
...

All About
FO_RTH

,

An Annotated FORTH Glossary

by

Glen B. Haydon

Mountain View Press, Inc.

/

All About
FORTH

AN ANNOTATED GLOSSARY OF COMMON FORTH IDEOGRAMS

Including I/0 through DIGITAL RESEARCH CP/M•

As implemented in MVP-FORTH for the 8080/Z80• CPU

by

DR. GLEN B. HAYDON

HAYDON ENTERPRISES

BOX 429 ROUTE 2

LA HONDA, CA 94020

The contents of this publication are released without restrictions.

Acknowledgement of the author on subsequent use is requested.

MOUNTAIN VIEW PRESS, Inc. P.O. Box 4656, Mountain View, CA 94040

MARCH 1982

First Edition, Second Printing
Revised September, 1982

PREFACE

This glossary and M V P-F 0 R T H document and implement a sue cessor to fig
F 0 R T H. The functional definitions conform with the Required Word Set of the
FORTH-79 STANDARD. Both the documentation and implementation are released
without any restrictions. This effort is dedicated to the future of the F 0 R T H
language.

I have tried to reconcile the several public domain versions of F 0 R T H. At
first, fig-F 0 R T H was all that was available. Then after rumors that it was going to
be withdrawn, I modified the source code to implement the F 0 R T H -79 STANDARD.
About 40 ideograms in fig-F 0 R T H needed to be changed and many were dropped,
including most of the very necessary primitives. The result was a "pure" F 0 R T H -79
STANDARD implementation and it imposed a most frustrating limitation, especially
after one had become used to fig-F 0 R T H where access to everything was available.
Then came the book, STARTING F 0 R T H, which was the first instructional text on the
use of the language. Though it made reference to F 0 R T H -79, the function of many of
its ideograms is based on poly-F 0 R T H, whose implementation is not in the public
domain. These differences have been a blow to writing portable user programs.

As a result of my frustrations with these problems, I have assembled this
ANNOTATED GLOSSARY of a living language. In conjunction with this work, I have
implemented yet another version of F 0 R T H. This full implementation of F 0 R T H is
being distributed by Mountain View Press as M V P-F 0 nTH. The full source code for
the implementation is included.

Charles Moore wrote the initial versions of F 0 R T H. A great deal of credit
goes to him for his bringing the concepts of the language to life. William Ragsdale
has lead the Forth Interest Group in making the langua1ge available on some 12 CPU's
with the implementation software placed in the public domain. He did not do this
alone. However, there are just too many who have contributed to acknowledge them
individually, so I acknowledge them all collectivel)'•

I must acknowledge the valuable help of several people in these efforts.
Jerry Boutelle adapted his Nautilus Systems Cross-Conlpiler to generate a F 0 R T H -79
System and gave me many hours of tutorial in understanding the language, collaborated
in the implementation of M V P-F 0 R T H, and proofread this manuscript. Robert L.
Smith has contributed to my interpretation of the F 0 R T H -79 Standard and carefully
reviewed my implementation of the Required Word Set. Klaxon Suralis has read this
manuscript letter by letter and made many editorial and substantive suggestions. Roy
Martens has given me the added push necessary to bring all of this work together. I
have not always heeded the advice I have received and remain fully responsible for the
result.

I hope that this exercise in organization will prove useful to others. , The
job is a never-ending one. I regret that I have not yet incorporated all of the
material I have collected, and particularly that from the University of Utrecht and
the University of Rochester.

ALL ABOUT FORTH 1

INTRODUCTION

FORTH is a relatively new computer language. Dialects of FORTH are,
however, increasing in numbler. This GLOSSARY has been assembled to include the
more common usages in the hope that it will serve as a reference to prevent the various
dialects from deviating too much from one another.

I use the word ideogram to characterize the vocabulary used in F 0 R T H and to
emphasize the nature of each member of the vocabulary. These ideograms are
frequently referred to as F 0 R T H words, but the concepts associated with each
ideogram are somewhat different from words in the usual context within the Indo
European cultures.

The definition of each ideogram gives precedence to that given by the F 0 R T H
STANDARDS TEAM, as given in their publication FORTH-79 which is distributed by
the Forth Interest Group, P.O. Box 1105, San Carlos, C A 94070. These definitions
have been placed in the public domain. A second source is from the INSTALLATION
MANUAL GLOSSARY MODEL which is also distributed by the Forth Interest Group.
This publication includes in addition to the GLOSSARY, an implementation of that
GLOSSARY which is placed in the public domain with the statement that further
di stribut·ion must incLude a notice. The fig-F 0 R T H INSTALL AT I 0 N MANUAL for the
8080, also from the Forth Interest Group, has served as the model for the internal
structure of M V P-F 0 R T H as it is now implemented. The contributions of the Forth
Interest Group have been a major stimulus to the spread of the language.

Other implementations of F 0 R T H have also published glossaries, but often
without the details of the actual implementation. Among these one of the early ones
is from the National Radio Astronomy Observatory, Tuscon, Arizona, COMPUTER
DIVISION INTERNAL REPORT NO. 17, Basic Principles of FORTH Language as
Applied to a PDP-11 Computer, by E. D. Rather, C. H. Moore and Jan M. Hollis, March
1974. The Kitt Peak National Observatory, Tuscon, Arizona 85726, published A
FORTH PRIMER by W. Richard Stevens, February 1979 (Update 2). In addition,
several Universities have implemented F 0 R T H. Among them are the University of
Utrecht, the Netherlands, and the University of Rochester, Rochester N. Y. The
gloss aries associated with these versions of F 0 R T H have been made available without
copyright Limitations and are in the public domain.

The functional definitions given in STARTING F 0 R T H, by Leo Brodie,
Prentice Hall, 1981, are all copyrighted. However, all of those definitions were
published before its appearance. Those definitions in this glossary which also
appear in STARTING FORTH are indicated for the convenience of those using that
instructional material. Unfortunately, there are some conflicts in the function of
some ideograms with the F 0 R T H -79 STAND A R D. These have been decided in favor of
the STANDARD.

Allofthe FORTH-79STANDARD Required WordSetisincludedasfaithfully
as possible. I have added a number of ideograms which are unique to the
implementation, in conjunction with the underlying operating system and several
additional utilities which I find helpful. The primitive ideograms used in defining
the FORTH-79STANDARD are also included. The Double Number Word Set has been
modified as noted.

1. The use of parentheses around ideograms to indicate that they are primitives

2 ALL ABOUT FORTH

conflicts with the use of parentheses around comments. One cannot refer to such a
primitive within a comment without terminating the comment. I have adopted the
convention of placing such primitives within angle brackets. For the sake of
completeness, both forms are included in the glossary, but only the angle brackets are
used in the M V P-F 0 R T H implementation.·

2. I strongly feel that the convention of combining the ideogram 2 with other
ideograms is frequently confusing. This ideogram 2 conveys the concept of
quantity, such as in 2+, 2* etc. and we certainly do not mean 2 constants with
2C 0 N STANT. On the other hand, the ideogram D is combined with other ideograms
to indicate that they apply to double precision numbers such as OM A X, DMIN,
D NEGATE, etc. I find the ideograms in the F 0 R T H -79 Extension Word Sets headed
11.1 DOUBLE NUMBER WORD SETS, yet using the ideogram, 2, to be confusing.
True, it makes little difference in some cases, and the use of synonyms is appropriate;
but a DOUBLE NUMBER WORD SET should have the connotation of double numbers
associated with them. Thus, I have made the basic definitions of all words in that set
start with D , rather than the 2, that some of them now have. For those already in
the habit of using the original definitions, and for possible applications already
written, I have implemented the original ideograms as synonyms. This is as .close as
I can come to having the best parts of both worlds.

An EDITOR vocabularyisnotincludedinthe ANNOTATED GLOSSARY orin
the M V P-F 0 R T H source code; however, two rudimentary editing ideograms are
included: PP and CLEAR • They make it possible to enter and load your choice
of editors from the published listings. Several good line editors and screen editors
are available some of which are in the public domain. For convenience, the line editor
from FORTH DIMENSIONS, Vol III, No 3 has been loaded on top of MVP-FORTH.

ALL ABOUT FORTH 3

NOTATIONS

ALl of the words in the F 0 R T H -79 STANDARD are included as defined by the
Standards Team. They can be cross-compiled alone to make a "pure" implementation of
the F 0 R T H-79 STANDARD which includes none of the primitives or extensions. To
my reading, the STANDARD implies that all added vocabulary must be written in "pure"
FORTH-79, including the Double Number Word Set, Reference Word Set, the Reference
Word Set, and all application programs. Such a "pure" F 0 R T H -79 STANDARD should
be used to comply with those requirements.

I find the STANDARD's requirements frustrating, and the M V P-F 0 R T H is not
strictly standard, though all of the individual functional definitions are met. M VP
F 0 R T H has been cross-compiled to incLude all of the primitives and selected F 0 R T H-
79 Extensions, Reference Word Set, and the additional utilities. Source for the
implementation of all but a few obsolete ideograms are included in the glossary and the
full implementation source is included in the MVP-FORTH product. The "pure"
version is simply cross-compiled with all nonSTANDARD ideograms Left headerless.

The glossary of FORTH ideograms is organized in order of the ASCII codes
used in the ideograms. Where the definition of the ideogram is used in F 0 R T H -79,
that definition is given. Thence, as necessary, definitions are taken from the
FORTH-79 EXTENSION WORD SET, referred to as FORTH-79CE); the FORTH-79
REFERENCE WORD SET,referredtoas FORTH-79(R);fig-FORTH;andfinallyafew
of my own writing. Those words which have a function defined in STARTING F 0 R T H
are indicated, and though most of these words have the same function, not all of them
do. It should be noted that none of the words defined in STARTING FORTH are
original with that publication.

Each entry in the glossary includes the following information:

1. The entry, stack notation before and after implementation, the attributes, the
assigned serial number where available, and a designation with regard to its use:

FORTH-79
These entries are from the Required Word Set. They are all included in the
M V P-F 0 R T H implementation.

M V P- F 0 R T H

UTILITY

Most of these entries are necessary to implement F 0 R TH-79. Together with
the FORTH-79 entries, they are included in the source for the cross
compiler. This combination constitutes the M V P-F 0 R T H nucleus. They
may be compiled as headerless ideograms to produce a "pure" F 0 R T H -79.

These entries include a selection of utilities. Their source is included as a
set of screens which may be loaded with the M V P-F 0 R T H nucleus to provide a
convenient MVP-FORTH Development System.

SUPPLEMENTAL

4

These entries include those additional definitions necessary to implement
so m e of t h e older ideogram s and t h e v o cab u l a ry used in S T A R T I N G F 0 R T H.
Note that some STARTING FORTH functions conflict with FORTH-79

All ABOUT FORTH

NOT

STANDARD functions. These will not function according to STARTING
F 0 R T H usage. For example, many students have lost much time trying to
make the examples of .s run with fig-FORTH or FORTH-79 systems. This is
just not possible.

USED
These entries are included for reference only.
in their implementation, he will have to add
necessary implementation is given.

Should one wish to use them
them. In many cases, the

2. The form of the use of the ideogram where appropriate.

3. The pronunciation of the ideogram where appropriate.

4. The functional definition cited is from the first reference listed. It is followed
by other common sources which define the function. Some of the secondary sources
may be in conflict with the first one.

5. The implementation may be given in high level F 0 R T H, or in assembly language for
the Cross-Compiler. Note that unless otherwise indicated all numerical values are
given in hex and that some labels refer to words only available in the Cross-Compiler.
The actual implementation in M V P-F 0 R T H may differ, but the functional definition
will be adhered to.

6. The source usage lists some the occurrences of that ideogram in other definitions
included in the source for MVP-FORTH. Version 1.0 of MVP-FORTH utilizes
indirect threaded code and follows the example in fig-FORTH. Efforts have been
made to make the implementation functionally correct, not efficient or elegant. As
use develops, more efficient implementation of the ideograms will be utilized.
Implementations of F 0 R T H in direct threaded code run faster. Use of the cross
compiler will facilitate investigations of new implementations; however, in all cases
the functional definitions should remain as given here. Use new ideograms to do new
things.

7. The example may be the definition of an important or representative definition
from the source code, a reasonable use, or in a few cases a contrived use. With each
example is a short discussion of the example.

8. The comment tries to put that ideogram in some sort of perspective.

The specialized use of terms and notations conforms with those of F 0 R T H -79,
A Publication of the FORTH Standards Team, October 1980, and distributed by the
FORTH Interest Group. That publication with the exception of the glossfries, is
included in Appendix A, for your convenience. The contributions of the Te m to the
evolution of F 0 R T H are recognized and acknowledged.

ALL ABOUT FORTH 5

! CSP

6

n addr 112 FORTH-79

Store n at address.

Pronounced: store

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

CODE H POP D POP E M MOV H INX
D M MOV NEXT JMP END-CODE

Source usage: Many

Example: CAUTION- May corrupt or crash your system.

HEX 13 4AC2 DECIMAL

You are in HEX and the single precision integer 13 is stored in the memory
cell beginning at address 4A C 2.

Comment: This is one of the most dangerous words in F 0 R T H. It performs
no bounds checking and will quite happily overwrite your dictionary, F 0 R T H
nucleus, or operating system. A store to an incorrect address may crash your
system right away, or it may work like a time bomb, spitting out mysterious
gibberish hours Later. The responsibility for its correct use lies entirely
with you, the user. You had better have adequate back up of all of your
work.

Almost every F 0 R T H implementation has this operator. The byte order is
unspecified in FORTH-79. In some CPUs, the byte order is reversed from
others.

NOT USED

Save the stack position in CSP. Used as part of the compiler security.

Defined in: fig-FORTH

Implementation:

: !CSP SPQ) CSP . ,

Source usage: None.

Example:

!CSP

ALL ABOUT FORTH

#>

The current position of the stack pointer is saved in the user variable C S P.
The stack itself is left unchanged.

Comment: This ideogram conspires with ?CSP to trap malformed colon
definitions at compile time. It is used in fig-F 0 R T H; error checking is not
standardized and may vary widely among implementations. Although the fig
FORTH approach is used here, this ideogram is next to useless; MVP-
FORTH omits it, spelling out "SPiil CSP !"as required.

ud1 ud2 158 F 0 RT H-79

Generate from an unsigned double-number ud1,the next ASCII character which
is placed in an output string. The result ud2 is the quotient after division
by BASE and is maintained for further processing. Used between<# and#>.

Pronounced: sharp

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

BASE iil M/MOD ROT 9 OVER <
IF 7 + THEN
30 + H 0 L D ;

\\rLx
Source usage: #S

Example:

43 0 <# # # # # > T Y P E

The value 43 is extended to unsigned double precision by placing a zero on
top. Using the current value of BASE, the numeric conversion ideograms then
extract the three low-order digits, "043", passing them as an ASCII string to
TYPE.

Comment: The fig- F 0 R T H definition of "#", used herein, complies with
FORTH-79. The number is unsigned. If the value is to be signed,
additional treatment is required.

ud addr n 190 F 0 R T H-79

End pictured numeric output conversion. Drop ud , leaving the text
address, and character count, suitable for TYPE.

Pronounced: sharp-greater

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

ALL ABOUT FORTH 7

#BUFF
#BU F

#S

8

Implementation:

: #> DDROP HLD Iii PAD OVER . ,
Source usage: D. R

Example:

43 0 <# # # # #> TYPE

The value 43 is extended to unsigned double precision by placing a zero on
top. Using the current value of BASE,the numeric conversion ideograms then
extract the three low-order digits, "043", passing them as an ASCII string to
TYPE.

