programs and object code.

The ZEAP editor provides the following functions:

*

Fully dynamic source buffer allocation
Insertion, deletion and replacement of lines
Context editing of individual lines

String searching

Automatic line number generation for block entry of
source programs

Complete resequencing of source program line numbers

Loading and dumping of source programs to and from
cassette tape

Listing of selected source program lines on the screen
or on an ASCII terminal

* Self checking checksum for easy detection of hardware
faults or user program malfunction

The ZEAP assembler provides the following functions:

* Full range of options including control of source
listing, object generation and error processing

* Numbered error messages pin-pointing the exact cause
of the error

* Object generation in NASBUG format onto cassette tape,
or directly to memory

* Formatted source listing on the screen or on an
ASCII terminal

The editor, assembler, source program and optional object
program may all reside in memory at the same time, enabling
maximum ease of entry, assembly, testing, correction and
re-assembly of source programs with minimum use of

external storage.

The assembler source code follows closely that defined in
the ZILOG assembler, the differences being noted in
section 1.2.

Editor operation is described in section 2, while the
assembler's function is defined in section 3.

It should be noted that because of the commitment to
minimum memory requirements, error checking of user input
is kept to an absolute minimum. Failure to follow the
instructions precisely will thus in some cases result in
unpredictable errors or ZEAP itself becoming corrupted.
Limits, formats, arguments, etc must be adhered to
precisely.

V‘(‘C('t(ﬂ
COMPARISON WITH THE ZILOG ASSEMBLER

The operation of the ZEAP assembler is very similar
in most respects to the ZILOG Z80 assembler. The
following differences should be noted, however:

4M$(«L‘l wele
* Expressions may contaln&only the operators "+"
and "-", and no parenthetical grouping is Wlam il

allowed. Expressions may be enclosed in parentheses

to represent memory addresses. Evaluation is from
left to right. A leading "-" is allowed.
2l sen $¢

* Hexadecimal numbers must be preceded by a "£".
The "H" suffix form is not supported. The default
number base is decimal. Octal and binary numbers
are not supported.
Asjdi

* Lébels must begin in the first column at the
source line, directly after the single space
following the sequence number. Only one label is
permitted on a line. The use of a ":" suffix
to indicate a label is not supported. Statements
without labels must leave the first column blank,
except for comments, which may begin in the first

column with a ";".

* The following assembler directives (pseudo-ops)

are not supported:
0"'”“5"""‘

MACRO L h,,u(cv[..n”‘ ‘);yLL«":VCv\

ENDM
COND
ENDC
DEFL
END
pubbalbin
* A single ASCII cq' gcggr code may be 1ncluded in an
expression by pFecé Ing jt with a dpuble ‘Gtote sign,
e.g. "A = £41. This fa811%ty réplaces the DEFB
's' assembler directive.

* Fields and/or expressions may be separated by one
or more spaces and/or commas. The space and the
comma are syntacticalgy £gquivalent in all contexts
within the assembly ldnguage.

(-

-

MACHINE REQUIREMENTS

ZEAP uses under 3K bytes of memory, not including
source program storage. Thus a minimum of 4K bytes
of memory is required in addition to the basic
NASCOM 1.

With a cassette recorder the user can store source
programs on cassette tape for reloading at a later time.
The assembler can output NASBUG format object code to
tape which can be subsequently loaded using NASBUG's
LOAD function.

ZEAP contains routines to drive an ASCII terminal
attached to the UART for hard copy or source listings.
However, this item is entirely optional and ZEAP will
function perfectly without it.

The minimum system is:

A working basic NASCOM 1

A television or monitor

A minimum of 4K bytes of additional memory
A cassette recorder

——

-

[

(-’

(-

THE ZEAP EDITOR

The ZEAP editor provides the means by which source
programs may be entered, examined and altered by
the user.

EDITOR OPERATION

After ZEAP has been loaded, control is passed to the editor
as described in APPENDIX A.

The editor prompt will be displayed (":") indicating that
the ZEAP editor is ready to accept editor commands.

