FORTH DIMENSIONS

N OCTOBER/NOVEMBER 1978 VOLUME 1, NO. 3
//,, CONTENTS *‘\\\
HISTORICAL PERSPECTIVE ‘Page 24
CONTRIBUTED MATERIAL Page 24
DTC vs ITC for FORTH Page 25

David J. Sirag

D=CHARTS Page 30
Kim Harris

FORTH ves ASSEMBLY Page 33
Richard B. Main

BIGH SPEED DISC COPY Page 34
Richard B. Main

SUBSCRIPTION OPPORTUNITY Page 35

\ /

FORTH INTEREST GROUP <---+ PO. Box 1105 ----- San Carlos, Ca. 94070

HISTORICAL PERSPECTIVE

FORTH was areated by Mr. Charles H. to give 1t '—": t'-"‘"“"' 1:’ r“’ln . t“
rom elng
Moore in about 1969 at the National Radio clarity and consistency reau
Astronomy Observatory, Charlottesville, VA, the product of a single mind. (a3 wvere APL
It was <created out of his diasatisfaotion and PASCAL).

with aveilabdble programming tools, especially

for automation. Distridution of his work to

other observatories has w®made PORTH the

de-facto standard language for observatory Although the language specificetion and

automation. many impleaentations are in the pubdlic
domain, =many other implementations and
application packages are available as

Mr. Moore and several associates program products of coasercial suppliers.
formed Forth Inec. 1in 1973 for the purpose
of licenaing and support of the FORTH

Operating Systea and Programming Language, The FORTH Interest Group 1is centered 1in
and to supply application programaing to Northern Californjs., It was formed in 1978
meet customers’ unique requirements. by locoal FORTH programmers to sacourags use

of the language by the interchange of ideas
though seminars and publications. About 300

FORTH enjoys a synergism of its members are presently assooclated into a
features. It has none of the elephantine loose national organization. {(°Loose’ means
characteristics of PL/1 or FORTRAN. It has that ao budget exists to support any foraal
a density and spead far surpassing BASIC, aeffort.) All effort is on a voluntser Dbdasis
but retains an interactive nature during and the group is associatad with no vendors.
program development. Since it is
extensible, special words are easily defined i3 W.Fr.R 8/20/78

CONTRIBUTED MATERIAL

FORTH Interest Groups needs the following material ¢

1. Technical material for inclusion in FORTH DIMENSIONS. Both
expositions on intemal features of FORTH and application programs are appreciated,

2, Name ond address of FORTH Implementations for inclusion in our
publications. Include computer requirements, documentation and cost,

3. Manugals available for distribution, We con purchase copies and distribute,
or print from your authorized original.

4, Lefters of general interest for publication in this newsletter,

5. Users who may be referenced for local demonatration to newcomers,

PAGE 24

FORTH INTEREST GROUP ----- PO. Box 1105 ----+ San.Carfos, Ca. 94070

DTC VERSUS ITC FOR FORTH ON THE PDP-11

By David J. Sirag
Laboratory Software Systems, Inc.
3634 Mandeville Canyon Road, Los Angeles, CA 90049

puring the design of LABFORTH, the FORTH implementation by
Laboratory Software Systems, the choice had to be made between direct
threaded code (DTC) and indirect threaded code (ITC). A detailed
analysis showed DTC to be significantly superior to ITC in both speed
and size. This analysis contradicts the findings of Dewar (ACM June
1975) which were referenced in the "“"Threaded Code” article in the
August 1978 issue of FORTH Dimensions. Dewar compared his use of ITC
with DTC as used for PDP-11 FORTRAN. His analysis does not apply to
the implementation of FORTH on the PDP-11.