Comment: This ideogram is one of a group which must be used together in
formatting the output of numbers. # #< #S <# H 0 L D SIGN

n MVP-FORTH

A constant returning the number of disk buffers allocated. For the disk I-0
routines to work correctly #BUFF must be greater than 1. Note that some
implementations use only one F.

Defined in: fig-FORTH(8080)

Implementation:

NBUF CONSTANT #BUFF

Example:

Source usage: S A V E -B U F F E R S C H A N G E

Example:

S A V E -B U F F E R S #B U F F 1 + 0
DO 0 BUFFER DROP LOOP . ,

There is one pass through the loop for each buffer.

Comment: This constant simplifies the disk I/0 code. Not all
implementations have it. In M V P-F 0 R T H, its value may be altered and then
CHANGE will dynamically reconfigure memory to include the new number of
buffers.

ud 0 0 209 FORTH-79

Convert all digits of an unsigned 32-bit number ud, adding each to the

ALL ABOUT FORTH

pictured numeric output text, until remainder is zero. A single zero is added
to the output string if the number was initially zero. Use only between<#
and #>.

Pronounced: sharp-s

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: #S BEGIN # DDUP OR NOT UNTIL . ,
Source usage: D. R

Example:

43 0 <# #S #>TYPE

The value 43 is extended to unsigned double precision by placing a zero on
top. Using the current value of base, the numeric conversion ideograms then
extract the three low-order digits, "043", passing them as an ASCII string to
TYPE.

Comment: This ideogram is one of a group which must be used together in
formatting the output of numbers. # #< #S <# H 0 L D SIGN

addr I, 171 FORTH-79

If executing, leave the parameter field address of the next word accepted from
the input stream. If compiling, compile this address as a literal; later
execution will place this value on the stack. An error condition exists if
not found after a search of the C 0 NT EXT and F 0 R T H vocabularies. Within a
colon-definition 1 <name> is identical to [<name> J LITERAL.

Form: <name>

Pronounced: tick

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

-FIND NOT
ABORT" NOT FOUND"
DROP [COMPILE] LITERAL . , IMMEDIATE

So!urce usage: .SL .SR CHANGE COLD CONFIGURE FREEZE

E~ample:

I MAX-DRV Q)

ALL ABOUT FORTH 9

'-FIND

'ABORT

10

Find the parameter field address of the constant, MAX-DR V, fetch and
print that constant's value.

Comment: This FORTH-79 version searches only FORTH after CONTEXT.
The fig-F 0 RT H implementation, however, searched CURRENT as well. This
difference between the two implementations is subtle, yet pervasive.

CAUTION: STARTING FORTH users: donot EXECUTEtheparameterfield
address returned by this implementation until you use C FA to convert it to
the code field address. Otherwise, you will crash the system.

addr u MVP-FORTH

A user variable containing the address to be executed by -FIN D.

Defined in: MVP-FORTH

Implementation:

1 6 U S E R '- F I N D

Source usage: -FIND

Example:

'-FIND Iii 2+ NFA ID.

Type the name of the function currently assigned to -FIND, assuming it is
not headerles s.

Comment: By vectoring the -FIND function, it is possible to dynamically
change the implementation of that function. Thus it is not necessary to
recompile the source to make such changes.

addr u MVP-FORTH

A user variable containing the compilation address to be executed by A B 0 R T.

D e fined in: M V P- F 0 R T H

Implementation:

18 USER 'ABORT

Source usage: A B 0 R T

Example:

'ABORT @ 2+ NFA ID.

All ABOUT FORTH

I

r

'B L 0 C K

•c R

Type the name of the function currently assigned to A B 0 R T, assuming it is
not headerless.

Comment: By vectoring the A B 0 R T function, it is possible to dynamically
change the implementation of that function. Thus it is not necessary to
recompile the source to make such changes.

addr u M V P-F 0 R T H

A user variable containing the compilation address to be executed by BLOCK.

Defined in: MVP-FORTH

Implementation:

1 A USE R 'B L 0 C K

Source usage: BLOCK

Example:

'BLOCK iii 2+ NFA ID.

Type the name of the function currently assigned to BLOCK, assuming it is
not headerles s.

Comment: By vectoring the BLOCK function, it is possible to dynamically
change the implementation of that function. Thus it is not necessary to
recompile the source to make such changes.

addr u MVP-FORTH

A user variable containing the compilation address to be executed by CR.

Defined in: MVP-FORTH

Implementation:

1C USER 'CR

I
Source usage: C R

Example:

'CR iii 2+ NFA ID.

Type the name of the function currently assigned to C R, assuming it is not
headerless.

Comment: By vectoring the C R function, it is possible to dynamically change

ALL ABOUT FORTH 11

'EMIT

the implementation of that function. Thus it is not necessary to recompile
the source to make such changes.

addr u M V P- F 0 R T H

A user variable containing the compilation address to be executed by EMIT.

Defined in: MVP-FORTH

Implementation:

1E USER 'EMIT

Source usage: EMIT

Example:

'EMIT iil 2+ NFA ID.

Type the name of the function currently assigned to EMIT, assuming it is
not headerless.

Comment: By vectoring the EMIT function, it is possible to dynamically
change the implementation of that function. Thus it is not necessary to
recompile the source to make such changes. 'EMIT is particularly useful for
redirecting terminal output to the printer.

'INTERPRET addr u MVP-FORTH

12

A user variable containing the compilation address to be executed by
INTERPRET.

Defined in: MVP-FORTH

Implementation:

20 USER 'INTERPRET

Source usage: INTERPRET

Example:

'INTERPRET iil 2+ NFA ID.

Type the name of the function currently assigned to INTERPRET, assuming
it is not headerless.

Comment: By vectoring the INTERPRET function, it is possible to
dynamically change the implementation of that function. Thus it is not
necessary to recompile the source to make such changes.

ALL ABOUT FORTH

IKE y

'L 0 AD

addr u MVP-FORTH

A user variable containing the compilation address to be executed by KEY.

Defined in: MVP-FORTH

Implementation:

22 USER 'KEY

Source usage: KEY

Example:

IKE y Q) 2+ N FA I D.

Type the name of the function currently assigned to KEY, assuming it is not
headerless.

Comment: By vectoring the KEY function, it is possible to dynamicaLly change
the implementation of that function. Thus it is not necessary to recompile
the source to make such changes.

addr u MVP-FORTH

A user variable containing the compilation address to be executed by L 0 A D.

Defined in: MVP-FORTH

Implementation:

24 USER 'LOAD

Source usage: L 0 AD

Example:

'LOAD lil 2+ NFA ID.

Type the name of the function currently assigned to L 0 AD, assuming it is
not headerless.

Comment: By vectoring the LOAD functiion, it is possible to dynamically
change the implementation of that function. Thus it is not necessary to
recompile the source to make such changes.

ALL ABOUT FORTH 13

'NUMBER addr u MVP-FORTH

'PAGE

'R I W

14

A user variable containing the compilation address to be executed by
NUMBER.

Defined in: MVP-FORTH

Implementation:

26 USER 'NUMBER

Source usage: NUMBER

Example:

'NUMBER iil 2+ NFA ID.

Type the name of the function currently assigned to NUMBER, assuming it
is not headerless.

Comment: By vectoring the NUMBER function, it is possible to dynamically
change the implementation of that function. Thus it is not necessary to
recompile the source to make such changes.

addr u M V P- F 0 R T H

A user variable containing the compilation address to be executed by PAGE.

Defined in: MVP-FORTH

Implementation:

28 USER 'PAGE

Source usage: PAGE

Example:

'PAGE iil 2+ NFA ID.

Type the name of the function currently assigned to PAGE, assuming it is
not headerless.

Comment: By vectoring the PAGE function, it is possible to dynamically
change the implementation of that function. Thus it is not necessary to
recompile the source to make such changes.

addr u MVP-FORTH

A user variable containing the compilation address to be executed by R/ W.

ALL ABOUT FORTH

•s

'STREAM

Defined in: MVP-FORTH

Implementation:

2A USER 'R/W

Source usage: R/W

Example:

'R/W iil 2+ NFA ID.

Type the name of the function currently assigned to R I W, assuming it is not
headerless.

Comment: By vectoring the R/W function, it is possible to dynamically change
the implementation of that function. Thus it is not necessary to recompile
the source to make such changes.

addr SUPPLEMENTAL

Place the address of the top of the stack on the top of the stack.

Defined in: STARTING FORTH

Implementation:

: •s SP iil . ,
Source usage: None.

Example:

•s u.

The address of the top of the stack is pushed onto the stack and then printed
Leaving the stack unchanged.

Comment: This ideogram is an alias for SPiil and is defined here only for
the convenience of those working with STARTING F 0 R T H. Usually it is
more useful to use DEPT H.

addr MVP-FORTH

Returns the address of the next character in the input stream.

Defined by: MVP-FORTH

Implementation:

ALL ABOUT FORTH 15

'S T R E AM B L K @ ? D UP
IF BLOCK ELSE TIB @ THEN
>IN @ + ;

Source usage: II <WORD> ABORT"

Example:

. II 'STREAM C@ 22 = . .
IF 1 >IN +!
ELSE 22 STATE @

IF COMPILE <. "> THEN
WORD DUP C@ 1+ OVER + C@ 22 = NOT
?STREAM STATE @
IF C@ 1+ ALLOT
ELSE COUNT TYPE
THEN

THEN . IMMEDIATE ,

This example is taken from the M V P-F 0 R T H source code.

Comment: This ideogram provides a useful factor to return the current
address if the input stream.

'T&SCALC addr u MVP-FORTH

16

A user variable containing the compilation address to be executed by
T&SCALC.

Defined in: MVP-FORTH

Implementation:

2C USER 'T&SCALC

Source usage: T&SCALC

Example:

'T&SCALC @ 2+ NFA ID.

Type the name of the function currently assigned to T&SCALC, assuming it
is not headerless.

Comment: By vectoring the T&SCALC function, it is possible to dynamically
change the implementation of that function. Thus it is not necessary to
recompile the source to make such changes.

ALL ABOUT FORTH

'TITLE

I w 0 R D

addr UTILITY

A variable holding the compilation address executed by TRIAD to place a
message at the bottom of each printed page.

Defined in: MVP-FORTH

Implementation:

VARIABLE 'TITLE 1 TITLE C F A 'TITLE

Source usage: None.

Example:

FIN D C R 'TITLE

Set the vector so that TRIAD wiLL print no message text at the bottom of the
page.

Comment: By defining special message ideograms, any text may be inserted
at the bottom of each page of copy. The code for a form-feed could be
included with the title if desired. The ideogram TITLE supplies the default
message.

addr u MVP-FORTH

A user variable containing the compilation address to be executed by W 0 RD.

Defined in: MVP-FORTH

Implementation:

2E USER 'WORD

Source usage: W 0 R D

Example:

'WORD Ql 2+ NFA ID.

Type the name of the function currently assigned to W 0 R D, assuming it is
not headerless.

Comment: By vectoring the W 0 R D function, it is possible to dynamically
change the implementation of. that function. Thus it is not necessary to
recompile the source to make such changes.

ALL ABOUT FORTH 17

(

(.II)

18

I, 122 F 0 R T H -79

Accept and ignore comment characters from the input stream, until the next
right parenthesis. As a word, the left parenthesis must be followed by one
blank. It may be freely used while executing or compiling. An error
condition exists if the input stream is exhausted before the right
parenthesis.

F 0 rm (X X X •••)

Pronounced: paren c Lose-paren

Defined in: FORT!H-79, fig-FORTH, STARTING FORTH

Imp Le mentation:

(-1 >IN
c@ 29 =
IMMEDIATE

+! 29 WORD
NOT ?STREAM

Source usage: None.

Example:

(THIS IS A COMMENT)

C@ 1+ HERE + . ,

Upon executing this ideogram, the interpreter skips through the input
stream untiL a close-paren < right parenthesis) is found. The enclosed
comment is in effect, one big ignored ideogram.

Comment: This ideogram is common in all versions ofF 0 R T H. Customarily,
the first Line of every source screen is used for a comment, holding a screen
title, author's initials, and the date of last modification. Unlike other
Languages', F 0 R T H 's parentheses may not be nested.

c NOT USED

The run-time procedure, compiled by." which transmits the following in-Line
text to the selected output device.

Defined in: fig-FORTH

Implementation:

The function of this ideogram has been assigned to <.">.

Comment: This ideogram, because of the close-paren, plays havoc with
F 0 R T H comments. Thus, <."> has been assigned its function in M V P
F 0 R T H.

ALL ABOUT FORTH

(+LOOP) n --- c NOT USED

<; C 0 DE)

The run-time procedure compiled by +L 0 0 P, which increments the Loop index
by n and tests for Loop completion. See +L 0 0 P.

Defined in: fig-FORTH

Implementation:

The function of this ideogram has been assigned to <+L 0 0 P>.

Comment: This ideogram, because of the close-paren, plays havoc with
F 0 R T H comments. Thus, <+L 0 0 P> has been assigned its function in M V P
FORTH.

c NOT USED

The run-time procedure, compiled by ;C 0 DE, that rewrites the code field of
the most recently defined word to point to the following machine code
sequence.

Defined in: fig-FORTH

Implementation:

The function of this ideogram has been assigned to <;C 0 DE:>

Comment: This ideogram, because of the close-paren, plays havoc with
F 0 R T H comments. Thus, <;C 0 DE> has been assigned its function in M V P
F 0 R T H.

(ABORT) NOT USED

Executes after an error when WARNING is -1. This word normally executes
A B 0 R T, but may be altered (with care) to a user's alternative procedure.

Defined in: fig-FORTH

Implementation:

The function of this ideogram has been dropped in M V P-F 0 R T H.

Comment: This ideogram, because of the close-paren, plays havoc with
FORTH comments. Thus, <ABORT> has been assigned this function and is
vectored from A B 0 R T through 'A B 0 R T.

ALL ABOUT FORTH 19

(0 0)

(FINO)

(LINE)

20

c NOT USED

The run-time procedure compiled by D 0 which moves the loop control
parameters to the return stack. See D 0.

Defined in: fig-FORTH

Implementation:

The function of this ideogram has been assigned to <D 0>.

Comment: This ideogram, because of the close-paren, plays havoc with
F 0 R T H comments. Thus, <D 0> has been assigned its function in M V P
F 0 R T H.

addr1
addr1

addr2
addr2

pfa b tf
ff

<ok)
(bad)

NOT USED

Searches the dictionary starting at the name field address addr2, matching to
the text at addr1. Returns parameter field address, Length byte of name
field and boolean true for a good match. If no match is found, only a boolean
false is left.

Defined in: fig-F 0 R T H

Implementation:

The function of this ideogram has been assigned to <FIND>.

Comment: This ideogram, because of the close-paren, plays havoc with
FORTH comments. Thus, <FIND> has been assigned its function in MVP
F 0 R T H.

n1 n2 addr count NOT USED

Convert the line number n1 and the screen n2 to the disc buffer address
containing the data. A count of 64 indicates the full Line text length.

Defined in: fig-FORTH

Implementation

The function of this ideogram has been assigned to <LINE>.

Comment: This ideogram, because of the close-paren, plays havoc with
F 0 R T H comments. Thus, <LINE> has been assigned its function in M V P
F 0 R T H.