The editor is a line editor in which source lines are
identified by line numbers (sequence numbers), each line
of source code being identified with a unique

number. The editor also has powerful context editing
capabilities not normally available with this type of
editor. '

A sequence number may be any decimal number from 1 to 9999.
Leading zeros may be omitted. The sequence number is
always followed by a single space to separate it from the
actual source line, eq.

1000 SAMPLE LINE

The actual source line is "SAMPLE LINE". The source line
itself may of course contain leading spaces, eg.

2000 ANOTHER LINE

The space after "2000" is the separator, but the next
two spaces are part of the source line.

A line of source code may be entered by typing a sequence
number, followed by a space, followed by the source line,
followed by the New Line key. The editor stores the line
of source code in memory and prompts (":") for the next
editor command.

The source program is sorted automatically in ascending
sequence number order. Thus

.20 THIS IS THE THIRD LINE
710 THIS IS THE FIRST LINE
712 THIS IS THE SECOND LINE

would cause the lines to be stored in the order indicated.

Typing a sequence number directly followed by a New Line
causes that line to be deleted. Thus

112

would cause line 12 to be deleted.

4“4»96
d‘_.« h"-::z

(X%

.
Loas

A‘h T30

Typing the sequence number of a line which already exists
followed by a new source line causes the old line to be
replaced by the new line. Thus

:20 THIS IS NOW THE SECOND LINE

[os |

would cause line 20 to be replaced with the indicated text.

Thus all requirements for inserting, deleting and changing
lines of source code are provided by the above techniques.

In addition to the above facilities, there are a number
of commands for examining and manipulating the source
program. To take full advantage of NASBUG's command
decoding routines, these commands have been implemented
with single letter mnemonic codes. These commands are
described below in section 2.2.

All source lines are stored in an area of memory called
the EDIT BUFFER. All editor commands operate on the
information contained in the Edit Buffer. The size of
the source program is limited only by the amount of
memory available.

At all times during ZEAP operation the address of
first free memory location is displayed in
hexadecimal in the top right hand corner of the
screen. This address is that of the first location
not used by ZEAP for the source program and the
symbol table. It is also the default origin
address for the assembler. Care must be taken that
this number does not exceed the address of the
highest memory location.

Any time before the New Line key is depressed, a line may
be edited using the Backspace key as described in the
NASCOM 1 Software Notes. In addition, the character "!"
(Shift "1") may be used to delete the entire line. When
"!" is depressed, a "!" will appear on the screen at the
current cursor position, indicating that the line has been
deleted, and the editor prompt ":" is displayed ready for
the next user input, eg.

:50 THIS LINE IS WRONK! ("!" key pressed)
(prompt displayed)

oo

In this case, line 50 would not have been entered into
the Edit Buffer.

At any time when ZEAP is in the process of displaying
information (eg. when listing or assembling the source
program) the user may interrupt the process by depressing
the "!" key. ZEAP will immediately abandon its current
processing and display the editor prompt ":" to indicate
that it is ready to process editor commands.

Alternatively the "?" key (Shift "/") may be used under
the same circumstances to temporarily hold the execution
of ZEAP so that the contents of the screen can be
examined at length. When the user wishes to resume
execution, depressing any key will restart ZEAP where

it left off, and processing will continue. In summary:

Delete line; abandon execution
"?" Hold execution (resumed by pressing any key)

Error messages from the ZEAP editor are of the form
ERROR nn

where nn is the error number. An explanation of ZEAP
error codes is given in Appendix B. The most common
editor message is

ERROR 99

meaning that the last line of user input was illegal
or unrecognisable as an editor command or line of source
code.

If the first character of an input line is blank, the
line is ignored by the editor.

nyzn
v

ZEAP EDITOR COMMANDS

The following discussion is independent of any knowledge
of the 280 assembly language, and therefore the source
lines shown are not suitable for assembly by the ZEAP
assembler.

