
 1

 ISSN 0265-5195

news events people reviews projects programming

July

FIGUK magazine:
�Quikwriter� Proposal

Forth Gesellschaft - Tagung 2001
The FIG UK Awards of 2000
Arithmetized Logic in Forth

�Extreme Mindstorms�
JenX - A very simple XML parser

Three Free Forths and an OS too!

2001
Issue 112

Forth for
NEAR Spacecraft

euroFORTH 2001 ������...��.. 15
Forth Gesellschaft - Tagung 2001 �... 16

�Quikwriter� Proposal �.���.��.. 12

Forth News �������..����.. 2

Forth for NEAR Spacecraft ���...� 5
�Extreme Mindstorms� �����...... 25
Three Free Forths and an OS too! �.. 36

Arithmetized Logic in Forth ����.. 20
JenX - A very simple XML parser �� 33

Chairman�s Message ..�����...�. 9
The FIG UK Awards of 2000����.. 19
Letters �������������.� 40

news

reviews

programming

people

events

projects

July
2001
Issue 112

 1

Editorial
Lots of good stuff in this extra-large issue �
hope it was worth the wait.

As promised, Joe Anderson reports on the

remarkable NEAR space probe and Dave Abrahams delivers a
detailed review of the new Lego Mindstorms book to whet your
appetite for Forth robots.

We have more on XML in this issue and the next. This looks set
to be a pioneering effort by FIG UK members working together.

Paul Bennett returns to describe his explorations with Forth on
Linux and I report on the recent German FIG conference.

As well as our new Chairman (see his message inside), we now
have a new Librarian. Graeme Dunbar has taken this over from
Sylvia and will be publishing regular items on Library topics.

The University of Teeside is now a subscriber to Forthwrite,
part of our out-reach to higher education.

Finally, congratulations to our Award Winners for Year 2000 �
see inside for details.

PS. Don�t forget the monthly IRC session. Our next one is
Saturday 4th August on IRCNet channel #FIGUK from 9:00pm.

Until next time, keep on Forthing,

 2

 Forth News

64-BIT FORTHS

In a discussion on
comp.lang.forth Michael
Coughlin predicts 64-bit Forths
will be needed "sooner than we
expect." Elizabeth Rather points
out that they're already available.

"A 64-bit Forth will hardly ever
need double precision for
anything! Actually, there are 64-
bit Forths on SPARCs."

Ficl V2.06

John Sadler has announced the
release of V2.06 of Ficl, an open
source ANS Forth designed to be
incorporated into other programs,
including (especially) firmware-
based systems. Ficl 2.06 is
licensed under the terms of the
BSD license and is available
from:

http://ficl.sourceforge.net/

eForth

Bill Muench has moved his web
site for eForth to:
http://homepage.mac.com/forth/

BETA Testers Needed

Gary Chanson is looking for
experienced Forth programmers
to beta test Quest32. It is "an
elaborate 32 bit development
system for Windows 2000,
Windows NT, and Win9x and is
written in a dialect of Forth which
is derived from Forth-83 and FIG-
Forth."

Email applications please to
gchanson@shore.net

IRE-2001 Workshop on Java
Virtual Machine

A "Workshop on Intermediate
Representation Engineering for
the Java Virtual Machine" will be
held in Orlando, Florida, USA on
July 22-25, 2001 at the 5th World
Multi-Conference on Systemics,
Cybernetics and Informatics.

Authors interested in submitting
papers should see the workshop
web page:

http://www.cs.may.ie/~jpower/ire2001/

Dave Abrahams
0161 477 2315

d.j.abrahams@cwcom.net

 3

ANS Forth
INTERNATIONALISATION

Following the papers published at
euroFORTH 2000, a proposal and
an implementation is now
available from MPE.

http://www.mpeltd.demon.co.uk

Machine Forth and Color Forth

Jeff Fox announced on
comp.lang.forth, two new list
servers for Machine Forth and
Color Forth. To subscribe to
theselist servers send an email to

MDaemon@chaossolutions.org

with "subscribe MachineForth" or
"subscribe ColorForth" on the
first line of the body then reply to
the confirmation mail without
changes.

Jeff writes:

"OKAD II is now written in Color
Forth and is better than ever.
Chuck now has descriptions of
basic components in Forth source
code and compiles the chip object
when moving between the Forth
editor and the chip simulator in
OKAD, it appears to be
instantaneous or at least faster
than you can perceive."

http://www.UltraTechnology.com

ProForth VXF Forth version
3.4

MPE's VFX Forth v3.4 for
Windows is now available, it�s
even faster and with

internationalisation support. The
price of the standard edition has
also been reduced.

http://www.mpeltd.demon.co.uk/

ProForth VXF Forth - free
version

The evaluation version of VFX is
available as a free download from
the MPE website.

"The full system with a short nag
screen, no timeout, no kernel
sources and no turnkey
generation."

RTX2000

After an enquiry on clf about the
Forth chip manufactured by the
now defunct Novix company,
Elizabeth Rather points out that it
is still available from Harris as the
RTX2000 in RAD-hard versions.

"We have recently done an
application for NASA involving
its use for an extremely accurate
position encoder for a satellite."

 4

Shboom Chip

The ShBoom chip is sold by
Patriot (http://www.ptsc.com) as the
"Ignite 1".

Forth Inc. offer the SwiftX cross-
compiler product for it; look for it
under its previous name PSC1000
on:

http://www.forth.com

TPFORTH version 3.2

A new version of TpForth has
been released which adds the
multi-language support (MLS)
and the native code generation
(NCG) systems. Download it free
from:

http://www.technopoint.net/tpforth

Forth and Super-scalar
processors

In a discussion on clf, Stephen
Pelc reported that there is some
research going on at York
University, UK, by Chris Bailey
and others on the use of Forth
with Super-scalar processors.

Chuck Moore�s Web Site

Chuck Moore, inventor of Forth,
has now published his own web
site:

http://www.mindspring.com/~chipchuck

This features �25x�, an array of
25 �X18� microprocessors on a
single chip, each running at 2,500
MIPS. The system is designed
using Chuck�s proprietary tools
written in ColorForth.

 5

Joe Anderson
0131 662 4007

jia@jia.abel.co.uk

Forth for NEAR Spacecraft

Joe Anderson

In a recent headline-grabbing event (Feb 12th), the NEAR space
probe was diverted, after successfully completing its mission, to land

on the Eros asteroid � the first such landing ever attempted.

All the instruments and the command and data handling system
were programmed in Forth.

You may have read �Did You Know?�
reporting in the April issue about an article
on the use of Forth in yet another space
application and will not have been
surprised, for some of you may remember
previous articles making a link between
Space and the Forth language. This link is
the reason that the NASA web-site1 is one I
frequently visit, and I have been there
especially often recently as there has been
so much interest in a unique event, the first
landing of a spacecraft on an asteroid. The
spacecraft in question has been given the
name NEAR Shoemaker, the NEAR standing
for �Near-Earth Asteroid Rendezvous�.

The background is that nearly all the asteroids we know about are
whizzing around in the asteroid belt, but a small number are much closer to
Earth, and follow different orbits. These are known as the �near-earth asteroids�
but we know very little about what they really are, what they are made of,
where they come from, and so on. Astronomers can be expected to take every
opportunity to investigate one of them. It was calculated that such an
opportunity would arise when one of these, with the juicy name of Eros, would
come very close to Earth early last year � to an astronomer 196,000,000 miles is
�near Earth�.

It was decided to launch a �low-cost� spacecraft in 1996 to find out more
about this lump of orbiting rock, as it would take the full four years to get to the
meeting-point. Incidentally, the timing of such a mission is quite critical, as an
asteroid like Eros has a highly elliptical orbit, usually completely out of sync with

1 See list of useful sites

Artist�s impression of the NEAR
Shoemaker spacecraft approaching

the asteroid Eros.

 6

the Earth�s, and the occasions when the two are relatively close are thus
comparatively few - the next �close encounter� will be in 2012.

For those of you interested in figures, the orbit of Eros takes it round the
Sun once every 1.76 Earth years. It is about 21 miles long by 8 by 8, and takes
only 5.27 hours to rotate round its axis, a fast rotation that could have led to
problems. It has no atmosphere that we know of, and because of its tiny size,
has very weak gravity, a feature that came in very handy later on, as we shall
see.

Management of the project was entrusted to Johns Hopkins University
Applied Physics Laboratory, where a considerable expertise in this field has been
built up. Most of the information in this article comes from JHU, and in
particular from John R. Hayes, who has responded most helpfully by e-mail2.

 To get the sort of information the astronomers were after, the
spacecraft had to carry certain specific instruments for measuring various
aspects:

! an X-ray/gamma ray spectrometer, XGRS
! a near-infrared imaging spectrograph and magnetometer, NIS/MAG
! a multispectral camera fitted with a CCD imaging detector, MSI
! a laser rangefinder, NLR.

This artist�s impression shows the
general layout of the spacecraft, the
disposition of the solar panels, and
where these instrumentation
packages are located on it.

All the instruments were
programmed in Forth. John reports
that other vital aspects of the
project were also programmed in
Forth, in particular the dual-
redundant Command & Data
Handling (C&DH) processors � �These relay telemetry to the ground, forward
commands to the instruments, manage the recorder, handle spacecraft
autonomy, etc.� explains John.

Originally the spacecraft was meant only to orbit Eros and take
measurements of its various properties. It duly spent a year orbiting the asteroid,
collecting and transmitting data to Earth. It is reckoned that this mission has
provided the scientists with an enormous amount of material, far more that had
been originally anticipated, to assist them in their investigations into the origins
and composition of such asteroids. One source has estimated that about ten
times more data has been gathered than had originally been expected. Such
plethora of data has had a double effect. In the first place it has enabled the
astronomers and physicists to determine many facts about the asteroid and

2 All the good facts in this write-up are John�s and any blunders are mine.

 7

Suggested web-sites

http://www.jhuapl.edu/

Johns Hopkins University Applied Physics Laboratory site.

http://near.jhuapl.edu

Devoted to the NEAR project with some stunning material.

http://forth.gsfc.nasa.gov

See this site for Jim Rash�s �Space Related Applications of
Forth". Mentioned by John as being of particular interest to
our members.

http://www.nasa.gov

The main NASA site with links to other interesting locations,
e.g. the Goddard Space Flight Center, the Marshall Space
Flight Center, etc. Navigate to the nssdc.gscf.nasa.gov site
for a full history of the NEAR flight and summary of what it
brought in. (nsscd = National Space Science Data Center,
and gsfc = Goddard Space Flight Center). .

http://www.astronomy.com/

A magazine which gives a good coverage of events such as
this.

http://www.intersil.com/

The Intersil web-site with full details of the RTX21010 chip.

answer many questions, but it has also raised a whole series of new puzzles,
which you can follow on the web-
sites listed.