The FORTH analysis involves 3 types of definitions - Llow level
(CODE), high Level (COLON), and storage (variable,etc). The low level
definitions will be encountered most frequently by far because of the
pyramidal nature of FORTH definitions. On the other hand, storage
definitions will be encountered far less frequently in FORTH than in
FORTRAN because in FORTH the stack is wused extensively while in
FORTRAN no stack is availablte. Also, when storage locations are used
in FORTH operators are available which minimize the number of
references. For examplte, in FORTRAN

COUNT = COUNT + 1
involves 2 references to the variable COUNT, while in FORTH

COUNT 14!
involves only 1 reference. It should be noted that in LABFORTH, 1+!
is a primitive, but it dis not 4in some other versions of FORTH.
Another factor which reduces the references to storage locations is

that in FORTH Lliterals are placed in Lline and handled by a reference
to the LITERAL (low level) routine.

The DTC and ITC routines for the 3 types of definitions are shown
below, they are condensed to show only the relative PDP-11/40
overhead. The register notation in the routines is as follows:

Q@ is the cue register (RS) which points to the next address.
It is called IC (instruction counter) in some literature.

S is the stack pointer (R4).

R is the return stack pointer (R6).

P is the program counter (R7).

RO is a temporary register assumed to be available.

-

PAGE 25
FORTH [INTEREST GROUP --+-- PO. Box 1105 :--- San Carios, Ca. 94070

DTC AND ITC ROUTINES

LOW

LEVEL
DEFINITION
(CODE)

HIGN

LEVEL
DEFINITION
(COLON)

STORAGE
DEFINITION
{VARAIBLE)

2I¢

NAME
&
LINK

MACHINE
CODE

et e er———————
WP a(ay+

NAME
&
INK

ADDRESSES

ADR UNNEST 1

UNNEST:

NAME
g
LIN
[JSR P, VAR

VALUE

VAR:

JSR Q,a(P)H = NEST

11¢
NAME
g
LINK
c»coos ADDR
MACHINE
OVERHEAD CODE
1 WORD
2.3 USEC
= NEXT :
MOV (Q)+,RO
MP_3(RO)+
NAME
&
L INK
CODE ADDR
ADDRESSES
OVERHEAD
2 WORDS
8.0 USEC
ADR UNNEST
MOV (R)+,Q UNNEST:
JMP 3(Q)+
NAME
g
| = CALL VAR FCODE_ADDR
VALUE
| OVERMEAD
2 WORDS
5.7 USEC
MOV (R)+,=(S) VAR:
JMP a(a)e

OVERHEAD
3 WORDS
4.6 USEC

= NEXT

NEST:

MOV Q,-(R)
MoV RO, @
MOV ' 2)+,R0
JMP 3(RO)+

OVERHEAD
2 WORDS
14.0 USEC

MOV (R)+,Q
MOV (@)+,RO
JMP 3(RD)+

OVERHEAD
1 WORD
4.6 USEC

MOV RD,=-(S) «»
MOV (Q)+,R0
JMP J(ROI+

* The push instruction itself is not counted in the overhead

PAGE 26

-

FORTH INTEREST GROUP -:..- PQ. Box 1105 ----- San Carlos, Ca. 94070

The distinction between DTC and ITC as applied to FORTH is that
in DTC executable machine code is expected as the first word after the
definition name; while, in ITC the address .of the machine code is
expected. Thus the ©DTC space advantage in the entry to a low level
definition is obvious. The machine code of the low level definition
terminates with the “NEXT" routine. In DTC NEXT is a 1 word routine
while in ITC the extra Level of indirection results in a 2 word
routine (Note: a JMP NEXT would also take 2 words).

In the high Level definition the machine code of the "NEST"
routine is stored in Line for DTC, but since it is only 1 word, it
takes no more room than the pointer to the “NEST" routine. However,
the 1 instruction for DTC takes considerably less time to execute than
the 4 instructions for ITC (Note: replacing the Llast 2 instructions
with JMP NEXT would take even more time). The remaining words in the
high lLevel definition are addresses in both cases. The Llast address
points to the UNNEST routine which again is more complex for ITC
because of the additional indirection.