Suppose the following lines are entered:
:20 LINE

:10 LINE
:30 LINE

w =N

The user can examine the contents of part or all of the
Edit Buffer using the "V" editor command. ("V" is a
mnemonic for VDU List). Thus

£V 10 10
0010 LINE 1

iV 10 20
0010 LINE
0020 LINE
VvV 20
0020 LINE
0030 LINE
RY

0010 LINE
0020 LINE
0030 LINE

N =

[OS31\¥]

WIN |-

Also note

iV 5 15
0010 LINE

V19
3V 20 10
vV 1000

The last three commands cause no display.

In summary:

Vmn Display lines m to n inclusive

V m Display lines from m to the end of the
buffer

\Y Display the entire contents of the

source buffer

The space following "V" is optional, but if both m and n
are specified, they must be separated by one or more
spaces.

"g" When a source program has been entered by the user using
the ZEAP editor, it is useful to be able to store all or
part of it on cassette tape. This is achieved by the "U"
editor command ("U" is a mnemonic for UART List). Its
syntax is the same as that of the "V" command. Its
operation is identical except that each line displayed is
also output to the UART in a format which allows the
line to be reloaded subsequently by the editor. Thus

H

0010 LINE 1
0020 LINE 2
0030 LINE 3

would cause those lines displayed to be stored on an
attached cassette recorder.

There is no identifiable Load command provided with ZEAP.
Loading of source programs stored on tape using the "U"
editor command is performed simply by switching the
cassette recorder on while the editor prompt is displayed.
ZEAP scans both the keyboard and the UART input during
editor operation, and so source lines input from tape
will be interpreted as if they had been entered manually.
Thus playing back the above tape when the ZEAP editor
prompt is displayed would cause the following display:

:0010 LINE 1
:0020 LINE 2
:0030 LINE 3

and the three lines would be entered into the Edit Buffer
as if they had been typed on the keyboard.

If the user attaches an ASCII terminal (teletype or
equivalent) to the UART the "U" editor command can be
used to obtain hard copy of all or part of the source
program. The output of the "U" editor command is
formatted with both NASBUG New Line characters and

ASCII Carriage Return and Line Feed characters to support
this facility. Thus, with an attached ASCII terminal

:U 10 20
0010 LINE 1
0020 LINE 2

and the two lines displayed are also printed on the terminal.

III"

The ZEAP editor provides a convenient facility for the
manual entry of blocks of source code, namely the "I"
editor command("I" is a mnemonic for Auto Input). If
the user enters

:I 40

the editor responds
: 0040

and any input up to the New Line key is interpreted as
Line 40. Suppose the following is typed:

:0040 LINE 4
: 0050

After New Line is depressed the editor increments the
sequence number by 10 and displays the new sequence
number, ready for the entry of the next line of code,
and so on:

:0050 LINE 5
:0060 LINE 6
: 0070

Note that the necessary space following the sequence
number is inserted by ZEAP, so that the user need not
type it.

It is possible to edit the sequence number using the
Backspace key. Entering these backspaces, followed by
95, followed by a space at this stage would result in
the display

: 0095
and then line 95 could be entered

: 0095 LINE 7
: 0105

Note that the increment of 10 is applied to the sequence
number of the last line entered, and not of the last line
displayed by ZEAP.

Exit from Auto Input mode (which is the name given to
the above behaviour) is achieved by typing "!"
(Shift "1") which deletes the current line and causes
the usual editor prompt to be displayed, thus:

:0105 ! (user types "!")

- - -

—

e

(— — -

(-

—_—

Note that if it had existed prior to the above sequence
of commands, line 105 would not have been deleted. Only
the line of entry displayed would be deleted. To delete
line 105, it would be necessary to enter the number 105
followed by the New Line key, not the "!" key as above.