At the end of the period,
when the spacecraft had fulfilled
its original mission, the question
arose of what to do with it next.
Some bold individual (for a
proposal like this is too bold to
come from a committee) put
forward the suggestion that it be
brought down on to the surface of
the asteroid. After all, if it then
was damaged or became non-
operational, it had really done all
that had been set out for it to do,
and in any case, the asteroid
would soon be entering a part of
its orbit where the solar panels
would be out of the sun, and
hence all power to the
instruments would be lost. The
decision was then taken to
attempt to land the spacecraft on
the asteroid - the first time any
such event had been tried in the
history of space or astronomy - a
genuinely unique event.
 The relatively fast rotation of this asteroid obviously made a safe landing
on a suitable surface a matter for close control and precise timing; in the event
(dare I say, �to everyone�s surprise�?) it worked out perfectly. The controllers
fired the thrusters several times during the four and a half hours descent, to slow
the rate of descent to 7 mph from 20 mph. In the final 45 minutes, i.e. with the
spacecraft about four miles from the landing site, pictures were shot at the rate
of about one every 30 seconds �- some showing surface details smaller than 4
inches across�, according to one source. Now the benefit of the weak gravity
can be appreciated; even a heavyweight setting foot on Eros could do so with the
delicacy and lightness of a butterfly, and for Shoemaker, the landing was even
gentler.

The spacecraft touched down safely on the
asteroid on Monday, 12 February 2001, having
taken a series of 69 pictures during this final
phase. Please go to the John Hopkins web-site
(http://www.jhuapl.edu) and have a look at this
sequence of pictures showing the surface of the
asteroid getting nearer and nearer, until the
final picture, shown here, where the
spacecraft has come to rest on the asteroid.

The final picture from the
spacecraft, showing the surface of

the asteroid as seen when the
spacecraft came to rest on the

surface � a historic moment.

 8

Although this was originally intended as the end of the project, the
landing was so gentle that the instrumentation was still working well, and it was
decided to extend the mission for another ten days, to gather data from this
unprecedently close position. In particular data from the X-ray spectrometer was
considered to be invaluable, for at this distance it could analyse material for
several inches below the surface of the asteroid. This meant some rapid re-
programming, which was done in record time. And then another extension of a
further four days was granted, to squeeze all the data possible out of this most
successful mission.
 The part played by Forth in this exciting and historic event has been
mentioned above, but as this is our common interest and your reason for reading
this journal, perhaps a little more information can be given. John made it clear
that Forth was the obvious choice, not only because of its economy and speed,
but also because there was a suitable chip available. This chip is the RTX2010RH
(the RH standing for �radiation hardened�, a must for space applications).

Software
Subsystem

Command
and Data
Handling

Guidance & Control Instruments Systems
Engrg.

 Command
&
Telemetry
Processor

Attitude
Interface
Unit

Flight
Computer

MSI Inst.
DPU

NIS/MAG
Inst. DPU

XGRS
Inst. DPU

NLR Inst.
DPU

Lines of
Source Code

13,500 13,000 18,000
(guess)

7,600 5,600 11,400 6,400

Application
Size/Available
(KB)

56/64 90/128 200/512 63.3/64 50.4/64 55.9/64 49/64

CPU &
Language

RTX2010
Forth

RTX2010
C &
Forth

1750A
Ada &
Assembly

RTX2010
Forth

RTX2010
Forth

RTX2010
Forth

RTX2010
Forth

CPU
Rating

3 MIP 6 MIP 1.7 MIP 6 MIP 6 MIP 6 MIP 1 MIP

CPU
Utilisation

40%
average
58% peak

35% 70%
average
100%
peak

 20%
average

Development
(man months)

56.8 54 124 15 17.2 13.8 9.7 25.4

Lines/man-
hour

1.37 1.39 0.84 1.88 1.88 3.64 2.20

Developers D.Artis

B.Heggestad

L.Linstrom

P.Haring,

W.Frank

C.Ray

D.J.Waddell

R.Pham C.Ray

T.Strickwerda

L.Fisher

D.Haley

G.Heyler

DJWaddell

S.Hutton

B. Ballard J. Hayes

(also did

boot code &

common

code for all

DPUs)

S.Schneider A.El-dinary S. Lee (also

system stuff

& autonomy

rules)

NEAR Flight Software Statistics (rough approximations)

D.A. Artis 10/31/96

 9

Like many of us, I have tried to use Forth at work, but found I had to do
most of my professional material in C or C++, simply because so few others
knew Forth or could be persuaded to take an interest in it, so I asked John how
he had got his programmers - were they physicists who had an interest in Forth,
Forthers who were interested in physics or astronomy, or what. John�s answer
was revealing and rather modest. He confessed that he took on staff and then
himself taught them Forth for the purpose.

He also added, something that will strike a chord in many of us, that
some people took to Forth quite well, but others just could not get the hang of it
at all and programmed in C instead. My theory is that those with an interest in
either the technicalities of logic, or the technicalities of electronics, i.e. how the
chip actually works, find the rationale behind Forth fits in well with their
thinking, but those interested more in a narrative style of thinking or describing
go for one of the other languages.
 In conclusion I would like to thank John for his very generous help and
also Dr. Dave Williams of Goddard Space Flight Center, who gave permission for
the web-site material to be published here.

Joe Anderson started out in Forth thanks to Byte magazine, a 6800 kit and a teletype. Now
retired from working in airborne radar, he is likely to be found helping out at the National
Gallery on The Mound, Edinburgh.

The work done for this long-running
project was completed some years
ago, but Forth continues to reach out
into space.

Forth Inc. has posted details of a
project completed in the past 6 months
for a space-based infra-red instrument
to track missiles.

 10

Chairman�s Message
Jeremy Fowell

Since I have taken over from Chris Hainsworth I would first like to wish Chris
and Sylvia success and happiness with their new life in Spain. Chris had been
Chairman for quite a few years and contributed a lot to FIG UK during that
time. I hope I can follow his example.

My contact with Forth began with an advert for polyFORTH in an American
magazine in the early nineteen eighties. Although the ad. didn't say very
much, I still clearly remember a strong feeling that there was something very
significant going on here. At the time I was struggling to learn about the 8080
processor using an early home-built computer. It seemed a black art, the
machine didn't appear to have an assembler and I couldn't afford to buy a
proper one.

It wasn't until 1987 that I discovered FIG UK and joined up. By this time we
were writing 8080 assembler on a BBC Micro with a Z80 second processor.
We bought two floppy drives and it was the first real computer I ever got to
use. Soon we had a Forth compiler from MPE to experiment with. The 8080
application had now grown to many pages and kept us very busy coding and
debugging, along with hardware design and test. Sadly we lacked the
experience and time to rewrite the whole lot in Forth. However the idea of
Forth had taken hold.

Over the years I have been able to use Forth more and more, but it was not
until PygmyHC11 was completed that I felt that the Forth I really wanted had
finally arrived.

There is much still to do - the Incremental Compile project is nearing
completion and then we need building blocks such as keyboards and small
displays with hardware and software to act as examples. Maybe then one or
two complete (but simple) projects3.

Although only a small part of the Forth picture, I hope this is one way we can
attract newcomers to the subject.

As Charles Moore once said "We need to beat the drum".

3 See the Keyboard Project elsewhere in this issue.

 11

provides everything needed in a
professional-quality low-cost Forth
controller board.

Use it in industrial or hobby
projects to control a wide range of
devices using the well-known multi-
tasking Pygmy Forth.

Designed for hosting from a
DOS or Windows PC, you can test your
application as it runs on the F11-UK
board itself. The board was developed
by FIG UK members to provide an easy
way to explore the world of controlled
devices � a niche where Forth excels.

The kit includes both hardware
and software and is supported and sold
to members at a nominal profit through
a private company.

Software

PC-based PygmyHC11 Forth compiler
running under DOS produces code for
Motorola HC11 micro-controller.

Code is downloaded via standard serial
link from the PC to the FLASH memory (or
RAM) on the F11-UK single board computer
(SBC).

No dongle or programming adaptor of any
kind is required.

Forth running on the SBC is interactive
which makes debugging and testing much
easier.

Multitasking and Assembly included.

The serial link can be disconnected to
enable the SBC to function as a stand alone
unit.

All source code provided - 78 pages or so
(unlike many commercial systems).

Around 30 pages of additional
documentation is supplied including a full
glossary of the 300 or so Forth words in the
system.

Email mailing list for discussion and
limited support.

Hardware:

Processor: Motorola HC11 version E1 �
8 MHz (2 MHz E-Clock).

Memory: 32k x 8 FLASH
 32k x 8 battery backed SRAM
 512 x 8 EEPROM onboard HC11.

I/O: 20 lines plus 2 interrupts (IRQ and
XIRQ).

Analogue in: up to 8 lines using onboard
8-bit A/D.

Serial: 1) RS232, UART onboard HC11

2) Motorola SPI bus onboard
 HC11.

Expansion: Via HC11 SPI serial bus using
 2 or more of 20 available lines.

Timer system:
 Inputs: 3 x 16-bit capture channels
 Outputs: 4 x 16-bit compare channels.

PCB size: 103 x 100 mm.

Price to FIG UK members: £47.0 plus postage and packing (£2 UK, £4 overseas) plus

$25.0 (US Dollars) for registration of 80x86 Pygmy Forth with
the author Frank Sergeant.

