FORTH DIMENSIONS

DECEMBER 1978/JANUARY 1979 VOLUME 1 No. 4
(Published July 1979)

/ \\\“\\\\\\\\\\\\\\\\\\\\\\\\\\\\“\\\\%}

N\\S)

’\\\\\\\\V\\\

PUBLIC MEETINGS PAGE 37

COMMENTS PAGE 37

THE "TO" SOLUTION PAGE 38
Paul Bartholdi

THE FORTH IMPLEMENTATION PROJECT
PAGE 41

FORTH INTERNATIONAL STANDARDS TEAM

PAGE 41
ITC CORRESPONDENCE PAGE 42
Jon F. Spencer
poly <FORTH BY FORTH, INC, PAGE 43
GLOSSARY DOCUMENTATION PAGE 44
D. W, Borden
LETTERS PAGE 45

AL EARERERRAARE IR ARSI SUA NN NS A NN S SN SR NN AN N AN AR AN AN NN AN AN AN AN UN AN AN

L

NN

FORTH INTEREST GROUP ----- PO. Box 1105 -<--- San Carlos, Ca. 94070

PUBLIC MEETINGS OF F.I.C

The Forth Interest Group is pleased to
announce a public meeting series. We will
meet on the fourth (1) Saturday of the month
{n Hayward, Ce., 1in the Special EZvents Room
of the Liberty House Departament Store, im the
Southland Shopping Center (800 Southland Mell)

This room {e on the ¢third floor rear. The
formal meeting begins at 1:00 PN, but wve
gather for lunch about 12 Noon.

The specific dates are July 28, Aug 25,
Sept 22, Dct 27, and Nov 24. A single tech-
nical topic will be presented in detatl, with

workshop sessions on the f1g~FORTH model, and
any topice of immedlate interest. Im July,
Dave Lyons will present the ascii semory dusmp
of Forth which {s part of his 6800 version.
This Forth program showvs tle entire language
map on one sheet of paper!

PUBLISHERS COMMENTS

The issues of Forth Dimensions have
been scheduled for two month {ntervals, bdut
have been at intervals determined by the over-
all activities of the steering committee.
In the past months we have participated in the
International Stsndards Team, given conference

papers the Fourth West Coasst Computer Faire,
attended the Forth Users Meeting in Utrecht,
Holland.

These events have been outwardly reflect~
ed in the large gap since Issue). PFor the
near term, hope is in sight!. We have Issue
5 ready for publication in three wveeks, and
Issue 6 should occur within a sonth. This will
wrap up Volume 1. At this time we will
evaluate our efforts, and plan for future
activities. Member comment will be quite
apropos durimg this period and will help
shape future application of effort.

Thanks are due the membarship for thetr
patience during this period.

Page 37

STAFPF

The volunteer staffing of Forth Dimensions (s

a bit ‘fluid. PFor this 1issue, our staff con~-
sieted of:
EDITOR Bill Ragsdale
REVIEW Dave Boulton
CONTRIBUTORS Paul Bartholdt
D. W. Borden
TYPESETTING GLG Secretarial
and Vydec
ARTWORK Anne Ragsdale
CIRCULATION 6502 TIM and Perscti

HISTORICAL PERSPECIVE

FORTH
Hoore in

vas created by Mr. Charles M.
about 1969 at the Nationasl Radio
Astronomy Observatory, Charlottesville, VA.
It wvas created out of this dissatisfaction
vith aveilable programming tools, especially
for automation. Distribution of his work to
other observatories has made FORTH the
de~fscto standard languasge for obeervatory
sutomation.

Mr. Moore and several assoctiates formed
Forth, 1Inc., {a 1973 for the purpose of
licensing and support of the FORTH Operating
Systes and Programming Langusge, and to supply
application programming to meet customeras’
unique requirements.

FORTH enjoys a synergiem of 1its features.
It has none of the elephantine character~
istices of PL/1 or FORTRAN. It has a density
and speed far surpassing BASIC, but retains an
interactive nature during program development.
Since it 1s extensible, special words are

easily defined to give it the terseness of
APL. 1Its clarity and consistency result from
being the product of a single mind (as were

APL and PASCAL).

Although the language specification and
many implementatione are in the public domatn,
many other {implementations and application
packages are available as program products of
commercial vendors.

The Forth Interest Group is centered in
Northern California, although our wembership
of 450 e vorld-wide. 1t wss forwed in 1978
by 1local PForth programmers to encourage use
of the language by the interchange of f{deas
through seminars and publicationas. All effort
is on & volunteer basts and the group is

affiliated with no vendors.