ALL ABOUT FORTH

(L 0 0 P) c NOT USED

The run-time procedure compiled by LOOP which increments the loop index
and tests for loop completion. See L 0 0 P.

Defined in: fig-FORTH

Implementation:

The function of this ideogram has been assigned to <L 0 0 P>.

Comment: This ideogram, because of the close-paren, plays havoc with
F 0 R T H comments. Thus, <L 0 0 P> has been assigned its function in M V P
F 0 R T H.

(NUMBER) d1 addr1 d2 addr2 NOT USED

*

Convert the ASCII text beginning at addr1+1 with regard to BASE. The new
value is accumulated into double number d1, being left as d2. addr2 is the
address of the first unconvertable digit.. Used by NUMBER.

Defined in: fig-FORTH

Implementation:

This ideogram is not implementE~d in MVP-FORTH.

Comment: This ideogram is obsolete and has been completely dropped. The
FORTH-79 STANDARD now uses CONVERT for its function. Note that
STARTING FORTH also allows the use of >BINARY.

n1 n2 n3 138 F 0 R T H -79

Leave the arithmetic product of n1 times n2.

Pronounced: times

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

:* U* DROP;

Source usage: Many.

Example:

3 -6 *

ALL ABOUT FORTH 21

*I

*/M 0 D

22

The two single precision signed integers are placed on the stack, and then
multiplied together leaving a single precision signed value on the stack
which is then printed.

Comment: Should an overflow occur, it wiLl go undetected. The result
returned is always the Low-order 16 bits of a 32-bit signed product. It will
also work for unsigned numbers with the overflow ignored.

n1 n2 n3 n4 220 F 0 R T H -79

Multiply n1 by n2 , divide the result by n3 and leave the quotient
n4. n4 is rounded toward zero. The product of n1 times n2 is
maintained as an intermediate 32-bit value for greater precision than the
otherwise equivalent sequence: n1 n2 * n3 I

Pronounced: times-divide

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: *' */M 0 D SWAP DROP . ,

Source usage: None.

Example:

13 5 3 *'
This computes five-thirds of thirteen, rounding the result toward zero, and
types the result: 21.

Comment: This ideogram is useful for scaling and rounding. In many cases,
its 32-bit intermediate precision and use of ratios eliminate the need for
floating point arithmetic.

n1 n2 n3 n4 nS 192 F 0 R T H-79

Multiply n1 by n2, divide the result by n3 and Leave the remainder
n4 and quotient nS • A 32-bit intermediate product is used as for *I.
The remainder has the same sign as n1 •

Pronounced: times-divide-mod

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: *IM 0 D >R M* R> M/ . ,

ALL ABOUT FORTH

+

+!

Source usage: *I

Example:

13 5 3 */MOD

As with */ above, this computes five-thirds of thirteen, yielding 21.
However, the remainder 2 is preserved and typed after the quotient. It could
have been used to round the quotient up to 22.

Comment: This ideogram is useful for scaling and rounding. In many cases,
its 32-bit intermediate precision and use of ratios eliminate the need for
floating point arithmetic.

n1 n2 n3 121 FORTH-79

Leave the arithmetic sum of n1 plus n2 •

Pronounced: plus

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

I mplem entation:

8080:

C 0 DE + D POP H POP D DAD HPUSH JMP END-CODE

Source usage: Many.

Example:

2 3 +

Two integers are placed on the stack, added together, and then printed.

Comment: Note that carry and overflow conditions go undetected. Because
of the twos-complement arithmetic, the ideogram works for both signed and
unsigned numbers.

n addr 157 F 0 R T H -79

Add n to the 16-bit value at the address, by the convention given for +.

Pronounced: plus-store

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

ALL ABOUT FORTH 23

+-

+B U F

8080:

CODE +! H POP D POP M A MOV E ADD AM MOV
H IN X M A MOV D ADC AM MOV NEXT JMP END-CODE

Source usage: Many.

Example: CAUTION: May corrupt or crash your system.

HEX 1 4CD2 +! DECIMAL

Increments the 16-bit cell at memory Location 4C 02 by 1.

Comment: Particularly useful for incrementing/ decrementing counters in
memory. Carry and overflow are ignored. Note: Since this ideogram wilL
write to any Location in machine address space, take care not to corrupt your
dictionary, nucleus, or operating system.

n1 n2 n3 M V P- F 0 R T H

Apply the sign of n2 to n1, which is Left as n3.

Defined in: fig-FORTH

Implementation:

: +- 0< IF NEGATE THEN . ,
Source usage: M/ A BS

Example:

-4 -2 +-

Since the -2 on top is less than zero, the -4 underneath is negated, leaving
the result of 4, which is printed.

Comment: Simplifies the implementation of some signed multiplication and
division operations.

addr1 addr2 f MVP-FORTH

Advance the disc buffer address addr1 to the address of the next buffer addr2.
Boolean f is false when addr2 is the buffer presently pointed to by the
variable PRE V.

Defined in: fig-FORTH

Implementation: (H DBT equals 404H - buffers size plus 4)

24 ALL ABOUT FORTH

+L 0 OP

+B U F H DBT +. DUP LIMIT =
IF DROP FIRST THEN
D UP PRE V 01 . ,

Source usage: BLOCK BUFFER

Example:

BUFFER USE 01 DUP >R
BEGIN +B U F UNTIL
USE ROI 01 0<
IF ROI 2+ ROI 01 7FFF AND 0 R/W THEN
ROI ROI PREV R> 2+ . ,

This example is taken from the system source code. Note that +B U F is
cyclic; when its value reaches LIMIT, it short-circuits around to the start
of the buffer area.

Comment: This ideogram, used in the implementation of the F 0 R T H-79
ideograms, BLOCK and BUFFER, may be available to the programmer.

n I, C, 141 FORTH-79

Add the signed increment n to the Loop index using the convention for+, and
compare the total to the Limit. Return execution to the corresponding D 0
until the new index is equal to or greater than the Limit (n>O) or until the new
index is less than the Limit (n<O>. Upon the exiting from the Loop, discard
the Loop control parameters, continuing execution ahead. Index and Limit
are signed integers in the range -32768 ••• 32767 •

(Comment: It is a historical precedent that the Limit for n<O is irregular.
Further consideration of the characteristic is Likely.)

Pronounced: plus-Loop

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

+LOOP 3 ?PAIRS COMPILE <+LOOP> HERE . , ,
IMMEDIATE

Source usage: None.

Example:

TEST 10 1 DO I 3 +L 0 0 P ;

Executing TEST will cause the values 1 4 7 to be printed.

Comment: This ideogram works with D 0 to form a nestable control structure.
LEAVE may be used to terminate the Loop before the index has run its full

ALL ABOUT FORTH 25

course. Various F 0 R T H implementations react differently to an index which
changes sign over its range.

Note that when the value of n1 is <0 the loop is decreasing which means
that the first value before the D 0 is Less than the second. Also note that in
such a decreasing Loop the Loop will be executed when the index is equal to
the Limit. This is different from the usual ascending Loop which terminates
when the index equaLs the Lim it. Furthermore, because of the signed
values, the index cannot be used as an address when crossing the extremes of
signed numbers.

+ORIGIN n addr NOT USED

26

Leave the memory address relative by n to the origin parameter area. n is the
minimum address unit, either byte or word. This definition is used to access
or modify the boot-up parameters at the origin area.

Defined in: fig-FORTH

Implementation:

+ORIGIN ORIGIN + ;

(This implementation would only be applicable in fig-F 0 R T H. It is of no
use in MVP-FORTH.)

Source usage: None.

Example:

VOC-LINK @ 20 +ORIGIN

This example would only apply to a fig-F 0 R T H implementation. The
current value in the user variable VOC-LINK is fetched and stored in its
corresponding Location in the bootup parameter area of memory.

Comment: During a cold start, the user variables such as V 0 C-LINK must be
initialized. Their initial values are fetched from an area of "boot up
parameters", Located near the bottom of the system at a fixed offset from the
origin. Since the origin may vary among implementations, the proper
absolute addresses are calculated from an offset and a base Location.
Instead of +ORIGIN, MVP-FORTH uses the constant !NIT-USER to locate
the start of this area.

n 143 FORTH-79

ALlot two bytes in the dictionary, storing n there.

Pronounced: comma

ALL ABOUT FORTH

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

. . , HERE 2 ALLOT . ,

Source usage: Many.

Example:

LITERAL STATE Ql

IF COMPILE LIT , THEN . , IMMEDIATE

This example from the MVP-FORTH source code uses comma to place a
literal value in-line with compiled code.

Comment: This ideogram is useful for initializing arrays of integers at
compile time.

n1 n2 n3 134 FORTH-79

Subtract n2 from n1 and leave the difference n3.

Pronounced: minus

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

CODE- D POP H POP SSUB CALL
HPUSH JMP END-CODE

Source usage: Many.

Example:

23 12

In this example, -12 is subtracted from 23, yielding the result, 35, which is
printed.

Comment: A basic arithmetic operator. As usual, borrow and overflow
conditions are ignored.

--> NOT USED

Continue interpretation with the next disk screen.

ALL ABOUT FORTH 27

-DUP

28

Pronounced: next-block

Defined in: FORTH-79(R), fig-FORTH

Implementation:

--> ?LOADING 0 >IN B/SCR BLK @

OVER MOD BLK +! ;

Source usage: None.

Example:

< On Line 8 of Screen # 102:)

-->

Assume the ideogram appears on Line 8 of screen 102: Loading of screen
102 proceeds normally until it is encountered. The input stream is then
diverted to the start of screen 103, bypassing lines 9-15 of screen 102.

Comment: This is one of several ways of Loading a series of screens. In
any case one should not end a screen with the next screen number followed by
L 0 A D. This can produce a heavy Load on the return stack. By using-->, the
input stream from that screen is terminated and started at the beginning of the
next sequential screen. It has a difficulty when a series of screens being
Loaded needs to be interrupted to insert an additional screen. The
interrupting screen must be edited first. It is better to use T H R u, or better
stil~ a load screen with a List which can be commented.

NOT USED
n n (if zero)
n n n (if non-zero)

Reproduce n only if it is non-zero. This is usually used to copy a value just
before IF, to eliminate the need for an ELSE part to drop it.

Defined in: fig-FORTH

Implementation:

: -D UP ? D UP ;

Source usage: None.

Example:

TEST -DUP IF ."NON-ZERO RETURN CODE:". THEN;

Frequently, as in the above example, a non-zero value will require some
sort of processing, while no action will be needed for zero. In this kind of
situation, using -D UP or better ? D UP, in front of IF wiLl save coding the
additional clause " ELSE DROP ."

ALL ABOUT FORTH

-FIND

-TEXT

Comment: This ideogram is obsolete, being replaced by F 0 R T H -79's ? D UP.
Although -DUP may be included for fig-FORTH compatibility, its use is
discouraged.

M V P- F 0 R T H
pfa b tf (if found)
ff (if not found)

Accepts the next word (delimited by blanks) in the input stream to HERE and
searches the CONTEXT and then the FORTH vocabularies for a matching
entry. If found, the dictionary entry's parameter field address, its Length
byte, and a boolean true is Left. Otherwise, only a boolean false is left.

Defined in: MVP-FORTH, fig-FORTH

Implementation:

: -FIND '-FIND iil EXECUTE . ,

Source usage: FIND INTERPRET [COMPILE]

Example:

-FIND JUNK

Search the dictionary for the i(::leogram JUNK. Presumably, the word is not
in the dictionary and the flag value of 0 is Left on the stack.

Comment: Both -FIND and FIND are used. The difference is that -FIND
Leaves a parameter field address and Length byte, while FIND leaves only a
code field address on the stack. They are otherwise the same. Note: the
null character used to terminate the terminal and disk buffers is defined as an
ideogram in the dictionary (See X). This may occasionally produce
bewildering error messages or unexpected results when you use the ideograms:
-FIND, ' , [COMPILE], FORGET, or others which search the dictionary
or define new words. In MVP-FORTH, -FIND is vectored to <-FIND>.

addr1 n1 addr2 n2 SUPPLEMENTAL

Compare two strings over the Length n1 beginning at addr1 and addr2.
Return zero if the strings are equal. If unequal, return n2, the difference
between the Last character compared: addr1 (i) addr2(i).

Pronounced: dash-text

Defined in: FORTH-79(R), STARTING FORTH

Implementation:

1 ALL ABOUT FORTH 29

-TEXT DDUP + SWAP
D 0 D R 0 P 2+ D UP 2- @ I @ D U P

IF DUP ABS I LEAVE THEN
2 /L 0 0 P
SWAP DROP . , .

Source usage: None.

Example:

HE X 4E C 2 6 100 B L 0 C K -TEXT DEC I M A L

See if the first six bytes beginning at memory address 4EC2 compare with
the first six bytes in BLOCK number 100H which is brought into a memory
buffer placing its beginning address on the stack. A flag is Left on the stack
according to the test.

Comment:
editors.

An ideogram which appears in slightly different forms in many
This version compares two byte pairs at a time.

-TRAILING addr n1 addr n2 148 FORTH-79

30

Adjust the character count n1 of a text string beginning at addr to
exclude trailing blanks, i.e., the characters at the addr+n2 to addr+n1-1 are
blanks. An error condition exists if n1 is negative.

Pronounced: dash-trailing

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

-TRAILING DUP 0
DO DDUP + 1 C@ BL

IF LEAVE ELSE 1 THEN
L 0 0 P ;

Source usage: .LINE

Example:

PAD COUNT -TRAILING TYPE

Print the text beginning at PAD plus 1 for the count at the byte whose
address is PAD, but drop all trailing spaces from the length.

Comment: This ideogram saves time in typing output,, but if some spacing is
necessary for formatting it should not be used.

ALL ABOUT FORTH

If

n 193 FORTH-79

Display n converted according to BASE in a free-field format with one
trailing blank. Display only a negative sign.

Pronounced: dot

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

. . . S->D D. . ,

Source usage: Many.

Example:

43

Place the value 43 on the stack and then print it.

Comment: Printing a value removes it from the stack. In most
implementations, a stack underflow check is not performed until after a
number is printed, in which case the number is garbage.

I, 133 F 0 R T H -79

Interpreted or used in a colon-definition. Accept the following text from
the input stream, terminated by " (double-quote). If executing, transmit
this text to the selected output device. If compiling, compile so that later
execution will transmit the text to the selected output device. At least 127
characters are allowed in the text. If the input stream is exhausted before
the terminating double-quote, an error condition exists.

Form: " ecce"

Pronounced: dot-quote

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

. II 'STREAM C@ 22 = . .
IF 1 >IN +!
ELSE 22 STATE @

IF COMPILE <."> THEN
WORD DUP C@ 1+ 0 VE R + C@
22 = NOT ?STREAM STATE ~
IF C@ 1+ ALL'OT
ELSE COUNT TYPE
THEN

THEN . IMMEDIATE ,

ALL ABOUT FORTH 31

• INDEX

.LINE

32

Source usage: Many.

Example:

." PRINT THIS"

Entering this source will cause the contents between the double quotes to
be printed, in this case- PRINT THIS.

Comment: This ideogram generally does the same thing among the various
versions of F 0 R T H. However, not all versions will print one or more blank
spaces, and in some versions the buffer size may be different •

n UTILITY

Print n followed by Line 0 on screen n.

Defined in: MVP-FORTH

Implementation:

.INDEX
USE @ SWAP PAD USE
OFFSET @ + 8 * T&SCALC SET-IO
SEC-READ
PAD C/L -TRAILING TYPE
USE ;

Source usage: None.