 Delivery: ex-stock.
 More information: jeremy.fowell@btinternet.com and 0121 440 1809

F11-UK

 12

�Quikwriter� Proposal

Here are some edited messages which I hope will explain themselves. If you have
anything to contribute, I urge you to do so. Not only does this project promise
real benefits but there is plenty of scope for some interesting programming � Ed.

From Chris Jakeman to all FIG UK members on e-mail � 7th May:

Hi everyone,

Jenny Brien has a requirement for a device which might be purely hardware or
might be a mix of hardware and software. He has asked me to send this request
for advice out by e-mail as he doesn't want to wait until the June issue of
Forthwrite.

If you have suggestions to make or if this project might be of interest to
you, please e-mail to Jenny at jennybrien@bmallard.swinternet.co.uk.

PS. I'm especially interested in this project as it might:
- help the community
- involve the F11-UK kit
- the amount of programming involved could range from simply translating
 signals up to a flexible, adaptive, configurable user interface.

 ____/ / __ / / / / /
Bye for now / / / _/ / / / /
 __/ / / __ / / /_/
Chris Jakeman / / / / / / / \
 __/ __/ ____/ ___/ __/ _\

 Forth Interest Group United Kingdom
Voice +44 (0)1733 753489 chapter at http://www.fig-uk.org

FROM JENNY BRIEN:
I've been doing voluntary work lately with an association for the disabled,
who have just got a computer suite installed. Though there are plenty of
chord keyboards and other one-handed text input devices, I can't find
anything really suitable for the folk who have little or no finger mobility.

I have in mind something like a short joystick that can be operated with the
palm of the hand, with a sprung central position and eight directions of
movement, to produce "Quikwriting" (see:
http://www.mrl.nyu.edu/~perlin/demos/quikwriting.html) and interface to a
normal PC keyboard socket.

Would any of the membership be able to produce such a device, or know of
suitable hardware?

[cont.]

 13

A diagram from the Quikwriting article
indicates that out-and-back movements
give the central character, but a shift to
the neighbouring zone gives a different
character (compare �e� and �h�).
Interestingly, the research that led to
Quikwriting was designed for faster text
input, not to overcome disabilities.

COMMENT FROM CHRIS (based on further e-mail & May�s IRC session)
Jenny began by thinking of a purely hardware device which was a plug
replacement for the PC keyboard. If anyone knows of such a thing, please
tell.

I was thinking that a games joystick could be the ideal mechanism, if we
teamed it up with a F11-UK kit. All shapes and sizes of joysticks are
available in the computer shops, mostly with a spring return. If we added
some connectors to the F11-UK kit, it could pretend to the joystick that it
was a PC and to the PC that it was both a keyboard and a mouse.

I have a suitable joystick I can donate to the project and also an F11-UK
(sadly still unassembled).

PS. I would love to see an interface which monitored the relative frequency
and adjacency of each keystroke actually used and then offered to switch to a
more convenient layout. That would be really neat.

We had more input from Jeremy Fowell, Paul Bennett and Jan Coombs. First
Jenny provides a bit more background.

Hmm... I'm thinking of something which could be used with any PC, so my first
thought as a direct plugin replacement for the keyboard. No software. The
nearest equivalent is the Cykey chord keyboard (developed from the old
Microwriter Agenda) but that doesn't emulate all keystrokes. Perhaps not
important, when you can mostly control with a mouse or other pointing device.
Besides, with only 32 variations on a single stroke, you can't get too
clever. What do you need - alphanum, delete, tab - what else?

Quikwriting was invented for the Palm Pilot, and the Java demo uses a mouse.
It's easy to program but a bit awkward to use, and I think the self-centring
mechanism would improve it no end. But then, we need a replacement for the
mouse too, so perhaps they could be combined and use the mouse port, treating
the writer as a five-button mouse. I don't know if Windows can do that.

 14

Jeremy wrote in to say that the cheapest solution would be to add software to
the PC to use the input from a special keyboard, if one could be found, or from a
joystick. However, an easier (and portable) solution is to put some intelligence
between the joystick and the PC, so that the joystick appeared to be a standard
keyboard and mouse. He confirmed that the F11-UK kit would be appropriate for
prototyping and a cut-down version using the HC908 would be cheaper for large
numbers.

Paul Bennett had the same idea and suggested a possible joystick.

My immediate thoughts turned to an adaptation of the Pizza-key. In case you
haven't come across any of these yet, they are 4, 6 or 8 way switching
devices operated from a single button. The Pizza-key rocks in all eight
directions to close the contacts. They are used on some of the more rcent
equipment (Game-boy [4-way], Sony Playstation some CD Walkman's, VCR's and
DVD players).

Adding such a key to the F11-UK project board would enable suitable key
activation decoding to occur and produce the required strings as output to
the RS232 port. I suppose Jenny's people will want a slightly larger one and
this is easy enough. I might have enough switches to make an eight-way
prototype around here.

Jan Coombs suggested butchering a cheap (£8) PC keyboard for a low-cost
solution that requires programming the PC.

A good hardware starting point may be a standard £8 PC keyboard. The PCB is
often very small and fixes compatibility issues quickly.

The PC keyboard likely has unused scan codes, so it may be possible to
simplify the debugging process by attaching the new switches as an extension
to a working standard keyboard.

You might choose to use 8 infrequently used keys for your new device e.g.
<F5> to <F12>. I would want to use the keyboard for programming while testing
the new input device. If you need to retain independent use of all 102 keys
and have the new device connected, then a two-key sequence coiled be used to
indicate the new device codes.

The PC keyboard sends separate key-down and key-up codes to the PC, and this
could assist decoding the movement of the new device. There are BIOS (and
DOS?) functions to retrieve these codes, but likely not Windows support.

 15

euroFORTH 2001

The 17th annual euroFORTH conference on the Forth programming
environment and Forth processors is being held on November 23 �

26 at Schloss Dagstuhl, near Saarbrücken, Germany.

This annual conference is held in the UK
every third year and, after the 1999 venue
in St.Petersburg, it returns again to Schloss
Dagstuhl. (See Paul Bennett�s detailed
report in issue 99). The conference
language will be English.

For conference details, see http://dec.bournemouth.ac.uk/forth/euro/ef01.html.
FIG UK member Bill Stoddart is the Program Chair and invites papers (both
academic and business) by 26th August, please, to the Proceedings Editor Peter
Knaggs (pknaggs@bournemouth.ac.uk). Topics of especial interest include:

! Forth applications and language extensions.

! Open protocols and standards, including TCP/IP, HTTP, XML etc.

! Virtual machine application and design.

! Stack-based architectures.

! System configuration and Open Boot.

! Other topics likely to be of interest to the extensible language
community.

Attendance with a single room in the castle for 2 nights and full board costs
�350 (£220)4. Discounts are available for students sharing rooms.

4 Bill tells me that prices have been kept to a minimum to encourage the widest possible
attendance. Let�s take advantage of that � Ed.

Charles Moore is the Guest of Honour, so this is a
rare chance to meet the inventor of Forth on this side
of the Atlantic.

 16

Chris Jakeman
01733 753489

cjakeman@bigfoot.com

Forth Gesellschaft - Tagung 2001
Chris Jakeman

The German FIG combines their AGM each year with a residential
conference. This year, I was invited as Guest Speaker � my first visit.

Germany being a large country, this event
takes place at a different location each year.
This year�s organiser was Martin Bitter, the
Editor of the magazine and known on our IRC
sessions for his interest in teaching using
robots programmed in Forth. Martin had
chosen a residential college in Hamminkeln,
near the Dutch border.

Not only was the college very pleasant, but
this arrangement meant that we could stroll
to the restaurant and retire to the bar with
ease.

The presented papers were spread over Friday
evening and Saturday, with the promised
Forth Robot challenge that evening and
Sunday morning set aside for the AGM.

About 18 attended and, although the papers were of a high standard, this was
clearly a meeting of good friends with a relaxed atmosphere and lots of laughter.
A number of wives had made the journey, providing a civilising influence and
escaping the stream of Forth talk for shopping and sight-seeing trips together.
Several teenagers made an appearance to take part in the robot challenge. At
DM300 (under £100) for everything except the bar, this seemed good value.

I am delighted to report that the group gave me a very warm welcome, (also a
Gesellschaft sweat-shirt and mug) and helped me join in from the outset.

After giving my own paper on WebForth and talking about FIG UK, I did my best
to follow the other papers, some more easily than others:

Fred Behringer spoke on Arithmetic Logic which arises out his robotics work
and uses a simple mathematical transformation to provide a general solution to a
difficult problem in machine control � see elsewhere in this issue.

 17

Wolfgang Allinger showed the neatest portable terminal I�ve ever seen. He
has taken a standard Palm Pilot, added Quartus Forth and programmed it to talk
to his instrument pack via a serial link. Apparently, the infra-red PC link can also
be used for communicating to other devices too, so his portable terminal could
also be wireless.

Heinz Schnitter presented an Open Network Forth which he has used with
Egmont Woitzel for the control system for the Munich Accelerator Facility5. All
the devices on the network run the same object-oriented Forth and one Forth
can execute a method on an object on another Forth. Communications use plain
text just as though one Forth was a user typing at the terminal of another. The
acknowledgement to a successful command is �ok� which, when received, rather
neatly executes a deferred word on the sending system. The acknowledgement
to an unsucessful command is �ko� which similarly executes a deferred word.
 I note that communications between processors commonly use binary
messages, such as RPC or CORBA. However text is much easier to debug, log and
monitor and the computer world seems to realise this at last with the recent rise
of XML for messaging.

Klaus Zobara showed his work on management of a surgical instrument that
cuts using a very high frequency current �like a hot knife through butter�. He

�like a hot knife through butter�
presented a very neat Finite State Machine and also a Decision Table. The paper
contained restricted material, but I am hopeful that these particular aspects
might be published separately.

Hans Eckes showed his high-performance controller board based on the Patriot
PSC1000 chip. This is very compact (similar size to F11-UK) with the processor
on a daughter board to provide flexibility. Running at 80MHz, the chip performs
a fast Fourier transform (FFT) of 1024 points in just 0.14 seconds. This board is
for sale and was built primarily for the Reilhofer KG company to provide extra
performance (see below).