If the number after the "I" is omitted, the editor
displays

:0010
initially.
If a second number is typed after the "I", it is used

as the sequence number increment. It must be less
than 100. Thus:

:I 100 3

0100 (New line pressed)
0103 (New line pressed)
0106 ! ("!" pressed)

So in summary

I Enter Auto Input mode at line 10 with
increments of 10

I s Enter Auto Input mode at line s with
increments of 10

I si Enter Auto Input mode at line s with
increments of i

M)

n Xll

Deleting a block of source code is made easier by the
"X" editor command("X" is a mnemonic for eXpunge).
"X"must always be followed by two numbers, separated by
a space, which are the sequence numbers of the first
and last lines to be deleted. All lines between and
including these lines are deleted. Thus

Vv
0010 LINE 1
0020 LINE 2
0030 LINE 3
0040 LINE 4
0050 LINE 5
0060 LINE 6
0095 LINE 7
:X 36 70
Y
0010 LINE 1
0020 LINE 2
0030 LINE 3
0095 LINE 7
X 95

ERROR 99
:X 95 95
Y%
0010 LINE 1
0020 LINE 2
0030 LINE 3

Note that an attempt to use X with only one line number
produced an error message.

To delete the entire edit buffer, the user should enter

:X 1 9999

"ol

This command does the job of a NEW or CLEAR utility in
similar editors.

In summary

X mn Delete lines m to n inclusive

"z" The limitation of line replacement as a method of
correcting minor mistakes is clear from the following
example:

:40 ILNE 4

To interchange the "I" and the "L" requires that the
whole line be re-entered. A powerful alternative is
provided in the ZEAP editor. Entering

:Z 40

causes the following two lines to be displayed:

:0040 ILNE 4
E3

ZEAP has now entered Edit mode. The arrow under the first
digit of the sequence number is the cursor. The user

can advance the pointer to the position where the
correction is to be made by depressing the space bar
appropriately. After pressing it six times the display
is:

:0040 ILNE 4
+ (6 spaces typed)

Now the offending letter "L" can be deleted by typing
"<" (shift ","), thus

:0040 INE 4
A (n<n typed)

Note that all the characters to the right of the cursor
have been moved up to fill the gap left by the deleted
"L Now, using the backspace key, the cursor can be
positioned under the "I", before which an L is to be

inserted:
:0040 INE 4
+ (Backspace typed)
Now to make room for the L the ">" (shift ".") is used:

:0040 INE 4
/f\

Note that all the characters above and to the right of
the cursor are shifted one place right to make room for
the insertion. Finally typing "L" will give

:0040 LINE 4
1\
The "L" is inserted at the position of the cursor,
which is then advanced one place.

Now that editing is completed, the New Line key is
pressed to signify that fact

:0040 LINE 4

The cursor arrow disappears, and the editor prompts for
the next command. The new line 40 is entered just as if
it had been typed manually.

The space and backspace keys cause the cursor to move
one place right or left respectively. Moving the
cursor beyond the limits of the bottom line of the
screen will have unpredictable effects. These keys
cannot be used to enter spaces or delete characters in
the line being edited as they do in normal editor
operation. The ">" and "<" keys must be used for these
purposes, respectively.

The ">" (insert) key causes all characters above and to
the right of the cursor to be shifted one place right

to allow insertion of text. Repeated depressions cause
more space to be left. Characters shifted off the right
hand end of the line are lost. The cursor remains where
it is.

The "<" (delete) key causes the character above the
cursor to be deleted and all characters to the right

of the deleted character to be moved one place left to
fill the gap left by the deleted character. Repeated
depressions cause more characters to be deleted. Spaces
enter from the right hand end of the line. The cursor
remains where it is.

The New Line key causes Edit mode to be terminated, and
the edited line is interpreted as a line of source code
entry.

The "!" key causes Edit mode to be abandoned.
The edited line is ignored and the original version of
it remains intact in the Edit Buffer.

Depressing any other key causes the appropriate character
to replace the character currently above the cursor, and
the cursor is advanced one place to the right.

A space may be entered into the line being edited by
depressing the "<", ">" and space keys in sequence.