+S FIC

FORTH INTEREST GROUP -.-.- PO. Box 1105 ----- San Carlos, Ca. 94070

THE “TO~ SOLUTION

Paul Bartholdi
Observatoire De Geneve
CH-1290-Sauverny
Switzerland

At the Catalina standardization meeting,
Chuck Moore suggested rapidly the "TO"
construct to aleviate some, {f not all, of
the difficultiés associated with address
manipulation. This new construction seems
to me extremely powerful, It should con-
siderably decrease the number of errors and
improve the readability of programs. It is
very easy to understand and to use (much
easier in fact than the constructs {t is
teplacing!). Its implementation is also
trivial but the lack of experience in using
it may hide some difficulties. These notes
try to sketch its potentials.

1. The " TO " concept

The basic concept is the following: The
code associated with "VARIABLEsS is divided
into two exclusive parts.

- The first one (or " fetch code ") is
identical with the one associated
normally with CONSTANT . It pushes on
the stack the value (byte, word or
words) in the parameter field.

- The second one (or ® store code ") is
new. It transfers the value (byte,
word or words) from the stack into the
parameter field, it is egquivalent to
<variable-name> ! (or C! or D!
or F1).

The choice between the two codes depends on
a state variable (which will be called SVAR
hereafter) that has two possible states:
(or fetch state) and 1 (or store state).

If SWAR = g the first code is executed
and 3VAR is unchanged.

If AR = 1 th2 second code is executed
and % VAR is immediately returned to §.

The operator " TO " sets SVAR to 1,
forcing the next-called variable to store
the content on top of the stack in its
parameter field instead of fetching it.

2. Examples using " TO "

We suppose three single variables called
A, B and C three double variables P , G
and H , and three floating variables X , Y
and Z . Then the following half-lines are
equivalent. The first column assumes the
old definitions of variables, the second one
uses the new concept.

g
;

i) A @ B @ + C | A B + 10 C
il) P D@ G D@ D- H D! P G D TO H
iii) x rP@ Y P@ FP* 2 PFI X Y F* TO 2

3. VARIABLEs or CONSTANTs ?

Some advantages of the new concept are
quite evident from the previous examples.
Just beforfe the Catalina meeting, I came to
the conclusion that variables should be
dropped altogether. IfA , B, ... 2 had
been constants in the previous examples
then, using P and ! , the three lines would
have been coded :

i) A B + ' C !
ii) P G D- ' H D!
fii) x Y pP* ' 2z F!

which {s already better than the "old" above,.

The Jdifficulty starts with ARRAYs. 1f
they push values onto the stack instead of
addresses, then it becomes much movre diffi-
cult to store values at the right places.

Note that ' C (or H or Z) takes two
words but is really, at execution time,
a single operator (LIT <address-of-C>).
*“ TO " is then the shortest solution in
terms of memory space, and more or less
equivalent to the CONSTANT solution in terms
of the time used.

4. The " address " problem

But the main advantage of ® TO " in this
context are the following:

- In the general sense a " CONSTANT "
should be used as such, and never (or hardly
ever) be changed. In particular it may
reside in PROM . I suggest then to keep the
constants as such, its associated code
ignoring the value of SVAR . We then
should redefine the variables to check 3VAR
and behave accordingly.

-~ One of the main unresolved points at
Catalina was the definition and use of
addresses for variables in the general
sense. One consensus was obtained in
September at the Geneva meeting, that is,
as far as possible, addresses should be
omitted. The " TO " concept solves this
requirement admirably. No addresses are

Page 38

FORTH INTEREST GROUP :---- PO. Box 1105 ----- San Carlos, Ca. 94070

ever put on the stack, or manipulated
explicitly. Then byte or word addressing is
irrelevant. It is taken care of at the
system level only, in the code of the second
part (the “store code").

5. Portability

Because of this, FORTH programs become
more portable. * TO " replaces all fetch
and store operators which would or would not
be distinct, which would work on byte or
"position® or word addresses. Transporting
a program from a micro to a large CDC
implies now much less adaptations.

6. Clarity - security

Using less operators, in fact the strict
minimum, is probably one of the best ways of
improving clarity. Note also that * TO *
appears as an infix operator to the program-
mer (and reader!). In terms of security,
TO " implies that only the parameter field
of variables can be changed. Other addres-
ses are not (at least directly) accessible.

This is certainly a tremendous gain for
some environments.