Example:

20 .IN DE X

Print 20 foLlowed by Line zero of screen 20.

Comment: This ideogram does the work inside INDEX. Since it bypasses
F 0 R T H 's buffer management and reads only the first sector of each screen, it
runs significantly faster than conventionaL versions of INDEX. This
illustrates how nontransportable, nonstandard programs can sometimes run
circles around their FORTH-79 equivalents.

line scr M V P- F 0 R T H

Print on the terminaL device, a Line of text fron the disk by its Line and screen
number. Trailing blanks are suppressed.

Defined in: fig-F 0 R T H

ALL ABOUT FORTH

.R

. s
• SL
• S R
. ss

Implementation:

: .LINE <LINE> -TRAILING . , TYPE

Source usage: LIST

Example:

10 12 .LINE

Print the contents of line number 10 on screen 12.

Comment: A way to print any line on any screen. Using this ideogram,
L 0 AD could be modified to list the 0 line of each screen, a long with the
screen number, before it is loaded to indicate the progress in loading a long
series of screens and as one way to indicate the location of an error during
loading.

n1 n2 M V P- F 0 R T H

Print n1 rightalignedinafieldof n2 characters,accordingto BASE.
If n2 is less than 1, no leading blanks are supplied.

Defined in: FORTH-79(R), fig-FORTH

Implementation:

: • R >R S->D R> D.R . ,

Source usage: LIST

Example:

3456 10 • R

Print the value 3456 right justified within a field of 10 spaces.

Comment: Although not available in all versions of F 0 R T H, this ideogram is
easy to implement and quite useful in formatted output.

UTILITY

These ideograms work in concert to implement nondestructive stack display •
. s will print the values on the stack in ascending or descending order,
according to the flag in the constant .SS. The flag is set by .SL and .SR.

ALL ABOUT FORTH 33

I

34

D e fined in: M V P- F 0 R T H, S T A R T I N G F 0 R T H

Implementation:

0 CONSTANT .SS

: .S L

.S R

0

-1

.ss

.ss

.S C R DEPTH

. ,
. ,

IF .SS IF SPiil SO 2-
ELSE SPiil SO SWAP THEN
D 0 I iil 0 D. 2 • S S +- + L 0 0 P
ELSE " EMPTY STACK " THEN CR

Source usage: None.

Example:

1 2 3 4 .S R .S .S L .S

. ,

Print the current values on the stack, forwards and backwards. Use the way
you like best.

Comment: Some users concieve the printed list of values to proceed from the
top most value to the bottom of the stack. OthE!r users seem to work the other
way. Try .s with both and determine which is most meaningful to you.

n1 n2 n3 178 F 0 R T H -79

Divide n1 by n2 and leave the quotient n3. n3 is rounded toward zero.

Pronounced: divide

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: I /M 0 D DROP SWAP . ,

Source usage: Many.

Example:

25 2 I

The two values are entered on the stack and the first is divided by the
second Leaving the quotient on the stack and dropping the remainder. The
quotient is then printed: 12 •

Comment: Signed numbers are used with this operator. Note that division by

ALL ABOUT FORTH

/L 0 0 P

/M 0 D

0 is not usually checked and the result will be unpredictable or perhaps in
some implementations, an infinite Loop.

n I, C MVP-FORTH

A D 0 -L 0 0 P terminating word. The loop index is incremented by the
unsigned magnitude of n. Until the resultant index exceeds the Limit,
execution returns to just after the corresponding DO, otherwise, the index
and Limit are discarded. Magnitude Logic is used.

Pronounced up-Loop

Defined in: FORTH-79(R), STARTING FORTH

Implementation:

: /LOOP 3 ?PAIRS COMPILE </LOOP> HERE . , ,
IMMEDIATE

Source usage: TYPE EXPECT

Example:

TEST 10 1 DO I 3 /L 0 0 P . ,

This ideogram must be used in a colon definition. In this example, to 9
from 1 print the value of the index and increment the index by 3. The values
will be 1 4 7 •

Comment: Another variation for DO-LOOP control structures. This
ideogram will avoid problems should the range cross from a positive to
negative value as do some addresses or block numbers.

n1 n2 n3 n4 198 FORTH-79

Divide n1 by n2 and Leave the remainder n3 and quotient n4. n3 has the same
sign as n1.

Pronounced: divide-mod

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: /M 0 D >R S->D R> M/ . ,
Source usage: <T&SCALC> WHERE

Example:

ALL ABOUT FORTH 35

0

0<

36

25 3 /M 0 D

Enter the two values on the stack and divide the first by the second Leaving
the quotient on top. Then print the quotient followed by the remainder.

Comment: A convenient arithmetic operator which allows full precision and
rounding in integer arithmetic. Note: Signed numbers are used and division
by zero is not usually trapped, yielding unpredictable results or perhaps an
infinite Loop.

0 M V P- F 0 R T H

The value is defined as an ideogram.

Defined in: fig-FORTH, STARTING FORTH

Implementation:

0 CONSTANT 0

Source usage: Many.

Example:

0

Places the value of 0 on the stack. However, since it is an ideogram the
value is taken from the name of the constant and not converted to the value
according the the present value of BASE.

Comment: By defining common values as ideograms in the F 0 R T H dictionary,
search time is decreased for the text interpreter. Also, a reference to a
constant compiles just 2 bytes, while a Literal would require twice that.
Note that not all implementations of F 0 R T H take advantage of this
capabiLity.

n flag 144

True if n is less than zero (negative).

Pronounced: zero-less

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

C 0 DE 0<
THEN

H P 0 P H DAD 0 H LXI
HPUSH JMP END-CODE

ALL ABOUT FORTH

cs IF H IN X

FORTH-79

0=

0>

Source usage: Many.

Example:

45 0<

Place the value 45 on the stack and after the operation Leave a 0 flag on the
stack because the test fails. The value, 45, is Lost.

Comment: One of several logical operators. Logical operators destroy the
values being tested.

n flag 180 F 0 R T H -79

True if n is zero.

Pronounced: zero-equals

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: 0= NOT . ,
Source usage: FORGET

Example:

45 0=

Place the value 45 on the stack and test it for being 1equal to 0. Since it is
not, a 0 flag is Left on the stack. The value, 45, is Lost.

Comment: One of several Logical operators. Logical operators destroy the
values being tested.

n flag 118 FORTH-79

True if n is greater than zero.

Pronounced: zero-greater

Defined in: FORTH-79, STARTING FORTH

Implementation:

: 0> 0 > . ,
Source usage: PICK FILL

ALL ABOUT FORTH 37

Example:

45 0>

Place the value 45 on the stack and test it for being greater than 0. Since
it is, Leave the flag of value 1 on the stack. The value, 45, is lost.

Comment: One of several Logical operators. Logical operators destroy the
values being tested.

OB RANCH f c MVP-FORTH

1

38

' The run-time procedure to conditionally branch. If f is false ~zero),
the following in-Line parameter is added to the interpretive pointer to branch
ahead or back. Compiled by IF, UNTIL, and WHILE.

Defined in: fig-FORTH

Implementation:

8080:

C 0 D E OB R A N C H H P 0 P L A M 0 V H 0 R A B R A N 1 J Z
B INX B INX NEXT JMP END-CODE

Source usage: UNTIL IF

Example:

: IF COMPILE OB RANCH HERE 0 , 2 . ,
IMMEDIATE

This example comes from the M V P-F 0 R T H source code.

Comment: The compilation address of OB RANCH functions as a conditional
branching opcode for the address interpreter. An in-line branch
displacement must follow any compiled instance of this ideogram. These
displacements are automatically generated by the IF ••• ELSE ... THEN,
BEGIN ••• WHILE ••• REPEAT and BEGIN ••• UNTIL constructs. Additional
user defined constructs such as a CASE may be implemented by using
OBRANCH and BRANCH within new immediate compiling ideograms.

CAUTION: Executing OBRANCH directly from the terminal or screen will
crash your system.

1 MVP-FORTH

A common integer defined as a constant.

Defined in: fig-FORTH, STARTING FORTH

ALL ABOUT FORTH

1+

1-

Implementation:

1 CONSTANT 1

Source usage: Many.

Example:

1

Causes the value of 1 to be placed on the stack without having to perform
the number conversion.

Comment: By defining this value as a F 0 R T H ideogram, dictionary search
time and memory space are saved.

n n+1 107 F 0 R T H -79

Increment n by one, according to the operation for +.

Pronounced: one-plus

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: 1+ 1 + ;

or 8080:

CODE 1+ H POP H INX HPUSH JMP END-CODE

Source usage: Many.

Example:

45 1+

Enter the value 45 on the stack and then increment it by 1 Leaving the value
of 46 on the stack.

Comment: A required word in F 0 R T H-79, which can be defined in high Level
F 0 R T H for portability, or in code for maximum speed.

n n-1 105 FORTH-79

Decrement n by one, according to the operation -.

Pronounced: one-minus

ALL ABOUT FORTH 39

2

2!

40

Defined in: FORTH-79, STARTING FORTH

Implementation:

: 1- 1 . ,

or 8080:

CO DE 1- H POP H DCX HPUSH JMP END-CODE

Source usage: Many.

Example:

45 1-

Enter the value 45 on to the stack and then decrement the value by one.

Comment: A required word in FORTH-79, which can be defined in high Level
F 0 R T H for portabiLity, or in code for maxi mum speed.

2 M V P- F 0 R T H

A common integer value defined as a constant.

Defined in: fig-FORTH, STARTING FORTH

Implementation:

2 CONSTANT 2

Source usage: Many.

Example:

2

Causes the value of 2 to be placed on the stack without using the number
conversion routines. Since the ideogram is actually in the dictionary, the
value can be placed on the stack even when in BINARY.

Comment: The value is used often enough that some gain is made at interpret
time by not having to search the dictionary and then C 0 N VERT.

d addr SUPPLEMENTAL

Store d in 4 consecutive bytes beginning at addr, as for a double number.

Pronounced: two-store

ALL ABOUT FORTH

2+

Defined in: FORTH-79(E), STARTING FORTH

Imp le mentation:

: 2! D ! . ,

Source usage: None.

Example: CAUTION: May corrupt or crash your system.

HE X 33.33 4AC2 2! DECIMAL

Enter the double precision value on the stack taking four bytes. Then
remove these four bytes from the stack and store them in four bytes beginning
at memory address 4A C2. The actual byte order within each cell is
implementation dependent.

Comment: This ideogram is included in the extended double number word set
of F 0 R T H -79. However, the ideogram D! is a better mnemonic because it
avoids conflict in interpretation with the quantity 2. Thus D! is used in
M V P-F 0 R T H and 2! may be added as an alias.

n1 n2 MVP-FORTH

Leave 2*(n1).

Pronounced: two-times

Defined in: FORTH-79(R), STARTING FORTH

Implementation:

8080:

C 0 DE 2* H POP H DAD HPUSH JMP END-CODE

Source us age: Many.

Example:

Enter the value of 45 on the stack and then double it.

Comment: A useful operation whose definition is provided in the reference
vocabulary of F 0 R T H-79. Note that the carry and overflow are ignored.

n n+2 135 FORTH-79

Increment n by two, according to the operation for + •

ALL ABOUT FORTH 41

Pronounced: two-plus

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: 2+ 2 + ;

or 8080:

C 0 DE 2+ H POP H INX H INX HPUSH JMP END-CODE

Source usage: Many.

Example:

45 2+

Enter the value of 45 on the stack and then increment it by 2.

Comment: A required word in FORTH-79, which can be defined in high level
F 0 R T H for portability, or in code for maximum speed.

2- n n-2 129 F 0 R T H -79

Decrement n by two, according to the operation for - •

Pronounced: two-minus

Defined in: FORTH-79, STARTING FORTH

Implementation:

: 2- 2 - ;

or 8080:

C 0 DE 2- H POP H DCX H DCX HPUSH JMP END-CODE

Source usage: Many.

Example:

45 2-

Enter the value 45 on the stack and then decrement it by 2 •

Comment: A required word in F 0 R T H -79, which can be defined in high Level
F 0 R T H for portability, or in code for maximum speed.

42 ALL ABOUT FORTH

2/

2@

n1 n2 SUPPLEMENTAL

Leave (n1)/2.

Pronounced: two-divide

Defined in: FORTH-79(R), STARTING FORTH

Implementation

: 2/ 2 I . ,
Source usage: 8 Y E DEPTH

Example:

45 2/

Enter the value of 45 on the stack, halve it and drop the remainder.

Comment: A useful operation whose definition is provided in the reference
vocabulary of F 0 R T H -79. The result is always rounded toward zero.

addr d SUPPLEMENTAL

Leave on the stack the contents of the four consecutive bytes beginning at
addr, as for a double number.

Pronounced: two-fetch

Defined in: FORTH-79(E), STARTING FORTH

Implementation:

: 2@ D@ . ,

Source usage: None.

Example:

4A C2 2@

This would retrieve the double precision value, 3333, which we put at this
address in the example under 2!.

Comment: This ideogram is included in the extended double number word set
of F 0 R T H -79. However, the ideogram D@ is a better mnemonic because it
avoids conflict in interpretation with the quantity 2. Thus, D@ is used in
MVP-FORTH and 2@ may be added as an alias.

ALL ABOUT FORTH 43

2CONSTANT d SUPPLEMENTAL

2D R 0 P

44

A defining word used to create a dictionary entry for <name>, leaving din its
parameter field. When <name> is Later executed, d will be left on the
stack.

Pronounced: two-constant

Form: d 2CONSTANT <name>

Defined in: FORTH-79(E), STARTING FORTH

Implementation:

: 2CONSTANT DCONSTANT

Source usage: None.

Example:

. ,

33.33 2CONSTANT NEW-VALUE

Enter the value 33.33 which will be a double precision number and store it
in an ideogram named NEW-vALUE~ NEW-vALUE will then cause the 33.33
to be placed on the stack. NOTE: The decimal point location is not
preserved in a double precision integer.

Comment: This ideogram is included in the extended double number word set
of F 0 R T H -79. However, the ideogram DC 0 N STANT is a better mnemonic
because it avoids conflict in interpretation with the quantity 2. Thus,
DCONSTANT is used in MVP-FORTH and 2CONSTANT may be added as an
alias.

d SUPPLEMENTAL

Drop the top double number on the stack.

Pronounced: two-drop

Defined in: FORTH-79(E), STARTING FORTH

Implementation:

: 2DROP DDROP . ,
Source usage: None.

Example:

2DROP

ALL ABOUT FORTH

2DUP

20VER

This ideogram will cause the top four bytes on the stack to be removed which
would drop a double precision number or any other pair of single quantities.

Comment: This ideogram is included in the extended double number word set
of F 0 R T H -79. However, the ideogram D DR 0 P is a better mnemonic because
it avoids conflict in interpretation with the quantity 2. Thus, D DR 0 P is
used in MVP-FORTH and 2DROP may be added as an alias.

d d d SUPPLEMENTAL

Duplicate the top double number on the stack.

Pronounced: two-dup

Defined in: FORTH-79(E), STARTING FORTH

Implementation:

: 2DUP DDUP ;

Source usage: None.

Example:

33.33 2D UP

Place the double precision number on the stack taking 4 bytes and make a
copy of it using the next four bytes. NOTE: The decimal point location is
not maintained in the double precision integer.