Between The Papers
Because of the language barrier, the chat between the sessions was somewhat
easier to follow than the papers! Several members run small businesses that have
thrived on the speed advantages from using Forth. Unsurprisingly, they are
innovators in other ways too as follows.
Adolf Krüger explained his Forth company�s unusual approach to project
financing. Instead of the traditional approach of predicting the cost of a project
and asking for 30% in advance, he completes the project and then sells the
results to his client at a price based on the actual cost of the work. Occasionally

5 An English language version of this paper is available.

 18

the client refuses and the work is wasted, but he finds this approach has many
benefits.

Johannes Reilhofer runs Reilhofer KG (http://www.rhf.de), a company
specialising in automated instruments to test gearboxes and transmissions. This
requires high performance and unattended operation as his customers include
both the largest car producers and some Formula I racing teams. Jaguar cars use
his equipment to test all their gearboxes. Each gearbox is automatically loaded
into a special booth and taken under power through all the forward and reverse
gears in just 20 seconds. The vibrations are analysed during that 20 seconds to
find faults in components or assembly.
 To achieve accurate results in such a short time, Reilhofer has developed
some special techniques and has commissioned and adopted high-performance
Forth processor boards. They have also introduced simple but innovative
statistical techniques which allow the software to divide the transmission
systems into good and bad without requiring any test limits from an engineer.
This radical step simplifies the test configuration dramatically and, two years on,
this new approach has been fully accepted by the users.

Swap Dragon � this is awarded only once in a lifetime and goes this year to Martin
Bitter for this year�s successful conference, his recent work as Editor of Vierte
Dimension and his continuing teaching using robots programmed in Forth.

Ulrich Hoffman has been appointed the new Director of Forth Gesellschaft and will
be managing the web-site too. [Late News: Fred Behringer will assist in editing the Web
site and he intends making the site available in English too. Volunteers from FIG UK
who can help Fred polish his translations will be warmly welcomed.]

Robot Challenge
Forthwrite has reported before how Martin Bitter uses robots built from Lego
Mindstorms controllers and programmed in pbForth in his teaching. This year, for the
first time, the conference included a challenge which Martin had organised around 4
identical sets of robots. The 4 teams raced to program the devices to plot the words
�Forth 2001� and (silly) prizes were awarded before we retired once again to the
bar.

A Conference for FIG UK
Why don�t we have a similar conference for FIG UK? After all, FIG UK has a similar
membership and travel distances are rather shorter. Given a willing and energetic
volunteer, it would be worth serious consideration. For next year, though, I propose an
alternative.

Forth Gesellschaft have many years� experience in running successful
conferences and getting away from Britain for a weekend is an attractive proposition
after the winter. With this in mind, how about some of us getting together to form a
British contingent to the next German conference? (Munich 19th-21st April 2002). I can
guarantee a warm reception.

 19

The FIG UK Awards of 2000

The FIG UK Awards of 1999 were won by Jeremy Fowell
and Alan Wenham. These awards are given to encourage

effort and recognise achievement.

To everyone who sent in their nominations -
"thank you". Looking back, a lot of good work was
done during 2000, but our judges, the officers of
FIG UK, have now chosen their winners for 2000.
They each receive:

! a place in our web site�s Hall of Fame
! this mention in Forthwrite
! a year's free membership.

Keith Matthews: for 13 years of work behind
the scenes as Treasurer getting FIG UK to run
smoothly and keeping it that way.

John Tasgal: for his articles (available on-line as
a special issue) explaining Chuck Moore�s Machine
Forth and Color Forth.

We congratulate Keith and John on winning
- enjoy your year of free membership!

Free
membership

Achievement

Forthwrite

 20

Fred Behringer

behringe@mathematik.tu-muenchen.de

Arithmetized Logic in Forth
- An Introduction

Fred Behringer and Chris Jakeman

This is a simplified version of an article which Fred Behringer has
prepared for the German FIG �Vierte Dimension� magazine. The
present article, whose presentation is down to Chris Jakeman, is

intended to be an introduction for those less mathematically-inclined.
A more rigorous treatment with the pros and cons will appear in a

forthcoming issue of Forthwrite. The subject itself being
Mathematical Logic, its language is Mathematics, and as everyone

knows, there is no easy route to Mathematics.

How can we find out whether a bit pattern matches a logical rule? For example, we
might have 3 independent input bits (possibly from Lego robot touch sensors) and
a rule that is true if at least 2 of the 3 inputs are true. (Imagine a jetplane with 3
turbojet engines from the view of Reliability Theory: it crashes if less than 2
engines remain working.)

The simplest way is to build a truth table and Forth makes this very simple:

BINARY
HERE
FALSE , \ 000
FALSE , \ 001
FALSE , \ 010
TRUE , \ 011
FALSE , \ 100
TRUE , \ 101
TRUE , \ 110
TRUE , \ 111

CONSTANT TruthTable

: 2OutOf3? (BitPattern - Flag)
 CELLS TruthTable + @
;

In 2OutOf3?, we interpret the truth table's bit patterns as binary numbers which
we use as an offset into the table. When the number of bits grows, this procedure
becomes unwieldy. With 16 bits of input, the table grows to 65536 entries, each
to be entered manually. The thought of entering larger sizes still becomes
difficult to contemplate.

 21

Here, Mathematics comes to the rescue of the automation engineer with a space-
saving transformation called the Multi-Linear Form (MLF). Any logical function
can be converted to a table of coefficients which in many cases has far fewer
entries than the corresponding truth table.

In the 2OutOf3? example, we build a table containing 4 pairs of keys and
coefficients:

Key (bit pattern) Coefficient
011 1
101 1
110 1
111 -2

The work is done by the MLF defining word (below) that creates 2OutOf3?,
pointing it at the table and then provides the analysis when 2OutOf3? is
executed.

Where do these mysterious coefficients come from? Mathematics states that
logical (ie Boolean) expressions can be converted to arithmetic expressions as
follows. If FALSE is represented by 0 and TRUE by 1 (as in many textbooks on
Mathematical Logics and any digital data sheet), then the following is true for
the single bits x and y.

 x∧y = x*y \ x and y = x times y
 x∨y = x+y-x*y \ x or y = x plus y minus (x times y)
 ¬x = 1-x \ not x = 1 minus x

Our 8-entry truth table can be written as the logical expression:

 ¬x2∧x1∧x0 ∨ x2∧¬x1∧x0 ∨ x2∧x1∧¬x0 ∨ x2∧x1∧x0

i.e. (not X2 and X1 and X0) or (X2 and not X1 and X0) or (X2 and X1 and not
X0) or (X2 and X1 and X0).

How so? Examine each key from the truth table. Ignore the ones that have a
FALSE value and consider only the TRUE ones. Replace each bit of value 0 in the
key by the corresponding single bit variable in its negated form (eg not X2), and
each bit of value 1 by the corresponding single bit variable in its affirmative form
(eg X1), connecting the single bit variables by means of ∧∧∧∧, and finally glueing
the whole thing together by ∨∨∨∨. This is known as the Disjunctive Normal Form
(DNF). (For an explanation, see below.) Using the 3 rules above, we can show
that the ∨∨∨∨'s in any DNF can be immediately replaced by +'s, however complex
the rule for x∨∨∨∨y might appear at first sight, thus saving much computational
effort. What we finally get as the equivalent arithmetic expression is then

 22

(1-x2)*x1*x0 + x2*(1-x1)*x0 + x2*x1*(1-x0) + x2*x1*x0

which can be multiplied out and simplified to the Multi-Linear Form:

 1*x1*x0 + 1*x2*x0 + 1*x2*x1 - 2*x2*x1*x0

These factors (1,1,1,-2) become the coefficients in the table and the bit patterns
011, 101, 110, and 111 become the keys.

Having computed the entries in the table and used MLF to build them into the
2OutOf3? table, how does 2OutOf3? extract the result? It matches the input bit
pattern against each key in turn and uses BNS to decide whether to skip the
entry. If not skipped, 2OutOf3? just adds the coefficient to the result so far.

BNS compares 2 bit patterns and returns true if all the bits in the key are also
present in the input. For example, a bit pattern like 111 will be matched using
BNS against all the keys in turn and, since 111 includes all the bits present in
011, 101, 011, and 111, the 111 bit pattern will accumulate by addition the
coefficients for all 4 entries in the table: 1 + 1 + 1 - 2 = +1 or true.

 : 2, (a b --)
 , ,
 ;
 : BNS (BitPatternA BitPatternB -- Flag) \ True if A includes B
 TUCK AND =
 ;
 : MLF (Compile: &Base DataPairs*i --)
 (Execute: BitPattern -- Flag)
 HERE \ &Beyond (addr beyond array of data

\ pairs)
 CREATE SWAP 2, \ Store array &Base and &Beyond
 DOES> (-- BitPattern &Base)
 0 SWAP \ Bury an initial result = FALSE.
 2@ DO \ Get limits of array
 (-- BitPattern Result)
 OVER I CELL+ @ BNS IF
 I @ + \ Accumulate result
 THEN
 2 CELLS +LOOP
 NIP \ Drop the BitPattern
 NEGATE \ Convert +1 to �1 to provide Forth TRUE
 ;

The 2OutOf3? word to be created by MLF is to act in a control structure like
2OutOf3? IF .. ELSE .. THEN . Forth uses -1 to represent "true". The 2OutOf3?
word can be built quite simply:

 BINARY

 23

 HERE \ &Base of array of data pairs
 011 1 2, \ Define the table
 101 1 2,
 110 1 2,
 111 -10 2,
 MLF 2OutOf3? \ Create the analysis word

and then tested using input patterns from the command line as follows.

 000 2OutOf3? . 0 OK
 001 2OutOf3? . 0 OK
 010 2OutOf3? . 0 OK
 011 2OutOf3? . -1 OK
 100 2OutOf3? . 0 OK
 101 2OutOf3? . -1 OK
 110 2OutOf3? . -1 OK
 111 2OutOf3? . -1 OK

Note that if we see results that are neither 0 nor �1, then the coefficients must be
wrong.