7. The ARRAY problem

The use of " TO " with ARRAYs is not as
simple as with variables, but still quite
practicable. Note first that anything but a
variable can stay between ® TO " and the
variable's name. I1If C is defined as an
ARRAY (with the double associated code)
then

A TO 4 C (instead of A @ 4 C 1)
PO I T™O I C LOOP

(instead of DO I I ¢ | 1LoOP)
are quite alright and extend all the pre-~
viously noted advantages of " TO ". But the
programmer must take care that the index
must not contain a variable. For example:

4 TO B ... A TO B C

will put the value of A into B instead
of into C The necessary form should then
be

A B TO C

which is surely less pleasant because of its
asymmetry.

8. Fetching and storing inside a disk block

The problem extends of course to "virtual
arrays® like the disk blocks. In this
context, direct access should be considered
separately from Data Management. The double
code concept associated with 8 TO " should
be extended to the Data Management opera-
tors. For the direct manipulation of data
inside a disk block, I suggest the creation
of a new operator, with the double code,
associated with the form of

<relative-word-address>
<bloc-number> BLOC

Page 39

(BLOC is of course just a provisional
name!)
Example:

4 12 BLOC 5 + TO 5 12 BLOC

instead of

12 BLOCK DUP 4 + @& S +
SWAP 5 + !

or

2 BLOCK 4 + @, 5 + 12
BLOCK 5 + 1

9. GCeneral access to the (whole) memory

No gqood FORTH programmer would ever
accept to be strongly restricted in his
access to the memory. But {f the ®* TO "
concept is really accepted, then all the @
and 1 operators should disappear. 1
suggest, instead, to add (its usage could be
restricted) a generalized array called
MEMORY (or any equivalent) with once more
the double code associated with f{t.
Then <address> MEMORY would either fetch
from or store into the real address.

As an example, we would have

g TO 15317 MEMORY ({nstead of

g 15317 1 or

MEMORY S. LOOP instead of
e S. LOOP etc.

DO I
DO 1

MEMORY is clearly equivalent to @ and
! depending on SVAR.

10. Generalization of address matching:
virtual arrays

The previous points 8 and 9 suggest a
further generalization that may solve
another problem we have had since the
beginning of FORTH: the use of arrvays
as parameters for a procedure. It was
generally solved by putting the address of
the first element on the stack, and doing
explicit address arithmetic in the procedure
(see the FPT of Jim Brault for example).
This is certainly neither clean nor fast.

What I propose is the following: A
virtual arvay (VARRAY . DVARRAY ’
PVARRAY , CVARRAY etc.) behaves like an
array, but does not reserve space, except
for a pointer to the real array. The link
between the virtual and any portion of
the memory {s established by the word

MATCH .

for example:

199 ARRAY CUSTOMER
198 ARRAY STAR
VARRAY NUMBER
. CUSTOMER MATCH NUMBER

associates the real array CUSTOMER with the
virtual array NUMBER .

Then <i> NUMBER
<i> CUSTOMER.

will be equivalent to

FORTH INTEREST GROUP :---- PO. Box 1105 ----- San Carlos, Ca. 94070

Remember that, as previously.
<i> NUMBER pushes the value of the
1*" STAR or CUSTOMER on the stack.

and <m> TO <i> NUMBER will store <m> into
the it" STAR or CUSTOMER .

At any time, CUSTOMER can be replaced by
STAR , (and vice versa) by

' STAR MATCH NUMBER
In this way, MEMORY 1is defined by

VARRAY MEMORY
§ MATCH MEMORY

18 PB
SCR # 150

0 (Example of the creation of TO)

1 HERE O , CONSTANT ZIVAR f ZXIVAR SET TO

2 : VAR CONSTANT ;CODE INB, ZIVAR LDA,

3 AO IF, B 1) LDA, PUSH,

4 ELSE, CLA, ZXVAR STA, S) LDA, B I) STA, POP,
5 TREN,

6 3 DVAR CONSTANT , ;CODE INB, ZVAR LDA,

7 A0 IF, B LDA, DSP, A I) DLD, 8) ST, PUSH,

8 ELSE, CLA, ZXVAR STA, ..T STB, §) DLD,

9 «.T 1) DST, POP.,

10 THEN,

11 : ARRAY 0 CONSTANT DP +! ;CODE INB, 8) ADB, IVAR LDaA,
12 AO I¥Y, B I) LDA, PUT,

13 ELSE, CLA, XVAR STaA,

14 S1) LDA, B I) STA, POP.,

15 THEN,

SCR # 151

0 : 2ARRAY 0 CONSTANT DUP + 14 DP 4!