Comment: This ideogram is included in the extended double number word set
of F 0 R T H-79. However, the ideogram D D UP is a better mnemonic because it
avoids conflict in interpretation with the quantity 2. Thus, D D UP is used in
MVP-FORTH and 2DUP may be added as an alias.

d1 d2 d1 d2 d1 SUPPLEMENTAL

Leave a copy of the second double number on the stack.

Pronounced: two-over

Defined in: FORTH-79(E), STARTING FORTH

Implementation:

: 20VER D 0 VE R . ,

Source usage: None.

ALL ABOUT FORTH 45

25 W A P

Example:

33.33 44.44 20 V E R

Place the two double precision numbers on the stack and then add on a copy
of the first one. NOTE: the decimal point location is not maintained in
double precision integers.

Comment: This ideo:gram is included in the extended double number word set
of FORTH-79. Howsver,the ideogram DOVER is a better mnemonic because
it avoids conflict in interpretation with the quantity 2. Thus, D 0 VE R is
used in MVP-FORTH and 20VER may be added as an alias.

d1 d2 d2 d1 SUPPLEMENTAL

Exchange the top two double numbers on the stack.

Pronounced: two-swap

Defined in: FORTH-79(E), STARTING FORTH

Implementation:

: 2S W A P DSW AP ;

Source usage: None.

Example:

33.33 44.44 2S W A P

Place two double precision numbers on the stack and then exchange their
positions. The decimal point Location is not maintained in the double
precision integer.

Comment: This ideogram is included in the extended double number word set
of F 0 R T H -79. How ever, the ideogram D SWAP is a better mnemonic because
it avoids conflict in interpretation with the quantity 2. Thus, DSWAP is
used in M V P-F 0 R T H and 2S W A P may be added as an alias.

2VA RIABLE SUPPLEMENTAL

46

A defining word used to create a dictionary entry of <name> and assign 4 bytes
for storage in the parameter field. When <name> is Later executed, it will
leave the address of the first byte of its parameter field on the stack.

Form: 2VA RIABLE <name>

Defined in: FORTH-79(E), STARTING FORTH

ALL ABOUT FORTH

Implementation:

: 2VARIABLE DVARIABLE

Source usage: None.

Example:

2VARIABLE NEW-VARIABLE

. ,

Make a new ideogram referring to a double precision variable. Its value is
not initialized.

Comment: This ideogram is included in the extended double number word set
of FORTH-79. However, the ideogram DVARIABLE is a better mnemonic
because it avoids conflict in interpretation with the quantity 2. Thus,
DVARIABLE is used in MVP-FORTH and 2VARIABLE may be added as an
alias.

79-S T A N D A R D 119 FORTH-79

Execute assuring that a F 0 R T H -79 Standard system is available, otherwise
an error condition exists.

Defined in: FORTH-79

Implementation:

: 79-S T A N D A R D . ,

Source usage: None.

Example:

79-S T A N D A R D

This ideogram does nothing in this implementation, but also does not create
an error - the word is in the vocabulary.

Comment: A required ideogram in the standard, but it is unspecified how the
error condition is to be generated.

116 FORTH-79

A defining word which selects the C 0 NT EXT vocabulary to be identical to
CURRENT. Create a dictionary entry for <name> in CURRENT, and set
compile mode. Words thus defined are called 'colon-definitions'. The
compilation addresses of subsequent words from the input stream which are
not immediate words are stored into the dictionary to be executed when <name>
is later executed. IMMEDIATE words are executed as encountered. If a

ALL ABOUT FORTH 47

. ,

48

word is not found after a search of the C 0 NT EXT and F 0 R T H vocabularies,
conversion compilation of a Literal number is attempted, with regard to the
current BASE; that failing, an error condition exists.

Form: : <name> . ,

Pronounced: col.on

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

SP@ CSP CURRENT @ CONTEXT CREATE SMUDGE
J ;C 0 DE

H DCX C M MOV RPP LHLD
RPP SHLD
END-CODE

H DCX
D IN X

B M M 0 V
E C M 0 V D B MOV NEXT JMP

Source usage: None.

Example:

TEST ;

Creates a new ideogram in the dictionary which in this case does nothing.

Comment: This is one of the most used ideograms in F 0 R T H. The
implementations of this ideogram vary according to which vocabularies are
searched and in what order. The M V P-F 0 R T H definit·ion is taken from
FORTH-79 which implies that after the CONTEXT is searched, even if it is a
daughter vocabulary, the search skips immediately to FORTH.

I, C, 196 F 0 R T H -79

Terminate a colon-definition and stop compilation. If compiling from mass
storage and the input stream is exhausted before encountering ; an error
condition exists.

Pronounced: semi-colon

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

. . . , ?CSP COMPILE EXIT SMUDGE
[COMPILE] [; IMMEDIATE

Source usage: None.

Example:

ALL ABOUT FORTH

;C 0 DE

TEST . ,
Used to end the colon definition which in this case does nothing.

Comment: In this implementation, the F 0 R T H -79 error condition aborts with
an "INPUT STREAM EXHAUSTED" message.

C, I, 206 N 0 T USED

Used in the form:

: <name> ;C 0 DE

Stop compilation and terminate a defining word <name>. ASSEMBLER
becomes the CONTEXT vocabulary. When <name> is executed in the form:

<name> <namex>

to define the new <namex>, the execution address of <namex> will contain the
address of the code sequence following the ;C 0 DE in <name>. Execution of
any <namex> will cause this machine code sequence to be executed.

Pronounced: semi-colon-code

Defined in: FORTH-79 ASSEMBLER WORD SET, fig-FORTH

Implementation:

8080:

;CODE ?CSP C 0 M PI L E <; C 0 D E >
[COMPILE] [[COMPILE] ASSEMBLER
IMMEDIATE

Source usage: None.

Example:

USER CONSTANT ;CODE D INX XCHG ME MOV
0 D MVI UP LHLD D DAD HPUSH JMP END-CODE

In this example, after the USER variable is given a name in a colon
definition, we switch to the ASSEMBLER which is not included in this
implementation but is referenced by the C R 0 ss-e 0 M PILE R. This begins the
specification of the run-time activity for USER variables.

Comment: This ideogram functions like DOES>, except that the generated
offspring's code address is redirected to usable machine c:ode rather than to a
call to the subroutine, DODOES. It should be included as part of an
ASSEMBLER vocabulary.

ALL ABOUT FORTH 49

;S

<

50

NOT USED

Stop interpretation of a screen. ;S is aLso the run-time word compiled at the
end of a colon-definition which returns execution to the calling procedure.

Defined in: FORTH-79(R), fig-FORTH

Implementation:

8080:

C 0 DE ;S R P P L H L D M C M 0 V H IN X
M B MOV H INX RPP SHLD NEXT JMP END-CODE

Source usage:

Example:

. . . , COMPILE

None.

;S [COMPILE] [. , IMMEDIATE

This simplified implementation of semicolon compiles the ideogram and
sets the execution mode. No error checking or unsmudging is performed.

Comment: This ideogram is now obsolete, having been replaced by EXIT.

n1 n2 flag 139 F 0 R T H -79

True if n1 is less than n2.

Pronounced: less-than

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

C 0 DE < D P 0 P H P 0 P D A M 0 V H X R A 0>=
IF SSUB CALL
T H EN H IN R H DC R 0>=
IF 0 H LXI HPUSH JMP
THEN 1 H LXI HPUSH JMP END-CODE

Source usage: Many.

Example:

45 47 <

Enter two integers on the stack and then test to see if the first is less than

ALL ABOUT FORTH

<#

the second. In this example it is and the value of the flag on the stack is set
to 1. The test destroys both operands.

Comment: The limits for this signed comparison are strictly defined in
F 0 R T H -79: -32768 3276 7 < must return true and -32768 and 0 must be
distinguished.

d1 d1 169 FORTH-79

Initialize pictured numeric output. This ideograms <#, #, #S, HOLD,
SIGN, and #> can be used to specify the conversion of a double-precision
number into an ASCI I character string stored in right-to-Left order.

Pronounced: Less-sharp

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: <# PAD HLD . ,
Source usage: D.R

Example:

45. <# #S #> TYPE

Enter the double precision value 45. on the stack, then format the value for
printing it and finally print it.

Comment: In F 0 R T H -79 there is no specification as to where the pictured
number will be stored. ALso, implementations vary on how the sign of
negative numbers is handled.

<+LOOP> n --- c MVP-FORTH

The run-time procedure compiled by +L 0 0 P, which increments the Loop index
by n and tests for Loop completion. See +L 0 0 P.

Defined in: MVP-FORTH

Implementation:

8080:

C 0 DE <+L 0 0 P> D POP O<LOOP> JMP END-CODE

Source usage: +L 0 0 P

Example:

ALL ABOUT FORTH 51

+LO 0 P
HERE

3
,

?PAIRS COMPILE <+LOOP>
; IMMEDIATE

The example illustrates the use of this run time procedure.

Comment: ALthough dangerous and almost totally use less for applications,
this ideogram is availabLe to the program mer. Like BRANCH and 08 RANCH,
it expects an in-Line branching displacement.

<-FIND> MVP-FORTH

<.">

52

pfa b tf (if found)
ff (if not found)

Accepts the next word (delimited by blanks) in the input stream to HERE and
searches the CONTEXT and then the FORTH vocabularies for a matching
entry. If found, the dictionary entry's parameter field address, its length
byte, and a boolean true is left. Otherwise, only a boolean false is left.

Defined in: MVP-FORTH

Implementation:

: <-FIND> BL WORD CONTEXT @ @ <FIND> ;

Source usage: None.

Example:

<- F I N D > J U N K

Search the dictionary for the ideogram JUNK. Presumably,the ideogram is
not in the dictionary and the flag value of 0 is left on the stack.

Comment: This ideogram is vectored from -FIND via the user variable'
FIN D. Note: the null character used to terminate the terminal and disk
buffers is defined as an ideogram in the dictionary <see X). This may
occasionally produce bewildering error messages or unexpected results when
you use the ideograms: -FIND, ' , [COMPILE] , FORGET , or
others which search the dictionary or define new words.

c M V P- F 0 R T H

A run-time procedure, compiled by." which transmits the folowing in- line
text to the selected output device.

Defined in: MVP-FORTH

Implementation:

ALL ABOUT FORTH

: <. "> Rm COUNT I>UP 1+ R> + >R TYPE ;

Source usage: It

Example: C AU TI 0 N: Execution outside a colon
definition will crash the system.

: . II BLK 0)

IF BLK 0) BLOCK ELSE TIB 0) THEN
>IN 0) + COl 22 = NOT
IF 22 STATE 0)

IF <. "> WORD COl 1+ ALLOT
ELSE WORD COUNT TYPE THEN

ELSE 1 >IN +! THEN . ,
This example is an alternate implementation of .".

Comment: This synonym for fig-F 0 R T H 's <."),is used in M V IP-F 0 R T H in order
to avoid confusion with comments within parentheses.

</L 0 0 P> u c M V P-F 0 R T H

The run-time procedure compiled by /LO 0 P, which increments the loop index
by u and tests for loop completion. See /L 0 0 P •

Defined in: MVP-FORTH

Implementation:

8080:

CODE </LOOP> I> POP RPP LHLD M A MOV E ADD
AMMOV AEMOV HINX MAMOV I>AI>C
A M MOV H INX D INR D DCR A D MOV
0</LOOP> JC E A MOV M SUB D A MOV H INX
M SBB BRAN1 JC 1</LOOP> JMP

HERE LABEL 0</LOOP> H INX
HERE LABEL 1</LOOP> H INX RPP SHLD

B INX B INX NEXT JMP END-CODE

Source usage: /L 0 0 P

Example:
/L 0 0 P

HERE
3

,
?PAIRS COMPILE

; IMMEDIATE
</L 0 0 P>

The example illustrates the use of this run-time procedure.

Comment: Although dangerous and almost totally useless for applications,
this ideogram is available to the program mer. Like BRANCH and OB RANCH,
it expects an inline branching displacement. It differs from <+LOOP> in

ALL ABOUT FORTH 53

that the index is unsigned which is desirable for address Looping.

<; C 0 DE> c MVP-FORTH

The run-time procedure, compiled by ;C 0 DE, that rewrites the code field of
the most recently defined word to point to the following machine code
sequence.

Defined in: MVP-FORTH

Implementation:

: <;C 0 DE> R> LATEST PFA 2 ;

Source usage: D 0 ES>

Example: CAUTION: Execution outside a colon
definition will crash the system.

HEX
: DOES> ?CSP

COMPILE [
DECIMAL

COMPILE
HERE 4

<;C 0 DE>
+ , J ;

CD c,

This is the only use of this word. It provides the necessary function for the
revised DOES>asusedin FORTH-79. Notethatthe Literal hex value CD, is
the 8080 specific op-code which is compiled at this point.

Comment: This ideogram is needed by D 0 ES>, and therefore appears even in
systems which Lack an assembler vocabulary and the ideogram, ;C 0 DE • The
functional definition differs from that given by fig-F 0 R T H. The latter
includes two extra bytes between the code field address and the parameter
field address of every D 0 ES> word. The F 0 R T H -79 function makes the
format of all compiled definitions more consistent.

<<C M 0 VE> addr1 addr2 u MVP-FORTH

54

The primitive code routine for <C M 0 V E. It can move up to 65535 bytes.
Nothing is moved if u = 0.

Defined in: MVP-FORTH

Implementation:

8080:

CODE <<CMOVE>
C L MOV B H MOV B POP D POP XTHL B DAD
H DCX XCHG B DAD H DCX XCHG

BEGIN B A MOV C 0 R A O<<C M 0 V E > J Z

ALL ABOUT FORTH

M A M 0 V H DC X D ST A X D DC X B DC X
0= UNTIL
HERE LABEL O<<C M 0 V E > B P 0 P
NEXT JMP END-CODE

Source usage: <C M 0 V E

Example:

<CMOVE DUP 1 <
IF DDROP DROP ELSE <<CMOVE> THEN . ,

This example is from the M V P-F 0 R T H source code.

Comment: This is the primitive for the <C M 0 VE function which proceeds
within the bytes from high memory towards low memory.

<ABORT"> f --- c M V P-F 0 R T H

The run-time procedure used with ABORT".

Defined in: MVP-FORTH

Implementation:

<ABORT">
IF WHERE CR R@ COUNT TYPE

SP! QUIT
ELSE R> DUP C@ + 1+ >R
THEN ;

Source usage: A B 0 R T"

Example:

ABORT" ?COMP COMPILE <ABORT"> 'STREAM C@ 22 =
IF 1 >IN +! 0 C,
ELSE 22 WORD DUP C@ 1+ SWAP OVER

+ C@ 22 = NOT ?STREAM ALLOT
THEN ; IMMEDIATE

This example is taken from the MVP-FORTH source code.

Comment: This ideogram takes an inline string which is set up by the
immediate compiling ideogram ABORT". Although dangerous and almost
totally useless for applications, it is available to the programmer.

<ABORT> MVP-FORTH

Clear the data and return stacks, setting execution mode. Return control to

ALL ABOUT FORTH 55

<BLOCK>

the terminal.

Defined in: MVP-FORTH

Implementation:

<ABORT> SP! ?STACK
[COMPILE] FORTH DEFINITIONS QUIT . ,

Source usage: None.

Example:

<ABORT>

This simple ideogram will clear the stack and return to F 0 R T H definitions
so that you can begin again. Your definitions are not forgotten.

