
Programming 
Techniques 

G. Manacher 
Editor 

Indirect Threaded 
Code 
Robert B.K. Dewar 
Illinois Institute of Technology 

An efficient arrangement for interpretive code is 
described. It is related to Bell's notion of threaded code 
but requires less space and is more amenable to machine 
independent implementations. 

Key Words and Phrases: threaded code, SNOBOL4, 
interpretors, code generation 

CR Categories: 4.12, 4.13 

A machine independent version of SPITBOL [1], a 
fast SNOBOL4 system, is currently being implemented. 
The interpretative arrangement of code used in this 
compiler involves a concept which is of general applic
ability to code generation in a wide range of languages. 
Although developed independently, it has a relation to 
the notion of threaded code [2], and thus we have used 
the name Indirect Threaded Code (nc). We will refer 
to the original scheme as Direct Threaded Code (DTC) 

DTC involves the generation of code consisting of a 
linear list of addresses of routines to be executed. Some 
of these routines are standard library routines, e.g. the 
routine for integer addition. The routines for operand 
access are specific to a program and must be generated 
as part of the compiler output. Figure 1 shows an 
example. 

Copyright© 1975, Association for Computing Machinery, Inc. 
General permission to republish, but not for profit, all or part 
of this material is granted provided that ACM's copyright notice 
is given and that reference is made to the publication, to its date 
of issue, and to the fact that reprinting privileges were granted 
by permission of the Association for Computing Machinery. 

Author's address: Department of Computer Science, Illinois 
Institute of Technology, Chicago, IL 60616. 

330 

Fig. 1. Example of Direct Threaded Code. 

B=B+C 

I 
I 

_I routine I 
to push 8 

I onto stack 
I 

., routine 

I 
I 

to push C I 
onto stack I 

I 
I .I routine to I I 

store top of I 
stack in B I 

generated by compiler library routines 

Fig. 2. Example of Indirect Threaded Code. 

I 
routine to 

) 
I push value 

- I :------'"' of variable 

I onto stack 
value 

I 

L 
of B 

I 
- I routine to 

I 
I store top 

I of stack 
value I in variable 
ofC 

I 

l 
I I 

routine to ,I . add two top 
stack elements 

generated by compiler library routines 

Fig. 3. PDP-11 code generation for B + C. Timing (excluding 
add)-DTC: 16 cycles; lTC: 13 cycles. 

$P0001 push B $ADR . 
$P0002 push C 
$ADR ; add 

JMP @(R4)+ 
$P0001: MOV #A+4 ,RO 

BR $F0001 
$P0002: MOV #B+4 ,RO 

BR $F0001 

DTC $F0001: MOV -(RO) ,-(SP) 
MOV -(RO) ,-(SP) 
JMP @(R4)+ 

B: 0 ;value of B 
0 

C: 0 ;value of C 
0 

B+4 push B $Push MOV -(RO) ,-(SP) 
C+4 push C MOV -(RO) ,-(SP) 
$ADR add MOV (R4)+ ,(RO) 

JMP @(RO) 

lTC B: 0 ;value of B 
0 $ADR .+2 
$PUSH 
0 ;value of C MOV (R4)+ ,(RO) 

C: 0 JMP @(RO) 
$PUSH 

generated code library routines 

Space used for generate coded-DTC: 13 words (excluding $F0001); 
lTC: 9 words. 
Note: The PDP-11 is a byte addressed machine, hence the offset of 
4 past the two-word value. The value is placed at the start of the 
block (not the beginning as in Figure 2) because of peculiarities of 
addressing on the PDP-11. 

Communications 
of 
the ACM 

June 1975 
Volume 18 
Number 6 



lTC consists of a linear list of addresses of words 
which contain addresses of routines to be executed. This 
level of indirection is illustrated by the example shown 
in Figure 2. 

Comparing Figures 1 and 2 shows an important 
qualitative difference. lTC does not involve the compila
tion of any code as such, only addresses. Since almost 
all machines implement the concept of words which can 
contain addresses, nc may be generated in an essen
tially machine independent manner. On the other hand, 
DTC involves the generation of operand access routines, 
which makes machine independence much more 
difficult. 