1 ;CODE INB, S) ADB, S8) ADB, ZIVAR LDA,

2 AO IF, B I) DLD, S) STB, PUSK,

3 ELSE, CLA, XVAR STA, ..T STB,

4 Isp, $8) DLD, «+T 1) DST, POP.,

5 THEN,

6 : VARRAY O CONSTANT ;CODE 1INB, B IX) LDB, 8) ADB, ZIVAR LDA,
7 A0 IP, B 1) LDA, PUT,

8 ELSE, CLA, ZXVAR STA, S1) LDA, B 1) STA, POP,
9 THEN,

10 : DVARRAY O CONSTANT ;CODE INB, B 1) LDB, 8) ADB, 8) ADS,
11 IVAR LDA, AO 1F, B I) DLD, S) 8TB, PUSH,
12 ELSE, CLA, XVAR STA, -.T STB,
13 ISP, S) DLD, ..T I) DST, POP.,

14 THEN,
15 FORTH IMP -° : MATCR °~ | b1

Pauls’ example of the use of TO will be preseanted im the mext issue
of Forth Dimensions. It utilizes Knuths’ example for the cslculatioen
of the dates of Easter.

Page 40

FORTH INTEREST GROUP ----- PO. Box 1105 :---- San Carlos, Ca. 94070

FORTH

the Forth Interest Group

meeting. With only
had in excess of 40
attend. We had 1intended to offer
educational assiatance in using Porth.
However, we found everyoune was enthusiastic
to learn Forth, but only five had access to
running systems.

In June of 1978,
1te’ first public
publicity, we

held
mimimal
people

FIG then surveyed for vendor availability
We found there wvere numerous

of the language.
at educational and

mini-computer versions
research institutions, all directly decended
from Mr. Moore’s word at NRAO. Of course,
Forth, Inc offers numeroue commercial systemn.

None of
personal computing-.

these systems were avajilable for '
It appeared unlikely that

this need would be met 1in the forseeable
future. Our conclusion wvas that a suftable
model should be <created, and transported to

individual micro-computers. Thus was born the
Forth Implementation Team (FPIT).

This team was proposed a8 & three tier
structure. The first tier had several exper-
ienced Forth systems programmers, who would
provide the model and guide the implementation
effort. The next tier was the most crittical.
It was cowposed of asystems level programmers,
not necessarily having a background in Forth.
They were to transport the common language
model to their own computers by generating
an assembly language 1iscting that followed
the wmodel. Their results would be passed
to the distributors that form the third
tier. These distributors would customize for
specific personal computer brands. Finally,
the users could have access to both source and
object code for maintenance.

doesn’t permit 1inclusion of the
itaelf. The project was detailed
Forth conference pspers at

Space
FIT project,
as one of the six

FORTH INTERNATIONAL

For several years the Forth Users Group
(Europe) has sponeored a team working toward
a standards publication for Forth. The 1977
meeting (Utrecht) produced a working document
FORTH~77. Attendees included European
educational institutions and Forth, Inc.

1978,
Island

In October,
at Catalina
tncluded Forth
Bartholdi),

an expanded group met
(Calif.). Attendees

Users Group (Neiuwvenhuigzen,
Forth, Inc. (Moore, Rather,
Sanderson), FIG (James, Boulton, Ragedale,
Harris), ¥Kitt Peak (Miedaner, Goad, Scott),
U of Rochester (Forsiey), SLAC (Stoddard), and
Safeguard Ind. (Vurpillat).

The document resultiog from this four day
meeting has been released as FORTH-78. This
document is becoming a good reference guide inm

evaluating the consistency and completeness of
particular Forth systems. It 1s available
from FIST to oparticipating aponsors. (See
below.)

A msajor benefit of the team meeting wvas
the development of close cowmunications
Page 4!}

IMPLEMENTATION PROJECT

the Fourth West Coast Computer Faira, May 1979
in San Franctisco. [1) The result ie that FIC
now offers the Installation Msnual with
glossary and FPorth model ($10.00) and assemdly

laanguage listings for numerous computers

POP-11,
and Z~-80.

($10.00 @)
PACE, 9900,

Included are: 8080,
6800, and soon 6502,

Note that FIC offers theee listings which
gtill have to be edited into machine readable

form, customized, and sseembled for spectific
installations, Ve hope that local teams
share the effort and then distribute for
others.

Reports of tnetallations are beginning to
in from the USA and Burope. We sincerely
hope this work will give a benchmark of qual~-
ity and uniformity that vill raise the
expectation of all users.

cone

FIG would 1like to thank the followinmg
members of the Implementation Team who have
devoted a major part of nine months’ spare
time to this effort.