In the storage definition case the machine code of the subroutine
call to the appropriate processor (VAR in the example) is stored in
line. This requires 2 words not including the the storage for the
variable itself. The storage words follow the call and can be thought
to be the parameters for the call. Thus in this case, the 1 word code
address for ITC represents a 1 word advantage over the subroutine
call. The execution time is also slightly in favor of ITC, even
though 3 instructions are executed in both cases.

DTC VERSUS ITC OVERHEAD SUMMARY

RrIC I11¢ PIC ADVANTAGE
Low Llevel 1 word 3 words 2 words
(CODE) 2.3 usec 4.6 usec 2.3 usec
High Llevel 2 words 2 words 0 words
{COLON) 8.0 usec 14.0 usec 6.0 usec
Storage 2 words 1 word -1 word
(VARIABLE) S.7 usec¢ 4.6 usec -1.1 usec

The summary table shows that DTC has the overhead advantage in
both lLow Level and high level definitions; while ITC has the advantage
in storage definitions. Considering the high occurrence of low Llevel
definitions and the Low usage of storage definitions, one can see that
3 FORTH implementation with DTC has a8 significant speed and space

-——>

PAGE 27

FORTH [INTEREST GROUP ----- PO. Box 1105 :---- San Carlos, Ca. 94070

advantage over one wusing ITC. Yo make the advantage more concrete
weights should be assigned to the various definition types. 1f we
have a program containing 500 definitions (including the standard
FORTH definitions), we might expect 200 low level. 250 high level, and
50 storage definitions. Using these numbers the size advantage of low
Llevel, high level, and storage should be weighted .4, .5, and .1
respectively. buring the execution of a program, we might expect the
frequency of occurrence of Low level, high level, and storage to be
60%, 20%, and 20X respectively. The result of applying these weights
is shown in the following table.

WEIGHTED ADVANTAGE OF DTC OVER ITC
SIZE ADVANTAGE SPEED ADVANTAGE
Low level 2 x .4 = .8 words 2.3 x .6 = 1,38 usec
High Level 0 x .5 = 0 words 6.0 x .2 = 1.2 wusec
Storage -1 x .1 = -.1 words 1.1 x .2 = =.22 usec
Weighted advantage .7 words 2.4 wusec

Thus using the weighted advantage for DTC we would expect to save .7
words in each of the 500 definitions which is a total of 350 words.
Also each time a definition is executed the overhead would be 2.4 usec
less. This may represent a savings of 20 or 30% of the total
execution time of the frequently used short definitions.

) The remaining advantage that is claimed for ITC is one of machine
independance because no machine code appears in the code generated by
the compiler. But even this advantage is illusionary since FORTH
programs are transported in source form. In fact on most systems they
are compiled each time they are loaded via the LOAD command. Thus,
after a FORTH system is hosted on a given computer, the machine code
that is generated by the compiler is suitable for that particular
uach?ne; this includes the machine code generated for the DTC
routines. If one did try to f{ntroduce the concept of FORTH
portability at the object code Level by restricting the programs to
high Level definitions and placing all machine code in a run-time
package, he would still probabty have machine dependencies in byte
versus word addresses, floating point format, and character string
repfesentation. In any case, current FORTH implementations do not
claim transportability at the object code level. .es

PAGE 28

FORTH INTEREST GROUP .-« PQ. Box 1105 ----- San Carlos, Ca. 94070

i
Di

Li
£

€
L
¢

3
d
t 1
e

r
t
L]

i rsus ITC has shown that when the special
situaz::nan;:::;:t:; D;: v:ORTH on the'PDP-11 as opposed to FORTRAN is
idered, use of DTC provides significant adyantages over .ITC in
cotn s é and size. Thus LABFORTH was implemented wusing DTC.
33::ve:fe§f it is rehosted on another computer, the choice may ‘be
different. The change would be handl?d as part of-thg rehosting
effort along with all the other changes which would be requ1red; oS
’

ou LABORATORY SOFTWARE SYSTEMS, INC.
Par OLd" Country Road 3634 MANOEVILE CANYON ROAD

LOS X . 9004
san Carlos, CA 94070 (213) 472-6995

pear Figgy,

FORTH Dimensions is just the sort of communications vehicle which
is needed by the FORTH community for both users and vendors. My
payment for a subscription is enclosed.