In Edit mode the sequence number itself can also be
edited. Thus

72 40
:0040 LINE 4
¢\

_20-

Typing two spaces followed by a "7" gives

:007Q LINE 4
4 (space space "7" typed)

Now typing New Line gives

:0070 LINE 4

And now

Y%

010 LINE
0020 LINE
0030 LINE
0040 LINE

0070 LINE.

b s feo o i

Note that the original line still exists, so
: 40 (deletes line 40)

0010 LINE 1
0020 LINE 2
0030 LINE 3

0070 LINE 4

In summary
Zy edit liney

and then the following keys may be used:

Space cursor right
Backspace cursor left

"> insert

BE delete

New Line leave Edit mode

ne abandon Edit mode
other replace current character

" F"

The "F" editor command ("F" is a mnemonic for Find)
enables the user to find the first and thereafter
subsequent occurences of any string of up to six
characters in the source program. Thus

i25 ABC
:55 ABCDEF
VvV
0010 LINE 1
0020 LINE 2
0025 ABC
0030 LINE 3
0055 ABCDEF
0070 LINE 4
:F/ABCD/
:0055 ABCDEF
+

In this example the string "ABCD" is found in line 55,
which is displayed and Edit mode is entered automatically.
The " /" character is used as a delimiter. Any non-blank
character may be used. In the examples that follow it

is assumed that Edit mode was left immediately after the
display of the cursor arrow by typing New Line, so that
no change occured to the edited line.

:0055 ABCDEF
sF*ABC*
:0025 ABC

:F

0055 ABCDEF
iFT

:0025 ABC

The command "F" above causes the next occurence of the
last mentioned string to be found. The command "FT"
(a mnemonic for Find from the Top) causes the search
to be restarted from the beginning of the Edit Buffer.
If no occurence of the string is found, the editor
merely prompts for the next line of input.

In summary:

. . . Vivkom wiu
F/string/ finds first occurence of "string"
F finds next occurence of last "string"

FT finds first occurence of last "string"

"R" The "R" editor command ("R" is a mnemonic for Resequence)
allows the entire source program to be remembered. Thus

:V

0010 LINE 1
0020 LINE 2
0025 ABC
0030 LINE 3
0055 ABCDEF
0070 LINE 4
:R 100

HAV

0100 LINE 1
0110 LINE 2
0120 ABC
0130 LINE 3
0140 ABCDEF
0150 LINE 4

Only the order of the source lines is maintained. The
first line is given the line number entered after the
"R", and subsequent lines are numbered sequentially

in increments of 10. The arguments are the same as for
the "I" editor command.

In summary

R Resequence program starting with sequence
number 10 in increments of 10

R s Resequence program starting with sequence
number s in increments of 10

R s i Resequence program starting with sequence
number s in increments of i

,] (1(0‘«.“ 2.:;‘ (rLen: {—

'p" The "P" editor command allows objec&“code generated
by the assembler under the MEMORY option to be placed
at a physical address£Q}§£§£§nt from the logical address
of the assembly, to facilitate generation of ROM ba eg‘"
programs. A single hexadecimal argument muif,Pe supﬁ'{ed
(the default is zero) which specifies the amount to be
added to the logical address to obtain the physical
address where the object code is to be stored. Thus

:P 4000

will cause the following program to be placed physically
at location £4000.

ORG 0

Jp START
XX DEFS 30

etc.

Note that the object code is only stored in memory if
the MEMORY assembler option is on. Object code stored

in memory with any non-zero offset is unsuitable for
mhr#“ (n’t

direct execution. It must first be moved to the logical
address of the assembly.
[/[ﬁn 5! allt ‘l;(‘ Vu"‘;ahu
"o" The "Q" editor command allows both the rate at which

information is displayed on the screen, and the pause
at the end of a line of listing sent to the UART, to
be controlled. The format is

:Q ccdd

where ccdd is a 4 digit hexadecimal number (with no
space between cc and dd), and cc is the delay to be
inserted between each character sent to the VDU, and
dd the delay to be inserted after a carriage return
when either the "U" editor command or the "TTY"
assembly option is in operation. A value of O
signifies no delay. A value of 1 signifies a delay
of about 7% m%%liseconds, and so on - dd should be
set to at least £80 when the "U" editor command is
being used to save the source program on tape.

"N The "N" editor command returns control to NASBUG ("N"
is a mnemonic for NASBUG). ZEAP can be re-entered by
following the procedure described in APPENDIX A, at
which point the editor prompt will be displayed thus

The contents of the Edit Buffer will be intact.