Dave Boulton Instructor

John Cassady 8080

Gary Feierbach Comp. Aut.
Bernard Greening z-80

Kim Harrtis Librartian
John James PDP-11
Dave Kilbridge PACE

Dave Lion 6800

Mike O'Malley 9900

Bill Ragsdale Instructor
Bob Smith 6800
LaFarr Stuart 6800

{1} Regsdale, William F.

“Forth Implementation, A Team Approach”
The Best of the Computer Faires, Vol IV
from: Computer Fasire ($14.78, USA)

333 Swett Road, Woodside, CA 94062

STANDARDS TEAM

major wusers. Yor example, FIG 19
from the wulti~-tasking of U of K,

and Utrecht are ruanning fig~FORTH,
adopted the security package
pioneered in FEurope. None of these events
would have been 1likely without the coantacts
begun at Catalina.

betvaen

learning
Kitt Peak
and we Tthave

The Tasw has announced tbhe next Standards
Meeting for October 14 thru 18, 1979, again
at Catalina. The team ggreed on an orginiz-
ational budget of $1000.00, to be met by $30.
contribuitions by sponsors (individusls and
companies).

These funds will be used solely to defray

organizing costs of the annual meeting and
distribution of the working documents to
participants. Those considering participating

become Team Sponsors by remiting as
below. Sponsors will receive the just
FORTN-~78, and all Team mailings.

should
given
released

Pleagse remit to FIST,
Yorth, Inc. 8)5 Manhattan
Beach, CA 90266.

XCarolyn Rosenberg,
Ave., MNanhettas

FORTH INTEREST GROUP ----- PO. Box 1105 ----- San Carlos, Ca. 94070

PASCAL COMPUTING SERVICES. INC.

1979 February 22

Editor

FORTH DIMENSIONS

P.0. Box 1105

San Carlos, CA 94070

Dear Sir:

1 was somewhat disconcerted when I read the arcicle by Mr.
David J. Sirag, "DTC Versus ITC for FORTH on the PDP-11",
FORTH Dimensions, Volume 1, No. 3. The author has, I be-
lieve, misunderstood the intent of the article by Mr. De-
war.

In Mr. Dewar's article, the definitions of direct threaded
code (DTC) and indirect threaded code (ITC) are

"DTC involves the generation of code (my em-
phasis) consisting of a linear list of addres-
ses of routines to be executed.”

“ITC..." (involves the generation of code con-
sisting) "...of a linear list of addresses

of words which contain addresses of routines
to be executed."

As apglied to the FORTH type of heirarchal structure (Heir-
archal indirect threaded code?), I would extend Mr. Dewar's
definition to be

"ITC involves the generation of code con-
sisting of a linear list of addresses of
words which contain addresses of routines
to be executed. These routines may them-
selves be ITC structures."

However, Mr. Sirag based his conclusions on the following
loose definition:

"“The distinction between DTC and ITC as
applied to FORTH is that in DTC executable
machine code is expected as the first
word after the definition name; while, in
ITC the address of the machine code is

14011 VENTURA BOULEVARD o SUITE 201E o SHERMAN OAKS, CALIFORNIA 91403 o (213) 9934238
636 BROADWAY o SAN DIEGO. CALIFORNIA 92101 « (714) 23148352

expected."

Obviously the two men are not referring to the same chtn%s.
Mr. Dewar is referring to the list of addresses which define
the FORTH word, while Mr. Sirag is referring to the impl-
mentation of the FORTH interpreter. If indeed Mr. Sirag's
statement were true (which it is not) that their "analysis
contradicts the findings of Dewar", then they snould have
implemented a DTC language rather than the ITC language of
FORTH! Indeed, a carefui examination of what is actually
occuring in LABFORTH reveals that their techniques are lo-
gically fdentical to Dewar's ITC. They have simply, through
clever programming, taken advantage of a particular instruc-
tion set and architecture. It is beyond the scope of this
letter to prove this equivalence, or to support the FIG
desire to have a common implementation structure for all
versions of F1G FORTH.

Please note that 1 am not quibling over semantics with Mr.
“irag. All definitions are arbitifary. (However, the value
of a definition lies {n its consistency, precision, and
useability. I find Mr. Sirag's definition of DTC and ITC
to be inconsistant with the environment in which he ope-
rates, FORTH, and thus quite useless.) My {ntent {3 twc
fold: (1) I am a self appointed defender of the excellent
work of Mr. Dewar, and (2) I want to correct any misconcep-
tions concerning this {ssue for readers of this newsletter
who did not have access to Dewar's (better) definition of
DTC and ITC.