As Dr. R.M, MHarper indicated in an earlier letter, we at
Laboratory Software Systems have developed a version of FORTH on the
PDOP-11 called LABFORTH. As the name implies, LABFORTH contains
features which make it particularly suitable for the scientific
laboratory environment. This environment includes high speed data
collection and analysis; thus particular attention is given to making
LABFORTH fast. For this reason the direct versus indirect threaded
code discussion in the Thread Code article in the August/September
1978 issue of FORTH Dimensions was of particular interest. Our
analysis of ©OTC wversus ITC was an important aspect of the effort to
design LABFORTH for maximum speed. DTC proved to be faster than ITC
and as a bonus required less space. An article on this analysis is
enclosed for your paper. It contradicts Dewar's analysis of OTC
versus ITC for DEC's FORTRAN, but his analysis cannot really be
applied to FORTH. If DEC had used DTC in a more elegant manner, DTC
may also have fared better in the FORTRAN case.

Hopefully the DTC advantages will persuade you to delete the
requirement that FORTH be implemented with ITC. The programming
techniques used in implementing FORTH ought to be Lleft to the designer
and his results should to be evaluated by benchmarks,

1 look forward to your next issue of FORTH Dimensions.

Laboratory Software Systems, Inc.

PAGE 29

FORTH INTEREST GROUP ----- PO. Box 1105 -+ S5an Carlos, Ca. 94070

D-CHARTS

Kim Harris

An alternative style of flowcharts called
D~charts will be described. But first the
purpose of flowcharting will be discussed as
well as the shortcomings of traditional
flowcharting.

A flowchart should be a tool for the design
and analysis of sequential procedures which
make the control flow of a procedure clear.
Wwith FORTH and other modern languages,
flowcharts should be optimized for the
top-down design of structured programs and
should help the understanding and debugging
of existing ones. An analogy may be made
with a road map. This graphic representa-
tion of data makes it easy to choose an
optimum route to some destination, but when
driving, a sequential list of instructions
is easier to use (e.g., turn right on 3rd
street, left on Ave. F, go 3 blocks, etc.).
Indentation of source statements to show
control structures is helpful and is recom-
mended, but a two dimensional graphic
display of those control structures can be
superior. A good flowchart notation should
be easy to learn, convenient to use (e.g.,
good legibility with free-hand drawn
charts), compact (minimizing off-page
lines), adaptable to specialized notations,
language, and personal style, and modifiable
with minimum redrawing of unchanged sec-
tions,

Traditional flowcharting using ANSI standard
symbols has been so unsuccessful at meeting
these goals that "flowchart"™ has become a
dirty word. This style is not structured,
is at a lower level than any higher level
language (e.g., no loop symbol), requires
the use: of symbol templates for legibility,
and forces program statements to be crammed
inside these symbols like captions in a
cartoon.

D-charts have a simplicity and power similar
to FORTH. They are the invention of Prof.
Edsqger W. Dijkstra, a champion of top-down
design, structured programming, and clear,
conclse notation. They form a context-free
language. D-charts are denser than ANSI
flowcharts usually allowing twice as much
program to be displayed per page. There are
only two symbols in the basic language;
however, like FORTH, extensions may be added
for convenience.

Sequential statements are written in free
form, one below the other, and without
boxes.

statement

next statement

next statement

-
-

PAGE 30

FORTH INTEREST GROUP :---- PQ. Box 1105 ----- San Carlos, Ca. 94070

The only ®"lines®™ in Drcharts are used to
show nonsequential control paths (e.g.,
conditional branches, loops). In a proper
D-chart, no lines go up; all lines either go
down or sideways. Any need for lines
directed up can be (and should be) met with
the loop symbols. This simplifies the
reading of a D-chart since it always starts
at the top of a page and ends at the bottom.