"o" Two editor commands, "O" and "A" are documented in
"A" section 3, since their use is related to assembler
operation.

A formal account of the editor commands is given in
APPENDIX C.

THE ZEAP ASSEMBLER

The ZEAP assembler translates the source program,
entered by the user into the Edit Buffer using the
ZEAP editor, into executable 7280 microcode
instructions which may be stored in memory for
immediate execution, or on tape for subsequent use.

"A"

ASSEMBLER OPERATION

The assembler is entered from the editor by using

the editor command "A"("A"is a mnemonic for Assemble).
Since the portion of the Edit Buffer to be assembled
can be selected in the same way as for the "V" and

"U" editor commands, it is possible to store several
source programs in the Edit Buffer simultaneously,
provided that each occupies a continuous block of

the Edit Buffer, ie. programs do not overlap.

Suppose a complete program is stored in the Edit
Buffer in lines 2000 to 2999. The command

:A 2000 2999

will cause assembly of this program. If only one
program is stored, simply entering

A
will assemble all lines in the source program.
Similarly

:A 5000

would assemble from line 5000 to the end of the edit
buffer.

When the assembly is complete, and all output is
finished, control is returned to the ZEAP editor,
and the editor prompt is displayed ready for the
next command.

In summary

A mn assembles from lines m to n inclusive
A m assembles from line m to the end of
the Edit Buffer
A assembles the entire Edit Buffer contents

3.2 EXPRESSIONS Liw Nﬂl(N;S(“L nbw wivh

- 26 - ;

Dr la(uc‘u 4{1”:4: vis t(u. Z‘/tl‘dk V”’[”"/4‘:/‘

i Jyu L[é ;,t\u(,{. Ih J" /41‘} M_(llv(valtl wiv '

f L ’\7‘“4‘ il La 0 ﬁ»(\ /;' J)vw"l"‘[" vik. Mtch:Lm.
Audvig Mivken (A‘{,..un) ubc.. b owue [" I

. Whr "
?”n:;-;f g»“»‘é

. L . . .
wWherever the form "exp" is encounte{gghin expression involving

(YA X'}

label symbols and/or constants is expected. The occufﬁénce

of

the“semantics_.la

register and/or label symbols must be jn atédrdance with
'S Tafd down in APPENDIX F. Such an expression is

veeitatle

always evariitéd USinNg¥16 bit integer two's complement
arithmetic. Expressions may be formed using the following
elements:

Bracitbmnry
iabel symbol a symbolic name of one to six characters,

starting with a letter and thereafter
consisting of letters and/or numbers, which
appears in the label field of a source
Program. The value of theéf é?g} is that
assSdciated with it by its ﬁigérance in the
label field of some source statement (see

section 3.3).

rawdt ,_l“L(.
decimal integer a decimal number between O and 65535. Larger
content numbers will be %FEnggged to 16 bits.
hexadecimal a "g£" sign followed by one to four hexadecimal

integer constant digits (0-9, A-F) interpreted as an

unsigned hexadecimal number. Larger numbers
will be truncated to 16 bits.

ASCITI code value a double quote character followed by a single

character, whose ASCII code value is used
(bit 7 = 0).

location counter the character "$" which represents the value

of the 1684%ion counter at the beginning of
assembly of the current line (or current
expression in the case of a DEFB or DEFW assembler
direction; see sectioq‘3.5). This is the

address at which the &ﬁ?féﬁf instruction

(or expression) is being assembled.

Any number of elements of the above kind may be combined with
"tzﬁgpd "-" signs to make the expression. A leading "-" sign is
allowed. No parenthetical grouping is allowed. Expressions
may be enclosed entirely in parentheses to represent memory
addresses, in accordance with the sanantics defined in APPENDIX F.