Sincerepy,
A ; A (ThA__

Jon F. Spéncer

President

Pascal Computing Services, Inc.
14011 Ventura Blvd.,Suite 201E
Sherman Oaks, CA 91403

poly-FORTH BY FORTH, INC

Because of its speed and economy, FORTH
Inc.'s FORTH language has been favored by
many mini and microcomputer designers. Now
comes polyFORTH, which combines the best
features incorporated in the mini and micro
versions.

POlyFORTH is a multilevel language with
the eesential functions (e.g., basic arith-
metic and logic operators) in a 512-byte
nucleus, and user-defined "words® (com-
parable to macros) in the outermost layer.
What's more, the standard package fits in 4
kbytes of PROM, with an additional 2 k
for the assembler and text editor (which
aren't needed to run a program once it's
developed).

The new operating system goes beyond
previous FORTH versions by being able to
handle multitasking and many terminals
(limited only by the hardware), and by
including a buffer handler that supports RAM

or mass storage. Other improvements over
previous versions include faster dictionary
search, all 16-bit arithmetic and a simpler
target compiler.

The target compiler can be used to develop
a program of a micro-computer development
system. The compiler code can either be
executed directly, or be compressed and
burned into ROM. Scientific routines, a
data-base management system and applications
goftware are available options.

The 8080 and 9900 are polyFORTH's first
targets, but versions for the 8086, LSI-11,
Series~1 and Honeywell Level 6 are scheduled
by the Manhattan Beach, CA company for
release later this year.

Contact Steven Hicks at PORTH, Inc., 815
Manhattan Avenue, Manhattan Beach, CA 90266,
(213) 372-8493,

RN S R SRR AN et Rt P L L

January 23, 1979

Dear FIG:

Having just received your issue No. 3, it
seems to me that the “DTC" method used by
Sirag is still "indirect threaded code" in
the terminology used by Dewar, and should be
distinguished from other implementation
methods as being "executed" rather than
"interpreted."” The use of actual machine
code in place of the code address is the
"executed" aspect, but only in the case of
the Low Level Definition (Code) does the
use of machine code reduce the level of
indirection in the threading to that of
direct threaded code. In the Storage
Definition in Sirag's diagram, there is
still a subroutine call in the dictionary
entry containing data (constant, variable
type entries). Direct threaded code would
require this subroutine call to be moved
from the individual data-Word to the code
string referencing that word. Whether that
subroutine call is executed by an actual
machine language JUMP SUBROUTINE instruction
or by an interpreter routine is another
matter. Now, in the case of the Code type
dictionary entry, use of executed machine
code tends to also remove a level of
indirection because only one jump is needed,
there being only one address, that of the
code routine, involved; this coincidence
unfortunately confuses the two consequences,
even though they are separate.

) The concept of Threaded Code seems
inherently fuzzy, because any high-level
instructions compiled by a translator into a
series of subroutine calls has the same form
as threaded code, s0 it looks like almost
any compiler is going to use a certain
amount of threaded code. Some operations,
however, like adding two numbers, take so
little machine code that many compilers
would expand them completely in-line instead
Page 43

of threading them in a subroutine, and it is
at this low level of primitives that the
concept has meaning. Even when a subroutine
call saves nothing compared to a full
in-line expansion, going to two subroutine
calls, {.e. indirect threaded code, many
save space by reducing the amount of code to
identify the types of the operands being
processed, and 1n some cases it may also
save time. On a very large computer perhaps
all the variable types involved are an
inherent part of the machine instruction
set, and the memory may be tagged to
jdentify type there as well, and both the
questions of executed/interpreted and
indirect/direct would not be relevant, If
one had a machine which executed PORTH
primitives as its machine language, you
would still have indirect threaded code, but
completely executed instead of interpreted.
The PDP-11 seems to fall in between.

None of the above considerations, how-
ever, contradict Mr. Sirag's main conclusion
that how PORTH is implemented should not be
part of its definition.

One final note: in the DTC, ITC com-
parison for storage definitions, DTC was
shown having a larger overhead than ITC even
though the VAR routine appears shorter in
the DTC case. Even though the space over-
head is greater, 1 wonder if he has over-
stated the DTC overhead time. He seems to
gshow a single jump-subroutine taking longer
than an interpreted jump.

Sincerely yours,

George B. Lyons
280 Henderson Street
Jersey City, New Jersey 07302

FORTH INTEREST GROUP ----- PO. Box 1105 ----+ San Carlos, Ca. 94070

November, 1978

Dear PIG:

1 was very excited to find something from
you in my mail today, but then I was dis-
appointed to discover that it was a copy of
the journal article which introduced me toO
PORTH and your existence, which I already

have.