Now that we've seen how it works, let's look at something which would be hard
to do without MLF. Here is a circuit of switches, similar to the arrangement of
resistances in the Wheatstone Bridge. We've chosen it as the simplest
arrangement which is not composed of parallel and/or series parts only, but
where the 5 inputs lead to a more cumbersome 32-input truth table.

Note that a closed switch is represented by a "1" in the table below, and an open
switch, by a "0". To list all the combinations of open and closed switch position
requires a truth table of 32 bit patterns Instead, we present a shorter table of 10
keys and their coefficients for building the MLF word Bridge? instead.

 BINARY
 HERE \ &Base of array of data pairs
 00011 1 2, \ Define the table for inputs x4 ... x0
 01100 1 2,
 11001 1 2,
 10110 1 2,

x0 x1

x2 x3

x4

 24

 01111 -1 2,
 10111 -1 2,
 11011 -1 2,
 11101 -1 2,
 11110 -1 2,
 11111 10 2,
 MLF Bridge? \ Create the analysis word

Where do these ten coefficients come from? Our 32-entry truth table (whose
construction we've left to the reader as an exercise) can be written more
compactly as the logical expression:

 (x0∧∧∧∧(x1∨∨∨∨(x3∧∧∧∧x4))) ∨∨∨∨ (x2∧∧∧∧(x3∨∨∨∨(x1∧∧∧∧x4)))

Using the 3 rules for converting from logic to arithmetic (as above), the
equivalent arithmetic expression is then

 x1x0 + x3x2 + x4x3x0 + x4x2x1 -
 - x3x2x1x0 - x4x2x1x0 - x4x3x1x0 - x4x3x2x0 - x4x3x2x1 + 2*x4x3x2x1x0

This immediately gives us the table of coefficients and keys needed for creating
Bridge? by means of the defining MLF word as above. That�s all there is to it.

There is an alternative to words created by MLF which can be used in the same
way as XXX IF ... ELSE ... THEN. It is known as the Disjunctive Normal Form
(DNF). Sometimes it is better to use the MLF method, sometimes DNF is better.
More importantly, the DNF can be obtained directly from the truth table (once
and forever while writing the program), whereas getting the coefficients for the
MLF method is generally more cumbersome (only try to multiply the bridge
expression out using pencil and paper!). Fortunately, there exists a method of
transforming a DNF (equivalent to the truth table) into the corresponding MLF
systematically and possibly automatically too. A thorough discussion of all this
will appear in the forthcoming full version of this paper.

From Forth-Gesellschaft:
In Forthwrite's issue 111 we learned that Jeremy Fowell was elected as
Chairman of FIG UK. Good luck to you, Jeremy, and best wishes from the
German FIG Forth-Gesellschaft.

 The Directors: Thomas Beierlein, Ulrich Hoffmann, Fred Behringer

 25

David Abrahams
d.j.abrahams@cwcom.net

Book Review
�Extreme Mindstorms

An Advanced Guide to LEGO Mindstorms�

David Abrahams

This new book is the latest addition to our comprehensive lending
library. Thanks to Lego Mindstorms, there has been a surge of

interest in robotics � an area where Forth has many advantages.
David has a personal interest in the subject and, after building some
of the examples, provides us with a detailed review showing why he

recommends the book so highly. Uniquely, he also provides
feedback from one of the authors.

Introduction
LEGO Mindstorms is described as a robotics invention system by the
manufacturers. It was first introduced in 1998 and consists of the familiar LEGO
construction bricks, beams, gears etc. but with one new item, a large �brick�
housing a single board computer. This is the �RCX�, with Hitachi H8 CPU, LCD
screen and electrical connectors to provide power for motors etc and to read
inputs from a variety of sensors.

The system comes with a graphical programming language that runs on a
PC with the compiled programme downloaded to the RCX computer via an infra-
red interface. The product was initially aimed at children and the standard RCX
programming language is suitably simple.

However, the system very quickly
attracted the attention of older customers
who saw the potential of a ready made
powerful micro-computer and easy to
assemble mechanical components. Some
of these people were knowledgeable
engineers and programmers who,
frustrated with the limitations of the RCX
code, hacked the computer firmware and
hardware to see what could be done with
the system.

This book is written by four of these
people and provides a guide to the current
ways in which the Mindstorms system can
be extended and the full power of the RCX
computer can be explored.

Extreme Mindstorms - An Advanced
Guide to LEGO Mindstorms
by
Dave Baum
Michael Gasperi
Ralph Hempel
Luis Villa

ISBN 1-893115-84-4

Paperback of 347 pages published
by Apress at $29.95 (Amazon
price $23.96)

 26

The System
The Mindstorms system costs about £150 from Maplins or Toys r Us and
provides a way for anyone to experiment with control systems and robotics.
Users have created a wide variety of items including XY plotters, maze solving
robots and even a working model of a numerically controlled milling machine.

The Book
The book runs to 347 pages printed on high quality paper
with black and white illustrations. There are
comprehensive contents and index sections. I noticed one
or two minor typos in the text and one illustration was
missing completely but none of these errors were serious.

The book could have been improved by the use of
colour as this would help to identify different Lego parts
and electronic components. However, this would no
doubt have increased the price significantly.

Part 1 - Mindstorms by Dave Baum
This part covers chapters 1 to 4 and is written by Dave Baum, a Motorola
engineer and creator of the NQC (�not quite C�) programming environment for
the RCX. He is also the author of �The Definitive Guide to Lego Mindstorms.

Chapter 1 gives a brief history of the Mindstorms product and how and
why the hackers stepped in. There are many references to web sites containing a
wealth of information on the internal workings of the hardware and firmware.
 Chapter 2 describes the capabilities of the RCX computer brick in terms of
its inputs and outputs and the standard firmware. The book does not go into
great technical depth here but does give a good basic understanding of the
capabilities of the system.
 The chapter describes how the RCX can be set to expect different kinds of
sensor inputs and NQC is introduced with a short programme to play a tone
when the RCX detects a change on the input of a light sensor.

�I had no problem following the
instructions�

Chapter 3 starts with instructions for the construction of �Seeker�, a light-
seeking robot. The instructions mainly consist of a series of illustrations of the
robot at various stages of construction with some text to clarify certain points. I
had no problem following the instructions to build the robot which is then used
throughout the book to illustrate the different programming environments.
 Chapter 3 then goes on to present a simple programme to drive the robot.
The programme is built in small understandable blocks and is given in two
forms, the standard RCX code and then the NQC equivalent. The chapter ends
with a more sophisticated version of the NQC code using multi-tasking and
makes the point that this approach is not possible with the standard code.

 27

 Chapter 4 is entitled �RCX 2.0 Firmware� and describes some of the new
features introduced with this version which can apparently be applied to older
RCX bricks. Included in this chapter are details of how to obtain and download
NQC to the RCX. There are many examples of NQC code in this chapter which
will be invaluable to anyone learning the system whatever version of firmware
they are using.
 The chapter concludes with a programme in NQC to drive �Seeker� based
on event monitoring which illustrates some of the new capabilities in RCX 2.0.

Part 2 pbForth by Ralph Hempel
Part 2 of the book comprises chapters 5 and 6 and is, of course, why this review
appears in Forthwrite. Ralph Hempel is a professional engineer specialising in
embedded systems design and the creator of pbForth6. In the forward to the
book, Ralph describes how he started with the 8086 assembler source code for
hForth and ported it to the Hitachi H8 of the RCX in ��about 40 hours over the
Christmas holidays��. This was then posted on the Internet and an enthusiastic
response encouraged Ralph to develop the pbForth system further.

Chapter 5 is entitled �Introduction to pbForth�. The chapter is a mixture
of information about pbForth and its application to the RCX and quite a bit of
text about the Forth language in general and why it is suited to interactive
development of embedded systems. In common with the rest of the book, no
prior knowledge is assumed and the reader is encouraged to put some effort into
learning Forth with for example a section headed �Why Learn pbForth?�. An
extract from this section reads:

One look at the source code might be enough to send you screaming, but if you
understand the philosophy of Forth, it will be easier to embrace. By learning
another computer language, especially one that asks you to think differently
about problems, you will deepen your bag of programming tricks. Even if you
don�t write software for a living, learning a language like Forth can be a fun
mental exercise

�Ralph�s experience shows through�
The chapter includes a brief summary of the structure of Forth, the stack

and the dictionary and is then followed by some simple examples of using
pbForth interactively. This is possible because pbForth running on the RCX can
communicate continuously with the PC accepting key presses and generating
screen output.

As the chapter progresses, standard and pbForth-specific words are
introduced with the usual stack notation which is fully explained. There is quite
a lengthy section on numbers and expressions showing amongst other things
how integers can be scaled in Forth to give more than adequate precision
without resorting to floating point.

6 http://www.hempeldesigngroup.com/lego/pbFORTH/

 28

Short pbForth scripts are used to illustrate how to access the hardware of
the RCX, the LCD screen, sound system, motors, sensors etc.. Ralph�s experience
with controlling embedded systems shows through in much of these two
chapters.
 Chapter 6 is used to develop a pbForth programme to control the �Seeker�
robot. Simple words are developed to perform specific tasks such as
BOT_FORWARD, BOT_REVERSE, BOT_LEFT, BOT_RIGHT and BOT_STOP to control the
robots motion. The Forth tutorial theme continues here with straightforward
implementations of the words to start with and then the use of factoring to put
the common elements of the words into MOTOR_SET which is passed parameters
on the stack from simplified versions of the motion words.
 Code is developed to display the status of the robot on its own LCD
display and this section introduces vectored execution in Forth.
 The chapter is interspersed with advice on programming in general and
Forth in particular. Techniques which may not be obvious are explained in some
detail such as the use of �weighted average� to sample the input from the light
sensor.
 These concepts are all combined to make a complete control program for
the robot. In his summary to the chapter, Ralph writes:

We have only scratched the surface of what pbForth can do. If you choose to
explore Forth in more detail, you will find that you can easily create large arrays
for data logging or mapping, use cooperative multi-tasking, and even do complex
signal processing�..�

Part 3 - LegOS by Luis Villa
Luis Villa studies computer science at Duke University and maintains the LegOS
HOWTO on the Internet. Part 3 consists of chapter 7 �Introduction to LegOS�
and chapter 8 �Advanced LegOS�.