Comment: This ideogram is vectored from ABORT via variable 'ABORT. In
some versions of F 0 R T H, this ideogram also includes a statement of the
name of the version and other information, while in F 0 R T H -79, no indication
is made.

n addr MVP-FORTH

Leave the address of the first byte in block n. If the block is not already
in memory, it is transferred from mass storage into whichever memory buffer
has been least recently accessed. If the block occupying that buffer has
been UPDATEd (i.e. modified), it is rewritten onto mass storage before
block n is read into the buffer. n is an unsigned number. If correct
mass storage read or write is not possible, an error condition exists. Only
data within the Latest block referenced by <BL 0 C K> is valid by byte
address, due to sharing of the block buffers.

Defined in: MVP-FORTH

Implementation:

<B L 0 C K > OFFSET @ + >R PRE V @ DUP @
R@ 2*
IF BEGIN +B U F NOT

IF DROP R@ BUFFER D UP R@ 1 R/W 2 THEN
DUP @ R@ 2* NOT

UN TIL
DUP PREV

THEN R> DROP 2+ . ,
Source usage: None.

Example:

45 <BLOCK>

56 ALL ABOUT FORTH

Entering the desired block number followed by the ideogram leaves the
address of the beginning of that block on the top of the stack. If it is not
already in a buffer, the block will be read in from disk.

Comment: This ideogram is vectored from BLOCK via user variable 'BLOCK.
It is a useful ideogram which speeds access to disk information when it is not
modified. The MVP-FORTH has fixed a problem in some earlier
implementations of fig-F 0 R T H, which sometimes failed to update the Last two
Lines of a source screen on disk.

<BUILDS c NOT USED

<C M 0 V E

Used in conjunction with DOES> in defining words. When <name>
executes, <BUILDS creates a dictionary entry for the new <namex>. The
sequence of words between <BUILDS and D 0 ES> establishes a parameter field
for <namex>. When <namex> is Later executed, the sequence of words
following D 0 ES> will be executed, with the parameter field address of
<namex> on the data stack.

Form: <name>
<name>

<BUILDS
<namex>

D 0 ES> ••• ;

Defined in: FORTH-79(R), fig-FORTH

Implementation:

: <BUILDS CREATE . ,
Source usage: None.

Example:

CONSTANT <BUILDS , D 0 ES> @ . ,
This example illustrates a high Level implementation of C 0 NST ANT. The

built-in implementation utilizing ;C 0 DE and assembly Language will run
faster.

Comment: Because the word is so well established and has some beauty of
construct in conjunction with D 0 ES>, it may be defined as an alias of
CREATE. The definition is modified from that in fig-FORTH and older
programs and may not always work.

addr1 addr2 n MVP-FORTH

Copy n bytes beginning at addr1 to addr2. The move proceeds within the
bytes from high memory toward Low memory.

Pronounced: reverse-c-move

ALL ABOUT FORTH 57

Defined in: FORTH-79(R), STARTING FORTH

Implementation:

<CMOVE DUP 1 <
IF DDROP DROP
ELSE <<CMOVE> THEN 0 ,

Source usage: None.

Example:

HEX 4AC3 4AC4 20 <CMOVE DECIMAL

With the normal CM 0 V E the data from 4A C 4 up would be written over with
the value in 4A C3 and the information would be lost. Instead, <C M 0 VE
shifts 32 bytes one position to the right.

Comment: This ideogram works exactly like <C M 0 VE>, except when its
source and destination fields overlap. The ideogram BM 0 V E, a better
solution, intelligently chooses the action so that overlapping fields hold no
surprises for the programmer.

<CMOVE> addr1 addr2 u MVP-FORTH

58

The primitive code routine for C M 0 V E and M 0 V E. Up to 65,535 bytes may be
moved. Nothing is moved when u = 0.

Defined in: MVP-FORTH

Implementation:

8080:

CODE <CMOVE>
C L MOV B H MOV B POP D POP
XTHL O<CMOVE> JMP

BEGIN M A MOV H INX D STAX D INX B DCX
HERE LABEL O<C M 0 V E > B A M 0 V C 0 R A 0=

UNTIL B POP NEXT JMP END-CODE

Source usage: CMOVE MOVE

Example:

CMOVE DUP 1 <
IF DROP DROP DROP
ELSE <C M 0 VE>
THEN ;

The example uses this procedure which remains available to the programmer.

ALL ABOUT FORTH

<C R>

<DO>

Comment: This version of a byte move utility was developed early and was
at one time used in the definition of FILL by taking advantage of its
overwriting property. In M V P-F 0 R T H, it is not used in this way. There
really is little reason to use it instead of B M 0 V E, which moves bytes without
over writing them- an intelligent CMOVE.

MVP-FORTH

Cause a carriage-return and line-feed to occur at the current output device,
as configured by CP/M. The user variable 0 UT is reset to zero.

Defined in: MVP-FORTH

Implementation:

8080:

CODE <CR> 4A 0 LXI UP LHLD DAD 0 M MVI
H INX 0 M MVI PCR JMP END-CODE

Source usage: None.

Example:

<CR> <CR> ." HELLO"

The two ideograms cause the display to advance two Lines and then print
HELLO at the Left margin of the display.

Comment: This ideogram is vectored from C R via user variable 'CR.
Placing the ideogram, <C R >,in the input stream is not equivalent to pressing
the "Return" key on the terminal keyboard.

n2 n1 c M V P- F 0 R T H

The run-time procedure compiled by D 0 which moves the Loop control
parameters to the return stack. See o o.

Defined in: MVP-FORTH after fig-FORTH

Implementation:

8080:

CODE <DO>
RPP SHLD
0 POP H
NEXT JMP

RPP LHLO H DCX H DCX H OCX H DCX
0 POP E M MOV H INX D M MOV

INX E M MOV H INX D M MOV
END-CODE

ALL ABOUT FORTH 59

<EMIT>

<FILL>

60

Source usage: D 0

Example:

DO COMPILE <DO> HERE 3 . , IMMEDIATE

The example uses the run time procedure. It remains available to the
program mer.

Comment: This ideogram <DO> has been used as the! primitive in M V P
FORTH in place of (DO) which is used in fig-FORTH. lihe change was made
to avoid use of parentheses.

c MVP-FORTH

Transmit a character to the currently defined output port according to the
configuration of CP/M. The user variable 0 UT is increase by one.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

CODE <EMIT>
8 P 0 P 4A
M D M 0 V
NEXT JMP

Source usage:

Example:

65 <EMIT>

H POP 8 PUSH L C MOV
D LXI UP LHLD D DAD

D INX D M MOV H DCX
END-CODE

None.

CPOUT CALL
ME MOV H INX

E M M 0 V

Entering the decimal value 65 followed by this ideogram will cause the
character A to be printed.

Comment: This ideogram is vectored from EMIT via the user variable 'EMIT.

addr n b M V P-F 0 R T H

A primitive for FILL which executes the actual function if selected.

Defined in: MVP-FORTH

Implementation:

8080:

ALL ABOUT FORTH

<FIND>

CODE <FILL> C L MOV B H MOV D POP B POP
XTHL XCHG

HERE LABEL O<FILL> B A MOV C ORA 1<FILL> JZ
LA MOV D STAX D I N X B D C X 0< FILL> J M P

HERE LABEL 1<FILL> B POP NEXT JMP END-CODE

Source usage: FILL

Example:

FILL 0 V E R 0>
IF <FILL> ELSE DROP DROP DROP THEN . ,

The example illustrates the use of the ideogram in taking no action if zero
bytes are to be moved.

Comment: This implementation of <FILL> utilizes its own code and not the
high level CMOVE.

M V P-F 0 R T H
addr1 addr2
addr1 addr2

pfa b tf
ff

Cok)
(bad)

Searches the dictionary starting at the name field address addr2, matching to
the text at addr1. Returns parameter field address, Length byte of name
field and boolean true for a good match. If no match is found, only a boolean
faLse i s left.

Defined in: MVP-FORTH after fig-FORTH

Implementation:

8080:

CODE <FIND> D POP
HERE LABEL O<FIND> H POP H PUSH D LDAX

M X R A 03 F AN I 4< FIN D > J N Z
HERE LABEL 1<FIND> H INX D INX D LDAX

M XRA A ADD 3<FIND> JNZ 1<FIND> JNC
5 H LXI D DAD XTHL

HERE LABEL 2<FIND> D DCX D LDAX A ORA
2<FIND> JP A E MOV 0 D MVI 1 H LXI DPUSH JMP

HERE LABEL 3<FIND> S<FIND> JC
HERE LABEL 4<FIND> D INX D LDAX A ORA 4<FIND> JP
HERE LABEL 5<FIND> D INX XCHG ME MOV H INX

M D M 0 V D A M 0 V E 0 R A O<F IN D > J N Z H P 0 P
0 H LXI HPUSH JMP END-CODE

Source usage: <- F I N D > F 0 R G E T

ALL ABOUT FORTH 61

Example:

-FIND BL WORD CONTEXT @ @ <FIND> . ,

This example comes from the M V P-F 0 R T H implementation source code.

Comment: This is the primitive used in MVP-FORTH in place of (FIND) in
order to avoid confusion with comments. It provides a means of searching
the dictionary without using the input stream.

<INTER P R E T > MVP-FORTH

62

Begin interpretation at the character indexed by the contents of >IN relative
to the block number contained in BL K, continuing until the input stream is
exhausted. If BL K contains zero, interpret characters from the terminal
input buffer.

Defined in: MVP-FORTH

Implementation:

<I N T E R P R E T >
BEGIN -FIND

IF STATE @ <
IF CFA , ELSE CFA EXECUTE THEN

ELSE HERE NUMBER DPL @ 1+
IF [COMPILE] DLITERAL
ELSE DROP [COMPILE] LITERAL THEN
THEN ?STACK

AGAIN ;

Source usage: None.

Example:

<LOAD> BLK @ >R >IN @ >R 0 >IN
BLK <INTERPRET> R> >IN
R> BLK ;

This example is modified from the MVP-FORTH implementation.

Comment: This ideogram is vectored from INTERPRET vi a the user variable
'INTERPRET. It is used to interpret text source in MVP-FORTH. The
sequence " STATE @ < " is sneaky. It returns a true flag only if the
compilation mode is set and the ideogram located by -FIND is not immediate.
<INTERPRET> is then written as an infinite loop which exits implicitly at
the end of an input line or disk screen.

ALL ABOUT FORTH

<KEY>

<LINE>

char MVP-FORTH

Leave the ASCII value of the next available character from the current input
device, according to the configuration of CP/M.

Defined in: MVP-FORTH

Implementation:

8080:

CODE <KEY> PKEY JMP END-CODE

Source usage: None.

Example:

<KEY>

Execution of this ideogram causes the program to wait for any single input
from the keyboard and upon receiving it places the ASCII value of the input on
the stack.

Comment: This ideogram is vectored from KEY via user variable 'KEY. It
provides a way of finding out the ASCII value of characters without reference
to a chart. It may also be used in selecting from a menu requiring only a
single character input or for a wait until any character is input from the.
terminal. The internal details of <KEY> are installation dependent.

n1 n2 addr count MVP-FORTH

Convert the Line number n1 and the screen n2 to the disc buffer address
containing the data. A count of 64 indicates the full Line text Length.

Defined in: MVP-FORTH

Implementation

: <LINE> BLOCK SWAP C/L * + C/L ;

Source usage: .LINE

Example:
I

.LINE <LINE> -TRAILING TYPE . ,
This simple example comes from the M V P-F 0 R T H source code.

Comment: This primitive is useful in a variety of manipulations among Lines
on various screens and to identify Lines for searching with -TEXT and
MATCH, for example.

ALL ABOUT FORTH 63

<L 0 AD>

<L 0 0 P>

64

n M V P-F 0 R T H

Begin interpretation of screen n by making it the input stream; preserve
the locators of the present input stream (from >IN and BLK). If
interpretation is not terminated explicitly it will be terminated when the
input stream is exhausted. Control then returns to the input stream
containing L 0 AD , determined by the input stream locators >IN and B L K •

Defined in: MVP-FORTH

Implementation:

<L 0 AD>
ABORT"
BL K @

0 >IN
R > >IN

?DUP NOT
UNLOADABLE"

>R >IN @ >R
BLK INTERPRET

R> BLK ;

Source usage: None.

Example:

45 <LOAD>

This example will start Loading the contents of Screen 45.

Comment: This ideogram is vectored from L 0 A D vi a user variable 'L 0 A D.
Screens which end with several blank lines will load faster if the ideogram,
EXIT, appears following the Last definition or operation. Also, one can
avoid loading a whole screen without erasing the undesired contents by
terminating the desired source with the ideogram. This technique is not
sanctioned by FORTH-79 and is implementation dependent. Note: this
implementation does not permit loading block zero.

c M V P- F 0 R T H

The run-time procedure compiled by L 0 0 P which increments the loop index
and tests for loop completion. See L 0 0 P.

Defined in: MVP-FORTH

Implementation:

8080:

CODE <LOOP>
HERE LABEL

A C M 0 V
M A M 0 V

HERE LABEL

1 D LXI
O<LOOP> RPP LHLD
H INX M A MOV D
3<L 0 0 P> J M D AN A

1<LOOP> H INX H

ALL ABOUT FORTH

B PUSH M A MOV
ADC A B MOV
4<LOOP> JP

IN X

HERE LABEL 2<L 0 0 P > H IN X R P P S H L D B P 0 P
B INX B INX NEXT JMP

HERE LABEL 3<LOOP> D ORA 1<LOOP> JP
H E R E LA BEL 4<L 0 0 P > B M M 0 V C A M 0 V H I N X

M SUB H IN X B A M 0 V M SBB B A M 0 V
8<LOOP> JM A ANA 6<LOOP> JM

HERE LABEL S<LOOP> D A MOV A ANA 2<LOOP> JP
B POP BRAN1 JMP

HERE LABEL 6<LOOP> M A MOV A ANA S<LOOP> JM
HERE LABEL ?<LOOP> D A MOV A ANA 2<LOOP> JM

B POP BRAN1 JMP
HERE LABEL 8<LOOP> B A MOV A ANA ?<LOOP> JM

6<LOOP> JMP END-CODE

Source usage: LOOP

Example:

LOOP 3 ?PAIRS COMPILE <LOOP> HERE . , ,
IMMEDIATE

This example from the M V P-F 0 R T H source code illustrates the only use of
<L 0 0 P> which, though dangerous, remains available to the program mer.

Comment: This is a primitive similar to (LOOP) in fig-FORTH but renamed
to avoid confusion with comments and modified to conform with the
requirements of F 0 R T H-79. Any compiled instance of <L 0 0 P> must be
followed by an in-Line branching displacement. This is the main use of
this primitive though it is available to the programmer.

<NUMBER> addr d MVP-FORTH

Convert the count and character string at addr, to a signed 32-bit integer,
using the current base. If numeric conversion is not possible, an error
condition exists. The string may contain a preceding negative sign.

Defined in: MVP-FORTH

Implementation:

<NUMBER> 0 0 ROT DUP 1+ C@
A MINUS = DUP >R + -1 DPL
CONVERT DUP C@ BL >
IF DUP C@ ADOT = NOT

ABORT" NOT RECOGNIZED" 0 DPL
CONVERT DUP C@ BL >
ABORT" NOT RECOGNIZED"

THEN DROP R>
IF DNEGATE THEN . ,

(A MINUS is the ASCII value of II - II)
(ADOT is the ASCII value of " ") •

ALL ABOUT FORTH 65

<PA G E >

66

(These are compiled as literals by the cross-compiler.)