On October second, I sent you a check and
asked for everything else offered on the
subscription form (FORTH DIMENSIONS, Volume
1, number 1, p. 22.), i.e., newsletter sub. ,
glossary, and FORTH-65. And I've been
anxjiously awaiting the receipt of any or all
of these.

O0f course I realize you're all volun-
and I'm not angry...but I really

teers,

would like to get that stuff. I am, like

many others, I imagine, anxious to q:s a
ve

version of PORTH up on my system.
managed to dig up most of the references

SCR 3 3

VONCUNILN=O

listed in the article (still waiting for
DECUS) except for the last one: is it in
print?

I also have the documentation for the
Digital Group's CONERS and Programma's
6502FORTH (for the Apple, which I don't
have). Both of these programs are outer
interpreters written in assembly language,
and contain no inner interpreter. Interest-
ing, and they look like FORTH, but that's
not really what I want to do...

Rather than invest another 30 cents in
postage, I'm enclosing a check for $2.00
for the reprint--I know these things aren't
free, but pleaes send the other items soon,
okay? Thanks.

Dan del Vecchio
Ann Arbor, MI

Sincerely,
Editor --

Apologies to Mr. del Vecchio. We mis-
handled his entire request, and yet he en-
closes an extra $2.00! Our mail processing
i8 now current. We will complete the full
six issues of PORTH DIMENSIONS.

GLOSSARY DOCUMENTATICN - D.W.BORDEN

AFTER READNING W.F.KAGSDALE’S ARTICLE ON THE “HELF* CUMMAND
IN FORTH DIMENSIONS NO.2 AND SOME FROPACANDA FROM FORTH INC.» I
WROTE w SHORT FROGLAM WHICH PRINTED OUT EACH FORTH WORD AS 17
IS DEFINED, THE ADDRESS OF THE LENGTH BRYTE AND THE ADDKESS OF
THE FARM BYTE. AFTER EACH ENTRYs I PRINTED ELLIPSES TO ALLOW
A HANDWRITTEN ENTRY OF WHAT EACH COMMAND IS SUPPOSEDLY KOING.
THE ADURESS OF THE PARM BYTE IS USEFUL SINCE THAT ADDRESS
AFPEARS IN HIGH LEVEL COLON DEFINITIONS *OBJECT” CODE, THUS, IF
YOU HAVE NOT WRITTEN YOUK OWN FORTH SYSTEMs YDU CAN HAND

10 DISASSEMBLE (DISFORTH MIGHT BE MORE APPROPRIATE) EACH COMMAND

11 AND' SEE WHAT IT IS DOING,

12 OF COURSE A DISFORTH PROGRAM COULD BE WRITTEN AND I HAVE DONE
13 S0, BUT 1 AM NOT HAPFY WITH ITS OUTPUT FORMAT YET. 1 ALS0 HAVE
14 WRITTEN A TRACE WHICH PUTS A TRAF IN "NEXT" AND LISTS EACH FORTH

15 COMMAND EXECUTED. VERY USEFUL FOR DEBUGGING. iS

SCk & 2

01/31/79

0 (GLOSSARY OF FORTH WORDS WITH WEAD AND PARM ADDRESSES)
1 0 UARIABLE CMD (TEMPORARY VARIABLE TO HOLD COMMAND)

2 : TOPOFPAGE CR CR C CND WEAD PARW 1 CR 3

3 : UNDERLINE c 00 2000000000000 00000000000 NIR O 000 20000 J'

4 ! GLOSSARY TOPOFPAGE CURRENT @ @ CHD | (GET TOP CMD ADDRESS)

5 BEGIN

& CHD @ IF CHD @ C@ DUP 80 AND - ¢ GET CONMAND LENGTH)

7 DECIMAL « HEX 4 1 DO ¢ PRINT COMMAND LENGTH)

8 CMD @ I + (INDEX FETCHED IS 1-2-3)

9 C@ ECHO (PRINT COMMAND LETTER)

10 LOOP SPACE D ADDRESS
11 CND @ .H SPACE (PRINT COMMAND HEAD A) -

12 CMD @ 6 + .H UNDERLINE CR CR (PRINT CHD PARM ADDRESS) exanple tig-TORTH
13CHD @ 4 + @ CHD | (PICK UP LINK WITH NEXT CHD ADDRESS)) .