LegOS is described as a development environment designed around the
standard C language. The author claims:

�..the combination of C and LegOS offers you a great deal of flexibility, power
and efficiency that can�t be matched by the other MINDSTORMS languages.�

Chapter 7 describes how to obtain and load LegOS via a Windows or
Linux based computer. Note: Appendix E of the book is devoted to �Installing
LegOS� which requires Linux or a �Unix-like environment� on Windows.
 The chapter describes how to use some of the functions available to the
programmer via LegOS which provide an interface to the RCX hardware and also
support multi-threading. The chapter concludes with a C program listing to
control the robot. The program uses memory arrays to �remember� the location
of the best light signal and a random response to collisions to make it less
predictable.

Chapter 8 �Advanced Legos� begins with example code to read rotation
sensors and a section on the sound capabilities of LegOS. There is a listing to
produce the tune �Devil with a Blue Dress�. There is then a brief mention of
libraries available to provide floating point maths and LNP - (LegOS Network
Protocol) and then some advice on LegOS debugging. This section starts with:

 29

Unfortunately, debugging LegOS programs is often the low point of the process
of coding with LegOS.

Most of Chapter 8 is devoted the construction and coding of a new robot. The
author names this robot �Trailerbot� although �Pusherbot� might have been
more apt. This sounds like a fascinating exercise. The robot is a simple vehicle
which pushes a long �trailer�. The programme uses artificial intelligence
techniques to learn how to push the trailer without jacknifing. It would be very
interesting to see this code translated into Forth.
 The chapter concludes with some advice on how to go about learning
how to program in C and LegOS.

Part Four - Homebrew Sensors by Michael Gasperi
Michael Gasperi works as a principal engineer with the Advanced Technology
division of Rockwell Automation. Although this section is principally about
constructing hardware, another programming environment is introduced, Visual
Basic using SPIRIT.OCX which is an RCX interface provided by Lego in their
Software Development Kit.

Chapter 9 deals with passive sensors and chapter 10 with powered
sensors. The construction techniques required to build sensors are covered in
great detail with for example instructions on how to strip insulation from a wire
and how to use a soldering iron. The author provides step by step instructions
and many photographs. Even someone who has never attempted to do work of
this kind before should have no problems following the instructions. For any
non-Lego parts required the author gives part numbers for Radio Shack and
Mouser Electronics, both American of course, but it should be easy enough to
source bits from Tandy or Maplin.
 The example passive sensors described are:

! Coin detector
! Non-directional touch sensor
! Temperature sensor
! Relative humidity sensor
! Angle sensor

! CdS photocell sensor
! Galvanic skin response
! Voltage input
! Battery level sensor
! Tachometer

Example code is provided to read the sensors and the chapter ends with some
suggestions for other passive sensors which really amounts to �anything you can think
of�.
 Chapter 10 deals with powered or active sensors and concentrates on
developing an �opto-interrupter� sensor and a sophisticated sound sensor using two
operational amplifiers.
 The circuits are developed step by step with a circuit diagram and a photo of the
components in a plug-in breadboard for each step. The terminology, electronic
techniques and operation of the circuit are clearly explained at each stage of
construction. Several pages are devoted to soldering techniques with clear illustrations
showing where to place the iron etc. and what a bad joint looks like.
 Voltage v. time traces are illustrated for various test points in the sound sensor
to show the purpose and effect of the various components.

 30

 The chapter ends with advice and suggestions for packaging homebrew sensors.

Appendices
Appendix A - Internet Resources
Appendix B - NQC API Reference
Appendix C - Frequently Used Forth Words
Appendix D - LegOS API Reference
Appendix E - Installing LegOs

Impressions and conclusions
I liked this book very much. I have worked in industrial automation for several years as
a software engineer and also have some knowledge of electronics. Nevertheless, I
learned several things from this book which will be useful in other areas and not just
for building Lego robots.

I felt that all the authors did well in explaining terms and techniques which
might be new to the reader and still covering enough ground to produce something
useful. The following items are examples of topics introduced in the book and given
clear explanations by the authors.

Dave Baum - pulse with modulation
Ralph Hempel - numbers and expressions in computing

- monitoring transient switch inputs
 - weighted average
Michael Gasperi - signal conditioning using op-amps.

Anyone with little or no programming experience should be able to use the book to
make a Lego robot perform tasks by simply following the example code. Understanding
the code is a different matter. It is interesting to note that neither Dave Baum (NQC) or
Luis Villa (LegOs) attempt to teach the reader how to programme in C. Ralph Hempel,
however, does adopt a more tutorial approach to pbForth, see the end of this review for
Ralph�s views on this.

�I highly recommend this book�
 It would be unreasonable to expect to learn one programming language solely
from a book like this let alone 3 or 4 languages plus control system programming plus
the electronics skills to design sensors. However the book does give a good start with
plenty of pointers to more information and help for those who wish to expand their
knowledge.
 In summary, I highly recommend this book to anyone interested in the Lego
Mindstorms system. There is a temptation to say that all the information is on the web
anyway but there is no substitute for a well indexed and illustrated book to refer to.

Author�s Views
Ralph Hempel kindly responded to some questions I emailed as follows:

 31

Q. Roughly how many hours did it take to write your section of the book?
A. It took about 4 hours a week between January and July, or about 100 hours
overall.

Q.. What feedback have you had from readers of the book?
A. Feedback so far is positive, but still scarce. Either I did a very good job of
explaining pbForth or nobody really cares....

Q. Have you had any feedback from the Lego company?
A. Not directly. I have contacts inside Lego that are very pleased that a simple
scripting language like pbForth is available. Of course, they have their own
interpreted language, but I dare say it's not nearly as fast as Forth!

Q. How are sales of the book so far?
A. Very good, as far as I can tell. The Christmas season saw about 7,500 books
sold.

Q. You have included much more tutorial on Forth than the other authors have on
C. Did you feel readers might need more help with Forth or more persuasion to
learn Forth?
A. It's a mind-set thing. The concept of stacks and memory maps and access are
very familiar to embedded systems programmers, but not the general C
programming public. I found that once the idea of Forth is clearly explained, it is
easy to go further. I felt a clear summary was needed, with direct application to the
RCX. Most programmers don't care to learn a whole new paradigm like Forth, but
those that do are better because they have a deeper bag of tricks.
 I have a new version coming out based on Chris Jakeman's MAF. I tried to
make a code generator for MAF, and almost got it working, but now I have hand-
compiled (more or less) the MAF source into an intermediate script language (Tcl)
that will let me generate MAF for just about any processor quickly.

Help: Source for R65F12 processors urgently needed � see Letters.

 32

Deutsche Forth-Gesellschaft

Would you like to brush up on your German and at the same time get
first-hand information about the activities of fellow Forth-ers in
Germany?

Become a member of the German Forth Society for 80 DM (£28) per
year (32 DM (£11) for students and retirees). Read about programs,
projects, vendors and our annual conventions in the quarterly issues
of Vierte Dimension.

For more information, please contact the German Forth Society at the e-mail address
SECRETARY@ADMIN.FORTH-EV.DE

or visit http://www.forth-ev.de/
or write to
 Forth-Gesellschaft e.V.
 Postfach 161204
 18025 Rostock
 Germany
Tel.: 0381-4007872

 33

JenX - A very simple XML parser
Jenny Brien

Les Kendall�s article in the January issue introducing XML has inspired FIG
UK members Jenny Brien and Leo Wong to explore key aspects of XML.
Leo has been working on holding XML data in memory and we hope to

publish details of this shortly. Jenny has worked in parallel on parsing XML
files, making use of the parsing words in ANS Forth as far as possible.

Jenny presents here a sample of the work with more detail expected in the

next issue. I have been able to follow these XML projects as they
developed and have been impressed to see how rapidly good ideas can

develop when members collaborate.

XML, like Forth, is an extensible language; new situations are dealt with by defining
new tags to reflect the structure of the data in the file. Leo Wong and I have been
working on a way to interpret XML tags as if they were Forth words.

It works because in any XML, the first line of the file is: <?XML version= >. We
can write a word <?XML to parse the rest of the file and then INCLUDE the file. <?XML is
designed to keep on parsing until the end of file.

<?XML needs a parameter to tell it where to look up and execute the tags it parses out.
This is an execution variable DO-TAG, and the calling program provides a suitable
function which takes a tag name in the form ca u and executes a suitable action. It
may take the form of a string CASE statement, or search a wordlist as in:

wordlist search-wordlist IF EXECUTE THEN.

The parser the user sees is

' calling_program JenX file

where JenX is simply defined as

: JenX (xt --) do-tag ! INCLUDE ;

Here is an example after Leo Wong (18 May 2001 +)

 34

\ Display chapter and verse containing a New Testament word or phrase
\ New Testament from: http://www.ibiblio.org/xml/examples/religion/nt/
\
\ <chapter>
\ <chtitle>Chapter 5</chtitle>
\ <v>And seeing the multitudes, he went up into a mountain: and when he
\ was set, his disciples came unto him:</v>
\ <v>And he opened his mouth, and taught them, saying,</v>
\ <v>Blessed are the poor in spirit: for theirs is the kingdom of
\ heaven.</v>
\ <!�more verses snipped -->
\ </chapter>

CREATE short-title 50 CHARS ALLOT
VARIABLE nChapter VARIABLE nVerse

: SEEK \ ca1 u1 ca2 u2 -- c1 u1

\ ca1 u1 is the word or phrase
\ ca2 u2 is current tag name

CASE
S" /bktshort" $OF \ tag </bktshort> marks end of book title

Content short-title PLACE 0 nChapter ! ENDOF
S" chapter" $OF \ tag <chapter> sets nVerses to 0

1 nChapter +! 0 nVerse ! ENDOF
S" v" $OF \ tag <v> marks start of verse

1 nVerse +! ENDOF
S" /v" $OF \ tag </v> marks end of verse

Content 2OVER SEARCH NIP NIP
IF CR short-title COUNT TYPE SPACE nChapter ? nVerse ?
[CHAR] : EMIT Content TYPE CR
THEN ENDOF

2DROP \ unknown tag - drop it
ENDCASE ;

S" forth" ' seek JenX nt.xml

The main design aim is that the calling program should not need to define actions for
any more tags than it has to. There is no error raised if a tag is not recognised - it is
simply ignored. Likewise, <?XML does not need to know anything about XML syntax
except that tags are anything within < >, and that CONTENT is anything outside.
CONTENT returns the ca u of the most recent content, held in a temporary buffer
Cbuff. The internal word Cbuff+ is responsible for filling it, decoding any entities as it
goes. At present, it only deals with the hard-wired entities - < , > , " and
'. A similar temporary buffer holds the whole of the current tag, including any
attributes. Get-tag extracts the tag name.