Source usage: None.

Example:

I N P U T • " I N P U T A N I N T E G E R --- "
QUERY BL WORD <NUMBER> DROP;

This definition provides for a prompt and then a pause for the operator to
input the requested integer. Then the input character stream is parsed,
converted to a double precision value and reduced to a single precision value
Left on the stack.

Comment: The version and implementation of this ideogram in M V P-F 0 R T H
conforms with that in the FORTH-79 reference word set and fig-FORTH. It
will recognize two non-numeric characters: a decimal point and a leading
negative sign. The position of the decimal point is recorded in the user
variable D PL. This feature enables a user program to scale or adjust the
converted value as desired. It will give an error message if any other
special character is used. Note that the definition given in STARTING
FORTH is different.

M V P- F 0 R T H

Clear the terminal screen or perform an action suitable to the output device
currently active.

Defined in: MVP-FORTH

Implementation:

<PAGE> 1B EMIT 45 EMIT . ,
(Note: This is the CLEAR SCREEN sequence for the Heath/Zenith Z19
terminal. In the distibution version of M V P-F 0 R T H, a fail safe
implementation produces a carriage return rather than the expected function.
Since this is a vectored function, the user can add his own CLEAR SCREEN
sequence.)

Source usage: None.

Example:

<P A G E>

Entering this ideogram will clear the terminal screen.

Comment: This ideogram is vectored from PAGE via user variable 'PAGE.
It allows one to start with a clear screen and the cursor at home. Note that
inspite of a common operating system such as CP/M, not all terminals will use
this code to cLear the screen. This ideogram can be redefined in high level

ALL ABOUT FORTH

<R/W >

F 0 R T H for the particular terminal and the new code field address placed in
'PAGE.

addr blk f M V P- F 0 R T H

The fig-F 0 R T H standard disk read-write link age. addr specifies the
source or destination buffer address, (not necessarily the F 0 R T H buffer>,
blk is the sequential number of the referenced block; and f is a flag for f
= 0 write and f = 1 read. <R I W > determines the location on mass storage,
performs the read-write and performs any error checking.

Defined in: MVP-FORTH

Implementation:

<R/W> USE Ql >R SWAP SEC/BLK * ROT USE
SEC/BLK 0
DO DDUP T&SCALC SET-!0

IF SEC-READ
ELSE SEC-WRITE THEN 1+ BPS USE +!

LOOP DDROP R> USE ;

(Note: BPS is compiled to a hex literal value 80 which is the number of
bytes per CP/M sector.>

Source usage: None.

Example:

BUFFER
BEGIN
USE
IF R Ql
Rlil

USE Ql DUP >R
+B U F UN TIL
R@ @ 0<
2+ R@ Ql 7F F F

Rlil PREV R>
AND

2+ ;
0 <R/ W > THEN

This definition is modified from the M V P-F 0 R T H source code. It is one
of the principal uses of the ideogram, <R/W >.

Comment: This ideogram is a primitive in many implementations of F 0 R T H.
If it is available, it is possible to read and write from disk to any area in
memory such as a special buffer, without going through the regular block
buffers. Of course such a procedure is installation dependent and
prohibited by FORTH-79.

<T&SCALC> n M V P-F 0 R T H

Track & Sector and drive calculation for disk I o. n is the total sector
displacement from the first logical drive to the desired sector. The
corresponding drive, track, and sector numbers are calculated. If the drive
number is different from the contents of DRIVE, the new drive number is

ALL ABOUT FORTH 67

<WORD>

68

stored in DRIVE and SET-DRIVE is executed.
TRACK; the sector number is stored in SEC.
before SET-DRIVE.

The track number is stored in
T&SCALC is usually executed

Defined in: MVP-FORTH

Implementation:

<T&SCALC> MAX-DRV
DO DUP I DR-DEN

IF DROP SPDRV

0
DENSITY

I 1+
SP DR V

MAX-DRV
/M 0 D
=

IF DROP THEN
ELSE I DRIVE SET-DRIVE SPT /MOD

TRACK 1+ SEC DROP LEAVE THEN
l 0 0 p ;

Source usage: None.

Example:

<R/W> USE @ >R SWAP SEC/BLK * ROT USE
SEC/BLK 0
DO DDUP <T&SCALC> SET-IO

IF SEC-READ
ELSE SEC-WRITE THEN 1+ BPS USE +!

LOOP DDROP R> USE . ,
This example is modified from the MVP-FORTH implementation.

Comment: This is a revised implementation from that in fig-F 0 RT H; it takes
into account the number of sectors which are present on each disk in making
the calculation. If T&SCALC cannot map n onto a physical sector, no
error message is given and the values of DRIVE, TRACK, and SEC are not
altered.

char addr MVP-FORTH

Receive characters from the input stream until the non-zero delimiting
character is encountered or the input stream is exhausted, ignoring leading
delimiters. The characters are stored as a packed string with the character
count in the first character position. The actual delimiter encountered
<char or null> is stored at the end of the text but not included in the count.
If the input stream was exhausted as W 0 R D is called, then a zero length
will result. The address of the beginning of the is packed string is left on
the stack.

Defined in: M V P-F 0 R T H

Implementation:

< W 0 R D > 'S T R E A M
SWAP ENCLOSE DDUP >

All ABOUT FORTH

=

>

IF DDROP DDROP 0 HERE
ELSE >IN +! OVER DUP >R

HERE c! + HERE 1+ R> DUP FF >
ABORT" INPUT > 255" 1+ C M 0 VE

THEN HERE . ,
Source usage: None.

Example:

INPUT ." Input an integer -- "
QUERY BL <WORD> NUMBER DROP . ,

The definition provides for a prompt and then a pause for the operator to
input the requested integer. Then the input character stream is parsed with
this ideogram, converted to a double precision value and reduced to a single
precision value Left on the stack.

Comment: This ideogram is vectored from W 0 R D via user variable 'W 0 RD.
In M V P-F 0 RT H, <W 0 R D> Leaves the address of the initial count on top of the
stack. As in fig-F 0 R T H, the string is stored at HER E.

n1 n2 flag 173

True if n 1 i s e qua L to n 2

Pronounced: equals

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

. -. - NOT

Source usage:

Example:

45 45 =

. ,
Used many times in the source code.

F 0 R T H-79

The two values are placed on the stack and the test made. In this case the
values are equal and a 1 is left on the stack as a true flag.

Comment: A common operator to all versions of F 0 R T H. The comparison
destroys both comparands.

n1 n2 flag 102 FORTH-79

True if n1 is greater than n2 •

ALL ABOUT FORTH 69

Pronounced: greater-than

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: > SWAP < 0 ,

Source usage: 0> <W 0 R D> MIN

Example:

45 46 >

The two values are placed on the stack and the test is made. In this case
the test is false and a 0 flag is left on the stack.

Comment: A common logical operator in all versions of F 0 R T H. The
comparison destroys both comparands.

>BINARY d1 addr1 d2 addr2 SUPPLEMENTAL

>IN

70

Same as CONVERT.

Pronounced: to-binary

Defined in: STARTING FORTH

Implementation:

: >BIN A R Y CONVERT ;

Source usage: None.

Example:

TEST BL WORD 0 0 ROT >BINARY DROP 0 ,

A definition which provides a simple demonstration of the conversion of a
W 0 R D to a double precision binary value.

Comment: Some F 0 RT H implementations hash the name ideograms in order to
save space. In so doing the FORTH-79 CONVERT, normally used, may
conflict with CONTEXT, therefore the need of an alias.

addr u, 201 FORTH-79

Leave the address of a variable which contains the present character offset
within the input stream. 0 •• 1023

ALL ABOUT FORTH

>R

Pronounced: to-in

Defined in: FORTH-79

Implementation:

30 USER >IN

Source usage: 'STREAM (<LOAD> <WORD>
ABORT" QUERY WHERE

Example:

QUERY TIB Q) 50 EXPECT 0 >IN . ,

The value of the user variable, >IN, is set to 0 after EXPECT.

Comment: This ideogram replaces IN in the earlier fig-F 0 R T H. Together
with BLK, it determines the location of the next character from the input
stream.

n c, 200 FORTH-79

Transfer n to the return stack. Every >R must be balanced by a R> in
the same control structure nesting level of a colon-definition.

Pronounced: to-r

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

CODE >R D POP RPP LHLD H DCX H DCX RPP SHLD
E M MOV H INX D M MOV NEXT JMP END-CODE

Source usage: Many.

Example:

TEST 45 47 >R 1+ R> . ,

A contrived example: place two values on the stack and then increment the
value immediately below the top of the stack.

Comment: CAUTION: This ideogram must be used with care to avoid
crashing the system. Within its limitations, it is useful for accessing
buried numbers. PICK and ROLL, however, offer a less dangerous
alternative.

ALL ABOUT FORTH 71

>TYPE

?

72

addr n SUPPLEMENTAL

Same as
output.

TYPE except that the outp'ut string is moved to the pad prior to
Used in multiprogrammed systems to output strings from disk blocks.

Defined in: STARTING FORTH

Implementation:

:>TYPE "Used in multiprogrammed systems only" QUIT;
IMMEDIATE

Source usage: None.

Example:

PA D C 0 UN T >TYPE

In this implementation you are informed that the ideogram is not available
for use.

Comment: This ideogram needs to be implemented only in multiuser systems.

addr 194 F 0 R T H -79

Display the number at address, using the format of It "

Pronounced: question-mark

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: ? @ . ,
Source usage: None.

Example:

HEX 4AC2 ? DECIMAL

Place an address on the stack and the value contained in the sixteen bits
beginning with that address is printed.

Comment: Provides a quick way of finding the current value at a given
address anywhere in memory. It is most useful in developing and debugging
programs.

ALL ABOUT FORTH

?COMP M V P- F 0 R T H

Issue an error message if not compiling.

Defined in: fig-FORTH

Implementation:

?COMP STATE @ NOT
ABORT" COMPILE ONLY " 0 ,

Source usage: ABORT" COMPILE BEGIN THEN [COMPILE]

Example:

BEGIN ?C 0 M P HERE 1 0 ,

Ensure that you are compiling as in this definition.

Comment: An ideogram used by fig-F 0 R T H and some other implementations.
It is an error-handling function which, in M V P- F 0 R T H, types its message
from an in-line ABORT" string.

?CONFIGURE MVP-FORTH

Display the current configuration for all available disk drives. The density
code for each drive is given as an integer from 0 through 6, with the following
interpretation:

0 - 511 Single Sided, Single Density (5-SSS D)
1 - 8" Single Sided, Single Density (8-SSS D)
2 - 8" Double Sided, Single Density (8-DSSD)
3 - 811 Single Sided, Double Density (8-SSDD)
4 - 811 DoubLe Sided, Double Density (8- D S D D)
5 - 811 Single Sided, Extended Density (8-SS EXT)
6 - 811 Double Sided, Extended Density <8-D SEX T)

The number of drives available is determined by the value of the constant
MAX-DR V, which may be altered.

Defined in: MVP-FORTH

Implementation:

?CONFIGURE CR CR MAX-DRV
•11 DRIVES WITH DENSITIES: 11
MAX-DRV 0 DO I DR-DEN 2 SPACES LOOP
CR CR II DENSITY CODE II

CR II 0- 5-SSSD 11 CR ." 1 - 8-SSSD"
c R II 2 - 8- D s s D II c R • II 3 - 8-S s D D II
CR II 4- 8-DSDD 11 CR ." 5- 8-SSEXT"
c R II 6 - 8- D s E X T II

ALL ABOUT FORTH 73

?CSP

?DUP

74

C R ;

Source usage: C 0 N FIGURE

Example:

?CONFIGURE

Display
settings.

current physical drive parameters, without
Stacks and dictionary remain unaffected.

changing their

Comment: ? C 0 N FIGURE displays the contents of the array, DEN, for drives
numbered 0 through MAX-DR V Less one. To change these values from the
terminal, use CONFIGURE.

MVP-FORTH

Issue error message if stack position differs from value saved in CSP.

Defined in: fig-FORTH

Implementation:

?CSP SP@ CSP @
ABORT" DEFINITION NOT FINISHED" . ,

Source usage: ; DOES>

Example:

. , ?CSP COMPILE ;S SMUDGE [COMPILE] [. , IMMEDIATE

In this definition from the M V P-F 0 R T H source code, the ideogram does the
error checking.

Comment: An ideogram used by fig-F 0 RT H and some other implementations.
It is an error-handling function which, in MVP-FORTH, types its message
from an in-Line ABORT" string.

n n (n > 184 FORTH-79

Duplicate n if it is non-zero.

Pronounced: query-dup

Defined in: FORTH-79, STARTING FORTH

Implementation:

: ? D UP DUP IF DUP THEN ;

ALL ABOUT FORTH

?ERROR

? EXEC

Source usage: FORGET SPACES TYPE

Example:

INFORM DISK-ERROR 01 ?DUP
IF " DISK ERROR CODE" THEN 0 ,

The message is printed only when the value is non-zero.

Comment:. This is the current ideogram for the now obsolete one - D UP • It
saves having to DR 0 P the value from the stack should a test, as for IF ,
turn out faLse.

f n NOT USED

Issue an error message number n , if the boolean flag is true.

Defined in: fig-FORTH

Implementation:

This ideogram is not implemented because the messages are not handled from
the disk as in fig-FORTH.

Comment: Used to select an error message from disk in fig-IF 0 R T H if
WARNING is set to 1, or the message number if WARNING is se~t to zero.
Other implementations of F 0 R T H handle error messages in diffe1·ent ways.

NOT USED

Issue an error message if not executing.

Defined in: fig-FORTH

I mple mentation:

(This ideogram is not implemented in MVP-FORTH.)

Comment: Not a FORTH-79 ideogram. Used in fig-FORTH and may be
present in other implementations of F 0 R T H.

?LOADING MVP-FORTH

Issue an error message if not Loading.

Defined in: fig-FORTH

Implementation:

ALL ABOUT FORTH 75

?PAIRS

:?LOADING
ABORT"

Source usage:

Example:

BLK iil NOT
USE ONLY WHEN LOADING" . ,

None.

--> ?LOADING 0 >IN B/SCR iil OVER
MOD BLK +! ; IMMEDIATE

This fig-F 0 R T H definition illustrates the use of the ideogram. It will
not work in M V P-F 0 R T H, and there are better ways to Load multiple screens
(See TH R U).
Comment: Not a FORTH-79 STANDARD ideogram. Used in fig-FORTH
and may be present in other implementations of F 0 R T H.

n1 n2 M V P- F 0 R T H

Issue an error message if n1 does not equal n2. The message indicates that
compiled conditionals do not match.

Defined in: fig-FORTH

Implementation:

?PAIRS
ABORT" CONDITIONALS NOT PAIRED"

Source usage: +LOOP /LOOP AGAIN
ELSE THEN UNTIL

Example:

. ,

AGAIN 1 ?PAIRS COMPILE BRANCH HERE . , ,

In a correct colon definition," 1 ?PAIRS" will encounter the value 1 Left
on the stack by the corre spending BEGIN. This ensures the proper nesting in
practically all cases.

Comment: Not a FORTH-79 STANDARD ideogram. Used in fig-FORTH
and may be present in other implementations of F 0 R T H.

?STACK MVP-FORTH

Issue an error message if the stack is out of bounds. This definition may be
installation dependent.