To examine space and time requirements, we com
pare the DTC generated by the PDP-11 FORTRAN compiler 
[3] to the lTC which might be generated by an equiva
lent compiler. Figure 3 shows that not only is the space 
decreased but also the time. The comparison is actually 
overly favorable to DTC. First, the routine $F0001, 
which must be generated as part of the compiler output 
to obtain the short BR jumps in the $POOOn routines, 
has not been counted at all in the space since it is 
generated only once for several variables. Second, 
only the fetch (push) has been shown. Inclusion of the 
store (pop) adds an extra routine (DTC) or extra word 
(nc) for each variable. Actually, the PDP-11 compiler 
generates a parametrized call for each store, which 
costs one extra word per assignment. 

If threaded code were to be generated in register 
machine style as opposed to stack machine style, the 
saving would be even greater since in this case each 
register would require two addresses (ITc) or two 
routines (oTc) for each operand. 

Several other advantages of lTC manifest themselves 
in specific connection with the SPITBOL system. 
I. The address of the operand fetch routine which is 
associated with a dynamic value can serve as the type 
code identifying the value in dynamic memory. 
2. The linking from one code block to another is 
easily affected by making the initial address in the new 
block point to the routine for switching code blocks. 
The SPITBOL system uses this fact to generate a separate 
code block for each statement leading to the interesting 
property that unreachable statements are garbage 
collected. 
3. The operand fetch and store routine addresses, 
which are associated with a variable, may be modified 
in the case where the variable is input or output as
sociated. 

Received June 1974; revised September 1974 

References 
1. Dewar, R.B.K. SPITBOL. SNOBOL4 Doc. S4D23, Illinois 
lnst. of Tech., Chicago, Ill., Feb. 1971. 
2. Bell, JamesR. Threaded code. C.ACM 16, 6 (June 1973), 370-
372. 
3. Digital Equipment Corporation, PDP-11 FORTRAN IV 
Programmer's Manual, DEC-11-KFDA-D, Maynard, Mass., 
1971. 

331 

Programming 
Techniques 

G. Manacher 
Editor 

A Simplified 
Recombination 
Scheme for the 
Fibonacci Buddy 
System 
Ben Cranston and Rick Thomas 
The University of Maryland 

A simplified recombination scheme for the Fibonacci 
buddy system which requires neither tables nor repetitive 
calculations and uses only two additional bits per buffer 
is presented. 

Key Words and Phrases: Fibonacci buddy system, 
dynamic storage allocation, buddy system 

CR Categories: 3.89, 4.32, 4.39 

A severe problem in the Fibonacci dynamic storage 
allocation scheme is to locate the buddy buffer when 
recombining. Hirschberg [I] gives two algorithms. The 
first of these involves a table which grows in size rapidly 
with the maximum size buffer allowed. For a system 
allowing buffers of up to 17,717 words, this table re
quires 987 entries. The second algorithm involves a 
costly repetitive calculation. This paper presents a more 
efficient algorithm1 which requires only two additional 
bits in some control field of each buffer. 

Let the two additional bits be called the B-bit (for 
Buddy bit) and the M-bit (for Memory). These are in 
addition to the usual A-bit (buffer is currently in use and 

Copyright© 1975, Association for Computing Machinery, Inc. 
General permission to republish, but not for profit, all or part 
of this material is granted provided that ACM's copyright notice 
is given and that reference is made to the publication, to its date 
of issue, and to the fact that reprinting privileges were granted 
by permission of the Association for Computing Machinery. 

This work was supported in part by Navy Contract ONR
N0014-67 -A-0239-0032-01. 

Authors' address: The University of Maryland, Computer 
Science Center, College Park, MD 20742. 

1 James A. Hinds [2] has described another scheme which has 
most of these advantages but requires more than two additional bits. 

Communications 
of 
the ACM 

June 1975 
Volume 18 
Number 6 

Admin
Rectangle

Admin
Rectangle