: TILL \ c -- flag ca u ; parse to char c flag true if char not found

SOURCE NIP >IN @ - >R PARSE DUP R> = ROT ROT ;

 35

macro NEXTLINE " WHILE REFILL 0= IF EXIT THEN REPEAT "
\ nextline works with TILL to process characters until the end character is reached

: <?XML (--)
BEGIN
0 Tbuff ! BEGIN [CHAR] > till Tbuff+ nextline \ tag may be more than one line
Get-tag do-tag @ EXECUTE
0 Cbuff ! BEGIN [CHAR] < till Cbuff+ nextline \ as may content
AGAIN ;

Pitfalls
For elements with 'mixed content' (tags mingled with text) there is a problem, as the
first internal tag will empty the content buffer. It would be possible to make the tags
smarter, so that instead of emptying each time, the level of Cbuff would only be
decreased by a closing tag, which would restore it to the level it was when the opening
tag was found. An easier implementation is have flags mixed and /mixed which can
be added to tag actions to turn off the buffer-emptying. Other applications might call
for different enhancements to Cbuff+ , but neither Leo nor I want to add more
smartness to this version which works fine for most simple files.

Future Directions
In theory, JenX could be extended to do anything you need with XML - all you have to
do is write the tag handlers! Anything, but not everything. Full DTD handling and
validation, for example, might be very complex, but it should not be too difficult to
read a DTD and pick up on any declared entities. Leo has done some work on using
JenX to read a file into a tree structure in memory, which is a better option when you
have to do a number of operations on the same file. And of course such a structure can
be saved to disk too. I can see that a Forth-based XML editor would be a very nice thing
to have ...

More progress, hopefully, in the next issue.

 36

 Paul Bennett
+44 (0) 1235-814586

PEB@amleth.demon.co.uk

Three Free Forths and an OS too!

Paul Bennett

Since the beginning of Christmas 2000 I have been working towards the goal of
diminishing my reliance on Microsoft products for my work and leisure computing.
After many explorations into the literature and newsgroups regarding several operating
systems, I have settled on the FreeBSD package. Coming up to Easter, I have now got a
feeling of impending mastery at a very rudimentary level but I realise I am still very
much a learner with this Unix-like software. However, the following may help others
decide for themselves.

It is not my intention to sell the idea to everyone because it will not suit
everyone to change operating systems. In my work I now have a need for the benefits,
such as improved security and resilience, on offer under FreeBSD. However, I am far
from leaving Forth behind. In fact, I am pleasently surprised to find a number of Forth's
at my finger tips for free.

The OS
The Operating System, FreeBSD, is a fully POSIX-compliant operating system derived
from the 4.4BSD software sources at Berkeley. The OS was made for running as 32-bit
on Intel i386 or better hardware and includes versions for PC98 hardware and Alpha
boxes. In fact, on Alpha boxes, it is a 64-bit OS.
 Reasons for selecting FreeBSD as an operating system are usually for such
aspects as security, resilience and dependability. FreeBSD is made to network and
comes with the full complement of TCP/IP protocols up to and including IPv6. FreeBSD
is the choice of many ISP's to run Internet services for their clients.
 While FreeBSD is mainly CLI-based, the package usually provides for running X-
servers, Web-servers and ftp-servers and you can select from a range of GUIs. The code
is not overly bloated and seems to run at very respectable levels of performance on
most hardware. It can give a new lease of life to an old 386 box and, with some work,
you could easily run your own Intranet. The other nice thing is that, with the BSD
licencing scheme, the OS is quite inexpensive.
 A word of warning for those who are tempted to dump Microsoft Windows for a
change to FreeBSD. The change is no picnic as you will have to settle down and get to
know your hardware quite well to be able to properly configure the system to work for
you. It will involve a great deal of reading and study but the results are well worth it.
 At time of writing, the current release of FreeBSD is 4.2-RELEASE and is
available as a 4-CD set or is downloadable from the web-site (see the on-line handbook
for details).

 37

FreeBSD Resources
FreeBSD web-site at http://www.freebsd.org/
There are also plenty of mirror sites for this so, if international communications are
slow you could try one of the mirror sites closer to your own country.

PDSL (Public Domain Software Library):

PO Box 131
Trowborough
East Sussex
TN6 1WS
Tel: 01892-663298

Book:
"The Complete FreeBSD - The operating system of choice for serious internet users" by
Gregg Lehey published by Walnut Creek CDROM, ISBN 1-57176-246-9 - comes with
four CD's and gives an overview of the whole OS (see http://www.cdrom.com).

The free Forths
The first of these is FreeBSD�s �bootstrap loader� - the first program to run. It�s job is to
load either the operating system or hardware diagnostics or some other utility.

**
FreeBSD/i386 bootstrap loader revision 0.8
(jkh@bento.FreeBSD.org, Mon Nov 20 11:41:23 GMT 2000)
Loading /boot/defaults/loader.conf
/kernel text=0x26e45f data=0x31b18+0x21440 syms=[0x4+0x36b90+0x4+0x3b7bc]
|
Hit [Enter] to boot immediately, or any other key for command prompt.
Booting [kernel] in 9 seconds....

Type '?' for a list of commands, 'help' for more detailed help.
ok
**

FreeBSD uses FICL or �Forth Inspired Command Language� as its bootstrap loader.
FICL is actually three programs. The initial boot sector programme itself, a second
program which the first reads in and runs, then the full FICL loader suite and any other
Forth-based files called by the script file loader.conf. If the FICL environment is not
entered (by interrupting during the 10 second time-out) it will automatically load the
FreeBSD kernel and run that.

FICL provides an environment for pre-kernel loading operations, selection of
different environments and loading the kernel. It is an ANS-compliant Forth similar
(but not the same as) Open Firmware.

Written in C it is probably not the best example of Forth style but has merit in
that it will run a number of Forth programs easily enough (one of the first things I
tried).
 Perhaps it might be worthwhile for a small group of Forth people to get involved
in documenting this environment properly, produce a raw-Forth version and place that

 38

in the FreeBSD domain. Perhaps we might do a tidyer and more compact job of it and
stand a chance of getting it into the BIOS ROM for later PC's. Now there is a prospect
to ponder; Forth on every PC and Workstation by default.

PFE - The Portable Forth Environment

**
\ Portable Forth Environment 0.29.0 (Nov 17 2000 07:02:53+00)
Copyright (C) Dirk Uwe Zoller 1993 - 1995.
Copyright (C) Tektronix, Inc. 1998 - 2000.
**

The Portable Forth Environment (PFE) is based on the ANSI Standard for Forth. The
PFE has been created by Dirk-Uwe Zoller and had been maintained up to the 0.9.x
versions (1993-1995). Tektronix has adopted the PFE package in 1998 and made a
number of extensions, in particular the PFE is now fully multi-threaded, so that a
number of Forth Interpreters can run in the same address space. Due these changes,
the PFE is mostly incompatible on the C-source level with Dirk-Uwe Zoller's
implementation somewhere from the 0.20.x versions on. The Forth-level is not affected
though.
 Another addition is the dynamic loading mechanism that allows the inclusion of
extended functionality into the running Portable Forth Environment. These extension
modules are written in the C language to obtain maximum speed as far as the
processor's capabilities can be exploited by modern compiler technology.
 The Forth Interpreter of the PFE is itself fully written in C, so it is very easy to
port to new platforms, especially embedded processors. Forth-sources can be easily
rewritten in C using the implementations of PFE so that time-critical sections can run at
full processor speed. Even more, any external C-object functionality can be made
available to the outer Forth Interpreter merily by providing a word-set export-table that
is loaded by the PFE.

The loading mechanisms does allow more than one word-set table to be
compiled into a single module-object which is then loaded at once. The PFE does itself
consist of a number of such basic word-sets which often bear names as proposed by the
ANSI Forth standard. Some of the PFE word-sets do not necessarily need to be initially
compiled into the base PFE object due to configure-time options. In most cases, the raw
PFE does now not pre-load all the words as documented here, in particular the
floating-point word-set extensions are not used on many embedded platforms

Usage Information
The PFE can be compiled as a binary that accepts a set of options. Starting it from a
shell should prompt you with the Forth's outer interpreter that you can talk to. It also
documents the set of ambiguous conditions which the ANS standard requires.

In use on my FreeBSD system, PFE works as another shell with the full range of
command line recall and editing facilities available. Several word-sets are visible at the
top level:

W EXTENSIONS W FORTH W LOADED

 39

The wordsets are quite extensive and too long to list here. There appears to
be a hierarchy under the LOADED list which lists:-

p wordset:PFE-SMART p <<load_signals>> p wordset:PFE-SIG
p wordset:PFE-TERM p wordset:PFE-SHELL p wordset:PFE-SYSTEM
p wordset:PFE-DEBUG p wordset:PFE-MISC p wordset:FORTH-83-L&P
p wordset:FORTH-83 p wordset:STRING-EXT p wordset:TOOLS-EXT
p wordset:MEMORY-ALLOC-EXT p wordset:LOCALS-EXT
p wordset:FILE-EXT p wordset:FACILITY-EXT p wordset:EXCEPTION-EXT
p wordset:DOUBLE-EXT p wordset:BLOCK-EXT p wordset:CORE-EXT
p wordset:SEARCH-ORDER-EXT ok

PFE License
PFE is free software. You can redistribute it and/or modify it under the terms of the
GNU Library General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version. The HTML-version
of the LGPL-License can also be obtained from http://www.OpenSource.org. As with all
free software, there are no warranties for use cases where the copyright holders have
not given an explicit liability.
 A later version (0.30.x) of PFE announced by Guido Draheim is available
from the net at http://pfe.sourceforge.net/.