14 ELSE QUIT THEN ECRO LT
15 AGAIN ; 8 1/30/79 DR ‘2 BT (hex output)
GLOSSARY

CMD HEAD PARM

8 GLD xcz“ 1c3°....'..‘....".'.'..‘.'...Q.’...........‘.‘.‘.

9 UND lBEE IBF4"..'."'....'.......'....‘...'.".....'......

9 TOP ch’ 1BCF........‘..'..'....."C......."....‘....."..

3 C"n IBBD IBCJ..'..'..'...’....'.......'OO.'.Q..‘.'.'..‘.....

9 ?TE 18“‘ xa“7.....l"......"..........D'.‘O...."‘0"'."O

Page 44

FORTH INTEREST GROUP ----- RO. Box 1105 <-:-- San Carlos, Ca. 94070

Dear FIG:

I have been programming for sixteen
years, but I only discovered FORTH about two
weeks ago! It was a clear case of love at
first sight, but I've encountered a really
sticky problem already. I have seven
different programs, each runs on my Apple I1I
computer, and each claims the name °"PORTH".
Aside from that the only thing they have in
common are the three verbs, ®*:*, "*;", and
"@". Beyond that, everything is different.

Is there such a thing as
a "standard" FORTH, and if so, where do I
find out more about it? The only docu-
mentation I have rounded up so far is one
borrowed copy of FORTH DIMENSIONS, and
two pitifully incomplete “"user's guides®
supplied with two of the versions PORTH I've
bought. HELP!

My question is:

3incerely,

Gary J. Shannon
14115 Hubbard Street
Sylmar, CA 91342

Editor --

Mr. Shannon addresses a major prableml
FORTH uniformity is a wmajor problem.
Current standards (FORTH~77 and PFORTH-78)
exist but cover only areas of mutual user
concensus. There are remaining areas where
definition and/or refinement are needed.
The FIG Installation MANUAL has a model of
the language offered for public comment
toward uniformity,. We also pin-point
areas of deviation from PORTH-78 in our
publications.-

EANANANNNNNNANNNN NN NN DN]
Dear FIG:

I have an 8k PET and after reading Dr.
Dobb's number 28 I called Programma Con-
sultants to purchase FORTH. Two weeks later
I received itl

I have been working with PET PORTH now
for a couple of weeks and am still fasci{na-
ted with FORTH although I have some problems
with Programma's implementation.

Please sign me up.
Regards,

Chris Torkildson
St. Paul, MN

L S S SEST SO TN N
December, 1978

Dear FIG:

The FORTH-65 implementation listing you
sent is great!!! I'm beginning to understand
the power and beauty of this language/
system, with the aid of it, a Caltech (Space
Radiation Lab) FORTH manual, and James'
article in Dr. Dobbs...but there are still
some items I can't figure out, (One stupid
question: What is PROTECT, used in screens
36 and 45?)

Page 45

Also, have you reviewed Programma Inter-
national's PET FORTH yet? They told me that
a new version {1.1) would be out {i{n Nov./
Dec., but I'm waiting before buying...would
like your opinions/recommendations.

Best,

Mark 3immerman
Caltech 130-33
Pasadena, CA 91125

Bditor-~

Programma International's version is not
recommended by PIG. It has a non-standard
header (no word length indication) and is
pure machine code. The inner interpreter
NEXT is missing as are the critical defini-
tions ;CODE, <BUILDS, DOES>, and BLOCK.
PROTECT traps execution of compiling words
outside of colon-definitions. PIG now uses

?COMP for this purpose.

CUROITEELIOUINCORNEINONIARAARAISI SO IIAINTIINDRRNONNN
April, 1979

Dear PIG:

I now have Programma‘’s 6800 PORTH and
I probably shouldn't complain, however it
does have some differences with the DECUS
FPORTH (CALTECH PORTH). 1 think my major
complaint {s with the coding; any con-
ditional branching is almost impossible
without a previously assembled listing
to obtain address displacements. My
MIKADOS/0S/assembler/disassembler) s
interactive, single-pass, and fast. 1
haven't figured out yet how to do any
editing other than backspace and line
deletion, other than redo the program.
Also, I have the FPelix USP and recursive
programs just come naturally; same with
textual programming - somewhat difficult
with PORTH., Can recursive work be done in
FORTH? I don't know as I can't find out
enough from any manual (the only one with
Programma’s is “ifntertim™) to answer my
questions.

My "“down®" outlook may surprise other
Piggers, however I am (obviously) not a
computer scientist but feel that after the
Dobb's puffery by John James and a couple
of letters to the editor, the simplicity
and all-encompassment have been vastly
overrated.

Sincerely,

Neal Chapion

Space #27

602 Copper Basin Road
Prescott, Az 86301

Editor--

The above letters i{llustrate the nega-
tive comment we receive about Programma
Internationals' PORTH.

FORTH INTEREST GROUP -.-.- PQ. Box 1105 --+-+ San Carlos, Ca. 94070