It is customary to underline the entry name

(or PORTH definition name) at the top of a
D-chart.

2-WAY BRANCH SYMBOL

In PORTH, this structure takes the form:
condition IP true phrase
ELSE false phrase
THEN .
Another FORTH structure which is used for
conditional compilation has more mnemonic
names:
condition IPTRUE true phrase
OTHERWISE false phrase
ENDIF .

The D-chart symbol has parts for each of
thegse elements:

condition

false phrase true phrase

words following ENDIF (or THEN)

The "condition" is evaluated. If it is true, the
“true phrase" is executed; otherwise, the "false
phrage” is executed. The words following ENDIF
(or THEN) are unconditionally executed.

If either phrase is omitted, as with
condition IF true phrase THEN

a vertical line is drawn as shown:

condition

true phrase

g

L] 4
jo
'8
th
e
ts
n,

+14
ile

b3 4

LOOP_SYMBOL

The basic loop defining symbol for
pD-charts is properly structured.

condition

loop body

The switch symbol:

&

indicates that when the switch is
encountered, the "condition® (on the
side line) is evaluated.

1. If the "condition®™ is true, then
the side line path is taken; if
false, then the down line is taken
(and the loop is terminated).

2. If the side line is taken, all
statements down to the dot are
executed. The dot is the loop end
symbol and indicates that control
is returned to the switch, ‘

3. The “"condition" is again evalua-
ted. Its outcome might have
changed during the execution of
the loop statement.

Repeat these steps starting with
Step 1.

This symbol tests the loop condition
before executing the loop body. However,
other loops test the condition at the
end of the loop body (e.g., DO .. LOOP
and BEGIN .. END) or in the middle of the
loop body. This loop symbol may be
extended for these other cases by adding
a test within the loop body. Consider
the FORTH loop structure

BEGIN loop body condition END .

The loop body is always executed once,
and is repeated as long as condition is
false. The D~chart symbol for this
structure would be:

1
loop body

condition

A more general case is
BEGIN first phrase
condition IF second phrase
AGAIN

which is explained better graphically
than verbally:

first phrase

Nn

second phrase

é

Both previous symbols may be properly
nested indefinitely. The following example
shows how these symbols may be combined.
This is the FORTH interpreter from the
F.1.G. model.

¢ INTERPRET BEGIN ') IF HERE NUMBER
ELSE EXECUTE

INTERPRET

until null word executed
;E;ii 1

search dictionary for next word

found

conyett word execute word
to integer

error

push fnteger

check stack

é

PAGE 31

FORTH INTEREST GROUP ::--- P.O. Box 1105 -+--- San Carlos, Ca. 94070

n-WAY BRANCH SYMBOL

A structured n-way branch symbol (some-
times called a CASE statement) may be
defined for convenience. (It is func-~
tionally equivalent to n nested 2-way

branches). One style for this symbol
18:

first case second case .o lagst case

P.O. Box 8045
Austin, TX 78712
November 3, 1978

Editor, Forth Dimensions:

Thank you for your card and subsequent letter.
I am sorry that I did not get back to you sooner with
a copy of the source code for my FORTH system.
Frankly, 1 was surprised that you are interested in
the system, since it is rather limited in facilities
and conforms with no other FORTH version in terms of
names. I stopped work on the system just about the
time I began to receive namuals form DEQUS amd the
6502 FORTH form FIG. I can see now how I would add
an assembler, text editor, and random block i/o .to
the system, but my duties at work and at school
preclude any further development of U.T. FORTH for
now.