Her

it

int

e are some examples:

TABLE+3
START-$
£80+"A-1
END-BEG+1
-273

"Z-"A+1
BIMUNZ+BIMUNZ

ea bbb ,:“,.gcktbe

E&ﬁgions may not contain embedded blanks or commas. A

sing operator is interpreted as a "+". A missing operand is
erpreted as a zero. For example:

- 27 -

12ABC is interpreted as 12+ABC
3+-4 is interpreted as 3+0-4

.3.1

flc.r‘u !V’

Jprwe

)Vxﬂv""‘

*(L]ns

SOURCE STATEMENT SYNTAX

Each line of the source program must be one of the
following:

i) a 280 instruction
ii) a ZEAP assembler direction
iii) a comment

The first character of a source line is the character
directly after the single space following the sequence
number. The last character of a source line is the last
non-blank character entered before the New Line key is
pressed.

LABELS o
;,ci-u{t‘u’ He b
If the source line is type (i) or (ii), an optional label
may be present. The label must be a symbolic name of one
to six characters starting in th% f%rst column, the first
character 8€f§§ a letter, and subs€duent characters being
letters or numbers with no‘sm?ﬁ?ded spaces. Examples are:
u&t M
START
END
TABLE
LI
P3B
-h(((,\v
The following symbols are improperly formed:

113P
P4:
LP Q

A label must Qe followed by one or more spaces and/or
commas. If'‘présent, it must start in the first column
of the source statement (ie. the first character of
the label must be the first character of the source line).
If no label is present the first character of the source
line must be a space or a comma, unless the statement is
type (iii), a comment. weih

Iv‘
In case éi , the label is given the %alue of the location
counter prior to the assembly of the rest of the statement,
ie. its value is the address a}dyhich the statement is
assembled. In this way the location of any instruction or
sequggg%“gf instgug%}ﬁns can be represented symbolically
and rEférted to &TéeWhere in the program, eg. in a JP
or CALL instruction.

In case (ii), the label is given the value as defined in
section 3.5 and Appendix D. In this way the address of
a data table or literal string for,disP&ay on tgqhggggen

can represented symbolically and ré¥etrréd to eléewhere in
the program, eg. in a LD HL, exp instruction.

- 29 -

tiamali
Each label defined must be uniqte within the program
being assembl§d.{ Each label symbol referenced in the
program must appear in the label field of some source
statement. The following symbolic names are reserved
by ZEAP for registers and condition codes:

Al BI Cl Dl EI HI II Lr M, PI RI ZI
AF, BC, DE, HL, IX, IY, NC, NZ, PE, PO, SP

INSTRUCTION FORMAT

Each source statement of type (i) or (ii) cggéists of
up to four fields which are:
ekl
(optional) label field
instruction mnemonic or assembler directive
(optional) operand field
(optional) comment field

Each field must be separated from the next by one or
more spaces and/or commas. If the first character of
the source line is a space or a comma, no label is

d48UNMEd to be present. If the first character of the

source line is ";" the line is assumed to be a comment
(see section 3.3. below).

The instruction mnemonic or assembler directive must be
present. It may be any mnemonic listed in Appendix F,

or any directive mnemonic documented in section 3.5 and
Appendix D.

. rlpithl
The operand field dé& or may not be present ac d}dlng to
the syntax of the statement. Iq JGgse (i) it must follow
the definition given for the approprlate instruction in
Appendix F. 1In case (ii) it must follow the definition
given for the appropriate assembler directive in section
3.5 and Appendix D. If the field contains more than one
operand, each operand must be separated from the next by
one or more spaces and/or commas.

The comment field is oﬁtgbnal. It must begin with ";"
and ends at the end of the line. Any characters after
the ";" are ignored by the assembler, except that they
are reproduced literally in the assembly listing. The
";" may follow directly after the preceding field, with
no intervening spaces or commas.
pbwohl Runav
Although the assembler interprets the entire operand field,
only the first 17 characters of the operand and/or comment
flelds arq:d%splayed on the assembly listing on the screen.
%h S reason it is suggested that the %ull line comment
ac1 (see section 3.3.3 below) be dt¥Iised so that the
assembly listing is complete. The operand field itself
will rarely if ever need to be longer than 17 characters.
yirtimule N!f“h"'f

- 30 =

COMMENT LINES

A comment line must begin with a ";", and all characters
thereafter will <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>