GForth
**
GForth 0.5.0, Copyright (C) 1995-2000 Free Software Foundation, Inc.
GForth comes with ABSOLUTELY NO WARRANTY; for details type `license'
Type `bye' to exit
**

GForth by Anton Ertl and others is another 32-bit ANS Forth and comes with several
files of useful code examples.

Gforth is a fast implementation of the ANS Forth language. It works nicely with
the Emacs editor, offers some features such as input completion and history and a
powerful locals facility, and (thanks in part to FIG UK member Neal Crook), it even has
a manual. GForth employs traditional implementation techniques; its inner interpreter
is indirect or direct threaded. (There is a great deal of cleverness involved in making it
both portable and fast � Ed.) GForth is provided under the GNU licence terms which
may be a bit restrictive for some commercial applications but well suited for
educational and home use.
 Within the extensive number files that come with the program are many useful
utilities that could help to build a very nice integrated development environment.
There is even a glossary generator package that would be a boon to those who include
"\G" commenting along with their source text. This utility alone is worth considering
the download.
 You can also find GForth at http://www.gnu.org/software/gforth/gforth.html

 40

Letters

Paul Bennett

From: PEB@amleth.demon.co.uk
Sent: 09 April 2001 15:26

Having just received Forthwrite April 2001 (issue 111) I noted the letter
from Andrew Holt. He quoted "the best line of code is the one that
somebody else writes for you". This may be true some of the time but is not
to be regarded as a general rule.

Other peoples work may prove to produce the best line of code only after
you have subjected it to tests against your requirements (including
integrity and performance targets). Otherwise, if everyone was using other
peoples code, where would the new material come from?

Forth has a definite role to play in many areas of computing systems
technology. That it can, with some effort, fulfil any role required of it, is a
measure of the soundness of the underlying philosophy. Some of what Forth
has achieved is only now being seen in other areas of programming.

Taking a look under the covers of some of the latest OS's you may be
surprised to see Forth or Forth-like techniques being used in plenty. Forth
will be my environment of choice as I am certain to be able to apply full
system certification with fully evaluated risks assessments that take into
account both the hardware and software aspects. Forth has a very firm
place where integrity of the system matters and you need to prove it.

**
Paul E. Bennett<email://peb@amleth.demon.co.uk>
Forth based HIDECS Consultancy<http://www.amleth.demon.co.uk/>
Mob: +44 (0)7811-639972NOW AVAILABLE:- HIDECS COURSE......
Tel: +44 (0)1235-814586 see http://www.feabhas.com for details.
Going Forth Safely EBA. www.electric-boat-association.org.uk..
**

The Magazine Team are always pleased to get feedback and encouragement. Here we have Paul Bennett
replying to a comment from Andrew Holt, a request for help from John Matthews and a project suggestion
from Doug Neale.

 41

 John Matthews From: jjm@aems.demon.co.uk
Sent: 16 May 2001

15 years ago I designed a controller for friend of mine to operate a
travelling microscope. The controller was based on the Rockwell R65F12
processor, which is a 6502 that incorporates a Forth kernel in its internal
ROM (the program is stored in external EPROM and extra RAM is used for
data). The R65F12 came in a 64-pin DIL package (called a QUIP) and ran at
1MHz using a 2MHz crystal.

This IC is no longer supported by Rockwell and my friend has redeveloped
the application around another processor. Meanwhile he has been using
up old stock. Unfortunately, the replacement is not quite yet in
manufacture (I had nothing to do with it! - I am retired) and he has
received a sudden batch of orders that he needs to fulfil. He wants to
know if anyone is likely to have or know where to obtain old stock of the
R65F12 processor. He has already scoured commercial sources as far away
as Australia so it would be from someone who may have replaced it in time
but not yet thrown away the old stock.

As an aside, the Director of the Imperial Research Fund, Sir Paul Nurse,
said 12 months ago that this microscope has speeded up genetic research
(e.g. in the understanding of cancer) by a factor of 3.

Do you know anyone that might be able to help?

Regards

John Matthews

 42

Doug Neale

From: dneale@w58wmorden.demon.co.uk
Sent: 28 April 2001 17:44

Here is an outline of a possible Forth project that might interest some of
our members. First of all let me state that I would have a vested interest in
its outcome: it would solve what is beginning to look like a very difficult
problem for me.

As you know I am a freelance C and Foxpro programmer for both Mac and
Windows platforms. Currently the Foxpro system gives us a pseudo-SQL
access to any X-Base database which uses the 'cdx' index file format. Thus
one can put the database files on any server Novell, NT, or UNIX and not
actually require any server based software to be running.

All the 'front-end' stuff is done in Foxpro with all the usual 'GUI' screens
and support stuff, but the data is extracted from the database by my
Quark Xtension which is written in C using a third party package called
'CodeBase'. Microsoft have continued supplying Foxpro within Visual Studio
for the windows platform, but the Mac version has been stuck on Visual
Foxpro 3 for quite a few years. Moreover, the Codebase library does not
support SQL on the Mac, only on the PC. For these and other reasons I
would like to move away from Foxpro and similar Microsoft products.

What I would like to know is: is it feasible to write an SQL package in Forth
which initially would be running on a Windows NT/2000 server. One would
then require a Forth client system running on a workstation for both the
front end work and the data extraction. The latter component would need
to be a version of the Forth client package written in C and implemented
inside the Quark Xtension. For general information: Quark Xtensions are to
all intents and purposes specialist DLL's.

As well as solving my problem, the project could yield a general purpose
client/server SQL system written in Forth initially for the windows
platform, but potentially portable to other environments. Perhaps one
could call it 'FQL'.

I do not know if we have enough 'know-how' within our membership or
whether members would be sufficiently interested to participate in such
a project. Perhaps if you could publish this note in the next issue we
could discuss the response (or lack of) at the next AGM and decide how
it could be project managed.

Regards,
Douglas Neale

 43

Chairman Jeremy Fowell, 11 Hitches Lane, EDGEBASTON B15 2LS
 0121 440 1809 jeremy.fowell@btinternet.com
Secretary Doug Neale, 58 Woodland Way, MORDEN SM4 4DS

 020 8542 2747 dneale@w58wmorden.demon.co.uk
Editor Chris Jakeman, 50 Grimshaw Road, PETERBOROUGH PE1 4ET

 01733 753489 cjakeman@bigfoot.com
Treasurer Neville Joseph, Marlowe House, Hale Road, WENDOVER HP22 6NE

 01296 62 3167 naj@najoseph.demon.co.uk
Webmaster Jenny Brien, Windy Hill, Drumkeen, BALLINAMALLARD,
 Co. Fermanagh BT94 2HJ

 02866 388 253 jennybrien@bmallard.swinternet.co.uk
Librarian Graeme Dunbar Electrical Engineering, The Robert Gordon University,
 Schoolhill, ABERDEEN AB10 1FR
 01651 882207 g.r.a.dunbar@rgu.ac.uk

Membership enquiries, renewals and changes of address to Doug.
Technical enquiries and anything for publication to Chris.
Borrowing requests for books, magazines and proceedings to Graeme.

 For indexes to Forthwrite, the FIG UK Library and
 much more, see http://www.fig-uk.org

 Payment entitles you to 6 issues of Forthwrite
 magazine and our membership services for that

 period (about a year). Fees are:

National and international £12
International served by airmail £22
Corporate £36 (3 copies of each issue)

 Your membership number appears on your envelope
 label. Please quote it in correspondence to us. Look

out for the message "SUBS NOW DUE" on your sixth and last issue and please
complete the renewal form enclosed.
Overseas members can opt to pay the higher price for airmail delivery.

 Copyright of each individual article rests with its
 author. Publication implies permission for FIG UK to

reproduce the material in a variety of forms and media including through the Internet.

FIG UK Web Site

FIG UK Membership

Forthwrite Deliveries

Copyright

FIG UK Committee

 44

FIG UK Services to Members

Magazine

Library

Web Site

IRC

Members

Beyond the
UK

Forthwrite is our regular magazine, which has been in publication
for over 100 issues. Most of the contributions come from our
own members and Chris Jakeman, the Editor, is always ready to
assist new authors wishing to share their experiences of the
Forth world.

Our library provides a service unmatched by any other FIG
chapter. Not only are all the major books available, but also
conference proceedings, back-issues of Forthwrite and also of
the magazine of International FIG, Forth Dimensions. The price of
a loan is simply the cost of postage out and back.

Jenny Brien maintains our web site at http://www.fig-uk.org.
She publishes details of FIG UK projects, a regularly-updated
Forth News report, indexes to the Forthwrite magazine and the
library as well as specialist contributions such as �Build Your
Own Forth� and links to other sites. Don�t forget to check out the
�FIG UK Hall of Fame�.

Software for accessing Internet Relay Chat is free and easy to
use. FIG UK members (and a few others too) get together on the
#FIG UK channel every month. Check Forthwrite for details.

The members are our greatest asset. If you have a problem,
don�t struggle in silence - someone will always be able to help.
Do consider joining one of our joint projects. Undertaken by
informal groups of members, these are very successful and an
excellent way to gain both experience and good friends.

FIG UK has links with International FIG, the German Forth-
Gesellschaft and the Dutch Forth Users Group. Some of our
members have multiple memberships and we report progress
and special events. FIG UK has attracted a core of overseas
members; please ask if you want an accelerated postal delivery
for your Forthwrite.

	Forth News
	Forth for NEAR Spacecraft
	Chairman’s Message
	“Quikwriter” Proposal
	euroFORTH 2001
	Forth Gesellschaft - Tagung 2001
	The FIG UK Awards of 2000
	Arithmetized Logic in Forth
	Book Review
	“Extreme Mindstorms
	An Advanced Guide to LEGO Mindstorms”
	JenX - A very simple XML parser
	Three Free Forths and an OS too!
	Letters