I want to especially thank you for informing
me of Paul Bartholdi's visit to the University of
Texas. I was able to meet with him and we had a very
stimulating discussion for about an hour and a
half. I was surprised to learn from him how widely
FORTH is used commercially, though usually under
other names. We also discussed two extensions to the
language that I believe greatly enhance it: (1)
syntax checking on compilation for properly balanced
BEGIN..END and IF..ELSE..THEN constructs, and (2) the
functions "n PARAMETERS" and "PAR]"™ to "PARN" that
allow explicit reference to parameters on the stack.
Pinally, he showed me some programming examples
fraom the FORTH manual he wrote which provide first-
hand proof of the ease of programming rather sophis-
ticated problems in FORTH. It is especially im-
portant because most peaple in the computer science
department here respond to my presentation of FORTH
with a resounding lack of interest. After all, they

keep abreast of the field and if they have not heard
of it....

I have been promoting FORTH among the local
camputer clubs and look forward to the results of
FIG's micro computer efforts. Please keep in touch.

Sincerely yours,

Greg Walker
PAGE 32

The condition is ugually an index which
selects one of the cases. The rejoining
of control to a single line after the
cases are required by structured program-
ming. Depending on the complexity of
the cases, this symbol may be drawn
differently.

p-charts are efficient and useful. They are
vastly superior to traditional flowchart
style.

;S KIM HARRIS

SYSTEM LANGUAGE 1

SL/1 was written by Emperical Research Group, Inc.
to be exactly what it says it is, a SYSTEM language.
SL/1 is a small interactive incremental compiler that
generates indirect threaded code. It is a 16 bit
peeudo machine for use on mini and micro computers.
New definitions can be added to an already rich set
of intrinsic instructions. It is this extensibility
that allows any user to create the most optimum
vocabulary for his individual application.

SL/1 is a virtual stack processor. Using the
FON concept for both variables and instructions makes
it possible to extend stepwise programming to include
stepwise debugging. SL/1 does this quite nicely.
The RPN stack is also one of the most effective means
of implementing top down design, bottam up coding.

SIL/1 operates on a principle of threaded code.
All of the elements of SL/1 (procedures, variable,
compiler directives, etc.) reference the previous
entry. Thus, each code indirectly "threads” the
others and is in turn threaded by the code following
it. Because SL/1 is a pseudo machine, portability
between different processors and hardware is readily
accomplished. The low level interpreter is really
the P-machine. It is small (only 11 bytes are used),
and fast.

One of the most powerful features of SL/1 is the
fact that is uses all on-line storage media as
virtual memory. In effect the user can write
programs in SL/1 using the full capacity of disk
storage and never be concerned with placement of
information on the disk. SI/1 allows you to program
machine code procedures in asgsembler using a high
level lanquage. This can optimize I/0 or math
routines.

The above information was excerpted fram a press
release of November 3, 1978. For further informa—
tion, contact Mr. Dick Jones, Emperical Research
Group, Inc., 28206 144th Avenue, S.E., Kent, WA
968031. Phone (206) 631-4851.

FORTH INTEREST GROUP .---- PO. Box 1105 :---- San Carlos, Ca. 94070

- D B

PORTH VS. ASSEMBLY
By Richard B. Main
Neptune UES, Pleasanton, CA

Here are some facts regarding Forth obiect
size and exeuction speeds versus Assembly coding.

forth, Inc., some programmers (myself' included),
and others have made some pretty incredible state-
ments about Forth code resulting in less memory
required (!} and execution speeds as fa;t as Assembly
written code (!!). To help clear the air I'1]l try to
explain those two outrageous claims.

First, Forth code can run as fast, but not
faster, using a constructional statement callgd
"Code® which is followed by a sort of mneumonic
machine code string and a jump back to the Forth
inner interpreter. It isn't reasonable to just have
one big code statement for the whole program. So
this gets us into another Forth constructional
statement called a "colon definition”.

Colon statements cost speed but save program
memory over Assembly. Colon statements constitute
the "high level™ aspect of Forth but let's get back
to the point.

An example "code" statement in Forth to handle
the character input fram a CRT to an Intel SBC 80/20
would be:

CODE KEY BBEGIN ED INP RRC RRC CS END
EC INN A L MOV @ H MVI HPUSH JMP

NOTE: Forth code statements allow begin-end
and if-else-then constructs within the
assembly. Also Forth requires source-
destination-operand organization of each
assembly statement (A L MOV instead of MOV
L,A).

This exact same routine in Assembly lan-
guage would be:

ORG § ;place in next avail
KEY: .
BEGIN: IN EDH ;input CRT status
RRC ;jrotate receiver ready
RRC ;into carxy bit
END: JINC BEGIN
IN EH ;input CRY data
MOV L,A ;push data on
MVI H,9 ;stack in 16-bit
JMP HPUSH ; format

By entering ' KEY gD DUMP on the Porth system
you'll get the object code displayed as:

4999 DB PF gF D2 g 49 DB EC 6F
26 99 C3 41 g¢

This is exactly what the Assembly code would
produce if ORG'ed at 4¢@PH and the label HPUSH was
at 41H.

Reviewing the example Forth code statement: “BEGIN®
pioduced no object but simply acted as a label for
“END" and provided the JNC address for END. “Cs"
simply provided the JMP type for END, in this case
JNC. "CS NOT END" would have complemented the jump
type and produced JC.

" language ability.

The above examples while not especially exciting
on the surface are quite interesting when you're
actually writing these programs on a system installed
with Forth and one that isn't. Using standard
disk-based Assembler system you'd probably have to
open an edit file, write the program, close the edit
file, call the assembler, and load the object file so
you could use the debug program to execute., Maybe
10-30 minutes depending on the problems you have
along the way. 1In Forth, you'd enter the code
statement on the command line, carriage return,
type "KEY", (CR), and it's executing. 30 seconds
maximm! If you liked the way "KEY" executed you'd
save it off on the disk using the Forth Editor.
(Another 20 seconds.)

The colon statement in Forth was said to save room
in memory over Assembly, and provide the hign level
An example code statement that
would read the CRT keyboard caomand messages and then
execute the desired action could look like:

: KEYBOARD 64 @ DO KEY 7F AND DUP @D =
IF LEAVE THEN LOOP EXECUTE ;

Keyboard is the label of this routine. Every
other word (DO, KEY, AND, =, LEAVE, THEN, LOOP, and
EXECUTE) requires two bytes of memory. f-bit numbers
require 3 bytes, 1 for the number and 2 for a routine
that differentiates numbers from words and provides
these numbers on the stack for use by succeeding
operations, e.g., 64 and § for 'DO'.

The memory saving can be visualized by thinking
of the routine "keyboard" as a routine that looks
like:

§

FEREEREERRERRE

;a program

;a program

;to start a 64 loop
;to input data

;¢ for AND

;to AND it

;to DUP data

;for (CR) test

;for (CR) test

;if (CR) leave loop
;to complete IF

;to loop 64 times
;to DO command

;to DO next one

57935458

§S§5

Looking at it this way, each CALL taxes a byte.
Fourteen bytes could be saved if the CALL OPCODE
could be eliminated. The result would be the two
byte address' of everything to CALL. The innermost
Forth interpreter uses these address' in sequence and
is about 12 bytes of memory code and has the label
"NEXT".

Thus, for just this single example, 14 bytes
were saved, at the cost of 12 bytes for "NEXI™". But
every colon and code statement used "NEXT" so the
memory savings build because "NEXT" is executed so
many times. The justification in using sub~routine
calls in Assembly code versus inline code is based on
how many times it is called. “NEXT" is completely
justified because it is called an enormous number of
times. Forth, Inc., has stated "NEXT" would be an

-

PAGE 33

FORTH INTEREST GROUP -<--« PO. Box 1105 ----- San Carlos, Ca. 94070

excellent micro-code to be included in a CPU OPCCDE
set and I'd have to agree. Before a "NEXT" OPCODE
would be implemented in MOS processor-like 8085,
6800, or the like, Forth is going to have to become
quite dear to the industry. So I don't see it
happening except in some 2900 bit-slice imple-
mentations.

All this concern about micro-coding “NEXT" has
its root. “NEXT" is executed between each word in a
colon statement and between each word of a word that
itself is the name of a colon statement. Therefore,
"NEXT" slows things down during execution, but is
redeeming since it saves space and allows the high
level nature of Forth.

To keep things moving quickly in the execution
of Forth programs, colon statements should contain
a few words defining the action of the defined colon

statement and each word should be very closely
connected to a code statement as possible (since
code statements run at full machine speed). Also,
each word in a colon statement should be powerful,
if the word is the label of a code statement, this
could mean large code statements.

Large code statements can quickly get out of hand
with more than two lines (line in the example of
"KEY"), because of the lesser ability to camment each
OPOODE as in Assembly. So Forth, Inc., has stated
code statements should be kept short and sweet. 1It's
really up to the user to trade off readability for

speed.

The naming of colon and code statement labels can
really improve readability if you put some thought
into the naming.

As was said earlier, the Forth program statement
can be executed by entering it on the cammand line,
then typing the name for execution. Colon statements
are included in this ability and extremely fast
coding and debugging is the result.

I really object to paying $2,500 for any software,
but Porth is worth it. (They'd probably sell more if
it wasn't so expensive.) Besides the price there
geems to be a few other impediments to Forth gaining
a more rapid popularity growth. (1) It does take
some getting used to. (2) There's not many Forth
systems and programmers around. (3) People, in my
judgment, are too quick to condemn it.

)8 REM

HIGH SPEED DISX CCOPY
By Richard B. Main
Neptune UES, Pleasanton, CA

To really get fast disk copies on your MDS-800
(T Intel Corp.) Forth systems, add this program to
your disking load:

0 (HIGH SPEED DISK COPY RBM-781001)
1 16384 CONSTANT SCRATCH

2 2000 CONSTANT BIAS

3 26 CONSTANT TRACK

4 4 CONSTANT READ

5 6 CONSTANT WRITE

g 26 CONSTANT ALL

8

9

: DUPLICATE FMT 77 0
DO SCRATCH I TRACK *
READ ALL I/0 I .
10 SCRATCH I TRACK *
1N BIAS + WRITE ALL I/0

12 STATUS IF [ERROR] LEAVE THEN
13 LOOP FLUSH CR [COPY] 7 ECHO ?
14 ;s DUPLICATE TAKES 80 SECONDS TO

15 FORMAT AND COPY ENTIRE NEW DISK.

The main reason this program will take only 80
seconds to make a copy is whole tracks are read from
the master disk in drive g and whole tracks are
written to the copy in drive 1. But, alas, you'll
need 3328 bytes of continuous RAM to run this

PAGE 34

FORTH INTEREST GROUP :---- PO.

program. The oonstant named SCRATCH provides the
first address of the 3328 RAM bytes needed.

DUPLICATE when executed calls FMT to format the
disk in drive 1, "77 § DO" sets up a DO-LOOP to
copy all 77 tracks. 1/0 requires SCRATCH (location)
I (the track and index of the loop) TRACK *® (to
compute block # for I/0) READ (from drive #) and
ALL (for # of sectors). I/0 will perform the disk
operation. "I" prints the current track being copied
to entertain the operator. Next, SCRATCH again gives
the scratch area for I/0 and I TRACK ® BIAS +
provides the equivalent block number in drive 1 for
1/0.

WRITE ALL instructs I/0 to write all 26 sectors
fran scratch area. 1/0 performs the disk operation.
STATUS pops the disk status byte fram location 28H
and if non-zero prints ERROR and leaves the loop.
Else the loop repeats and FLUSH is executed for the
heck-of~it. COPY is printed and BELL is echo'ed to
CRT to signal completion.

18 RBM Oct. 1978

Box 1105 ----- San Carlos, Ca. 94070