Defined in: fig-FORTH

76 ALL ABOUT FORTH

Implementation:

?STACK SPQl SO SWAP U<
ABORT" EMPTY STACK "
S P Ql H E R E 80 + U <
ABORT" FULL STACK " . ,

Source usage: <ABORT> INTERPRET

Example:

INTERPRET
BEGIN -FIND

IF STATE Ql <
IF 2- , ELSE 2- EXEC UTE THEN ? S T A C K

ELSE HERE NUMBER DPL Ql 1+
I F _[C 0 M P I L E J D L I T E R A L
ELSE DROP [COMPILE] LITERAL THEN ?STACK
THEN

A GAIN ;

This definition from an early version of the source illustrates this
ideogram. Note that stack checking is an expensive operation best reserved
for outermost loops and recursive definitions.

Comment: Not a FORTH-79 STANDARD ideogram. Used in fig-FORTH

I
and may be present in other implementations of F 0 R T H. STARTING F 0 R T H
uses this ideogram with a different function.

?STREAIM f --- MVP-FORTH

Issue an error mess a~e if the flag is true indi eating that the input stream is
exhausted.

I Defined in: MVP-10RTH

Implementation:

: ?STREAM ABORT" INPUT STREAM EXHAUSTED";

Source usage: (ABORT"

Example:

(-1 >I N +! 2 9 W 0 R D C Ql 1 +
HERE +Cal ~9 = NOT
?STREAM ; IM[MEDIATE

I

The example comes from the M V P-F 0 R T H source code.

Comment: This ideogram signals an error condition, and is available for the
program mer.

ALL ABOUT FORTH 77

?TERMINAL f MVP-FORTH

@

78

Perform a test of the terminal keyboard for actuation of the break key. A
true flag indicates actuation. This definition is installation dependent.

Defined in: fig-FORTH

Implementation:

8080:

CODE ?TERMINAL 0 H LXI PQTER JMP END-CODE

Source usage: LIST

Example:

TEST 1000
IF LEAVE

1 D 0
THEN

I •
LOOP

?TERMINAL . ,
With this definition, TEST will start printing numbers which can be

interrupted any time by hitting any key in the M V P-F 0 R T H implementation.

Comment: Not a FORTH-79 STANDARD ideogram. Used in fig-FORTH
and may be present in other implementations of F 0 R T H. It is a convenient
test in a definition which permits interrupting a Loop by entering something
from the keyboard. There is nothing like it when the paper in the printer
hangs up. It is, however, not defined in most versions ofF 0 R T H, because of
its installation dependency which would Limit portability.

addr n 199 F 0 R T H -79

Leave on the stack the number contained at addr.

Pronounced: fetch

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

CODE @ H POP M E MOV H INX M D MOV
D PUSH NEXT J M P EN D-C 0 DE

Source usage: Many.

Example:

ALL ABOUT FORTH

ABORT

ABORT"

HEX 4AC2 @ DECIMAL

Place the address on the stack, fetch the value at that address and then
print it.

Comment: A common and frequently used F 0 R T H ideogram present in almost
all implementations.

101 FORTH-79

Clear the data and return stacks, setting execution mode. Return control to
the terminal.

Defined in: FORTH-79, fig-FORTH

Implementation:

: ABORT 'ABORT EXECUTE . ,
Source usage: C 0 L D

Example:

ABORT

This simple ideogram will clear the stack and return to F 0 R T H so that you
can begin again. Your definitions are not forgotten.

Comment: In some versions of F 0 R T H, this ideogram also includes a
statement of the name of the version and other information, while in F 0 R T H-
79, no indication is made. Since it is vectored, you may modify its actions
however you please. Normally, ABORT invokes <ABORT>.

flag c MVP-FORTH

Used in a colon-definition. If the flag is true, print the following text, till
" Then execute A B 0 R T.

Form: ABORT" stack empty"

Pronounced: abort-quote

Defined in: FORTH-79(R), STARTING FORTH

Implementation:

ABORT"
c@

IF 1
ELSE

?C 0 M P
22 =

>IN +!
22 W 0 R D

COMPILE <ABORT"> 1ST REAM

0 C,
DUP C@ 1+ SWAP OVER

ALL ABOUT FORTH 79

A BS

AGAIN

80

+
THEN

C@ . ,
22 = N 0 T
IMMEDIATE

?STREAM ALLOT

Source usage: Many.

Example:

?I DUP 0= ABORT" DIVISION BY ZERO " I . ,

This example invents a new division operator which works exactly Like I
unless the divisor is zero.

Comment: A convenient way of providing error messages when aborting a
routine.

n1 n2 108 F 0 R T H -79

Leave the absolute value of a number.

Pronounced: absolute

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: A BS DUP +- . ,

Source usage: Ml M*

Example:

-45 A BS

Enter the negative value on the stack and it is converted to a positive
value.

Comment: A common ideogram in all versions of F 0 R T H, operates on signed
single precision integers. Note that" -32768 ABS "returns the negative
vaLue -32768 because its absolute value cannot be represented as a signed 16
bit number.

addr n (compiling)
(run-time)

I, C M V P-F 0 R T H

Effect an unconditional jump back to the start of a BEGIN-AGAIN loop.

Defined in: FORTH-79(R), fig-FORTH

Implementation:

ALL ABOUT FORTH

ALL 0 T

AND

AGAIN
HERE

1
,

?PAIRS COMPILE BRANCH
; IMMEDIATE

Source usage: INTERPRET QUIT REPEAT

Example:

TEST 0 BEGIN 1+ DUP AGAIN ;

You will have to reboot your system if you try this example- a good Lesson
Defines an infinite Loop to print the number series beginning with the value 1.

Comment: An ideogram used to implement M V P-F 0 R T H, but not part of
FORTH-79.

n 154 F 0 R T H -79

Add n bytes to the parameter field of the most recently defined word.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: ALLOT D p +! . ,

Source usage: , C, CREATE VARIABLE

Example:

VARIABLE NEW-VALUE 20 ALLOT

After creating an uninitial ized variable, NEW-vALUE, 20 bytes are
skipped over in the dictionary before a new definition will be compiled.
These could be used as a small buffer, for example.

Comment: ALlows one to reserve space in the definition of a new ideogram.
This space can be used in a variety of ways s1,.1ch as making room for an array.
It is the normal way to reserve space for arrays, buffers and other data
structures.

n1 n2 n3 183 FORTH-79

Leave the bitwise logical 'and' of n1 and n2.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

ALL ABOUT FORTH 81

8080:

CODE AND D POP H POP E A MOV L ANA
A L MOV D A MOV H ANA A H MOV
HPUSH JMP END-CODE

Source usage: BUFFER

Example:

TEST E 5 p @ 20 A N D IF • II R E A D y II T H E N ;

This ideogram is used as a mask to see if bit 6 of an input port is set and, if
it is, to type READY.

Comment: This ideogram allows the masking of the bit pattern of one number
on the stack with the other, an operation which is common in computing.

ASSEMBLER NOT USED

B/B U F

Sets C 0 NT EXT vocabulary to ASSEMBLER if that vocabulary is
implemented.

Comment: The implementation of this ideogram is left to the user. It is
machine- and implementation- dependent. Although not a part of the M V P
F 0 R T H implementation, it may be written and loaded in a high-level source
code form.

n NOT USED

A constant leaving 1024, the number of bytes per block buffer.

Pronounced: bytes-per-buffer

Defined in: FORTH-79(R), fig-FORTH

Implementation:

400 CONSTANT B/BUF

Source usage: None.

Example:

B/B U F

This ideogram followed by
buffers.

will print the current size of the disk

Comment: An installation dependent primitive which may be available in

82 ALL ABOUT FORTH

B/SC R

BACK

other !implementations of FORTH. In many implementations of fig-FORTH,
the v~Lue of this constant may be hex 80. Note that the implementation
valuef are all in hexadecimal.

I n NOT USED

Thi~ constant leaves the number of blocks per editing screen. By
con~ention, an editing screen is 1024 bytes organized as 16 Lines of 64
cha{racters each.

i
I

Defined in: fig-FORTH

Implementation:

8 CONSTANT B/SCR

Source usage: None.

Example:

B/SC R

This example will print the number of block buffers necessary for a full
screen.

Comment: An installation dependent primitive necessary in some versions
of F 0 R T H.

addr NOT USED

Calculate the backward branch offset from HERE to addr and compile into
the next available dictionary memory address.

Defined in: fig-FORTH

Implementation:

: BACK HERE . , ,

Source usage: None.

Example:

U NT I L 1 ? PAIRS C 0 M PILE OB RANCH BACK ;
IMMEDIATe

This example defines UNTIL in an alternative fashion to the one used to
describe the ideogram.

Comment: Not used in the M V P-F 0 R T H implementation.

ALL ABOUT FORTH 83

BASE

BEGIN

84

addr u, 115 F 0 R T H -79

Leave the address of a variable containing the current input-output numeric
conversion base. 2 •• 70

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

32 USER BASE

Source usage: # CONVERT DECIMAL HEX

Example:

BINARY 2 BASE . ,
Add the definition of BINARY to your vocabulary.

Comment: The reference variable used to convert numeric input to the
binary form in which it is stored on the stack and in memory. It can also be
used for coding alphanumeric information by utilizing unusual values.

addr n (compile time) I, C, 147 FORTH-79

Used in a colon definition. BEGIN marks the start of a word sequence for
repetitive execution. A BEGIN-UNTIL Loop will be repeated until flag
is true. A BEGIN-WHILE-REPEAT loop will be repeated until flag is
false. This ideograms after UNTIL or REPEAT will be executed when
either loop is finished. flag is always dropped after being tested.

Form: BEGIN
BEGIN

flag UNTIL
flag WHILE

or
REPEAT

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: BEGIN ?COMP HERE 1 ; IMMEDIATE

Source usage: #S B L 0 C K B U F F E R <I N T E R P R E T >
TRAVERSE

Example:

TEST 0 BEGIN 1+ DUP • DUP 10 = UNTIL DROP
A definition which will print the vaLues 1 through 10.

. ,

Comment: Used in colon definitions to delimit a nestable structure

ALL ABOUT FORTH

Bl

BlANK

controlling repetitive execution.

c 176 MVP-FORTH

A constant that Leaves the ASCII value for "blank".

Defined in: FORTH-79(R), fig-FORTH

Implementation:

20 CONSTANT Bl

Source usage: -FIND -TRAiliNG
<NUMBER> SPACE

Example:

SPACE Bl EMIT ;

A definition which will print a space.

Comment: A useful ideogram allowing one to enter the ASCII value of a
"blank" independent of the number system currently in use. Though not
always included in F 0 R T H implementations, it can be easily added if needed.

addr n M V P- F 0 R T H

Fill an area of memory over n bytes with the value for ASCII blank,
starting at addr • If n is Less than or equal to zero, take no action.

Defined in: MVP-FORTH, STARTING FORTH

Implementation:

: BLANK BL FILL . ,

Source usage: TEXT

Example:

VARIABLE NAME 18 ALLOT
N A M E 20 B L A N K

Create a memory Location of 20 bytes to store a name and then initialize the
field with ASCII spaces.

Comment: This ideogram and its plural do exactly the same thing. There is
no reason to have both available. This ideogram does not depend upon
knowing the ASCII value of a blank in the current number base. fig-FORTH

ALL ABOUT FORTH 85

BLANKS

BLK

BLOCK

86

gives this function the name BLANKS.

addr n NOT USED

This ideogram, in fig-FORTH, has the same function as BLANK in MVP
F 0 R T H.

addr u, 132 F 0 R T H -79

Leave the address of a variable containing the number of the mass storage
block being interpreted as the input stream. If the content is zero, the input
stream is taken from the terminal. The value of the variable is an unsigned
number.

Pronounced: b-L-k

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

34 BLK USER

Source usage: II ?LOADING <L 0 AD> QUIT WHERE

Example:

BL K @

When entered from the terminal, this user variable will print the value of
0 indicating that the terminal is being interpreted.

Comment: A common ideogram in most versions of F 0 R T H. Together with
>IN, it determines the location of the next character from the input stream.

n addr 1 91 F 0 R T H -79

Leave the address of the first byte in block n. If the block is not already
in memory, it is transferred from mass storage into whichever memory buffer
has been least recently accessed. If the block occupying that buffer has
been UPDATEd (i.e. modified), it is rewritten onto mass storage before block
n is read into the buffer. n is an unsigned number. If correct mass
storage read or write is not possible, an error condition exists. Only data
within the Latest block referenced by BL 0 C K is valid by byte address, due to
sharing of the block buffers.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

ALL ABOUT FORTH

: BLOCK 'B L 0 C K @ EXECUTE . ,

Source usage: <LINE> <WORD>

Example:

45 BLOCK

Entering the desired block number followed by the ideogram Leaves the
address of the beginning of that block on the top of the stack. If it is not
already in a buffer, the block will be read in from disk.

Comment: A useful ideogram which speeds access to disk information when it
is not modified. The MVP-FORTH has fixed a problem in some earlier
implementations of fig-F 0 R T H, which sometimes failed to update the last two
Lines of a source screen on a disk. In MVP-FORTH, this ideogram is
vectored to increase flexibiLity; it defaults to <B L 0 C K >.

BLOCK-READ
BLOCK-WRITE

NOT USED

BMOVE

These are the preferred names for the installation dependent code to read and
write one block to the disk.

Defined in: fig-FORTH

Implementation:

These ideograms are not implemented in MVP-FORTH.

Comment: Some version of these ideograms may be present to assist in disk
I/0. The actual code falls outside the STANDARD and is implementation
and hardware dependent.

addr1 addr2 n UTILITY

Move n bytes beginning at address addr1 to addr2 • Perform the
operation correctly even if the ranges involved overlap.

Pronounced: b-move

Defined in: MVP-FORTH

Implementation:

BMOVE ROT ROT DDUP U<
IF R 0 T <C M 0 V E
ELSE ROT CMOVE THEN ;

ALL ABOUT FORTH 87

BRANCH

88

Source usage: None.

Example:

HERE PA D 20 B M 0 V E

Will move the twenty bytes beginning at HERE to PAD.

Comment: Using C M 0 V E with overlapping source and destination fields may
have an annoying or disastrous result. ALthough <C M 0 VE may be substituted
for an offending C M 0 V E, the B M 0 V E chooses the correct move order
automatically. This becomes one Less worry for the program mer.

MVP-FORTH

The run-time procedure to unconditionally branch. An in-Line offset is
added to the interpretive pointer IP to branch ahead or back. BRANCH
is compiled by ELSE, AGAIN, REPEAT.

Defined in: fig- F 0 R T H

Implementation:

8080:

CODE BRANCH
HERE LABEL

H IN X M
NEXT JMP

BRAN1 B H MOV C L MOV ME MOV
D MOV H DCX D DAD L C MOV H 8 MOV

END-CODE

Source usage: AGAIN ELSE REPEAT

Example:

: A GAIN 1 ?PAIRS COMPILE BRANCH HERE . , ,

The definition of the implementation of AGAIN illustrates the use of this
ideogram. " C 0 M PILE BRANCH " generates the pseudo-opcode to which the
clause" HERE , "supplies the displacement.

Comment: A primitive which is not available in some implementations of
F 0 R T H. The compilation address of BRANCH functions as an unconditional
branching opcode for the address interpreter. An in-Line branch
displacement must follow any compiled instance of this ideogram. These
displacements are automatically generated by the control structures. User
defined control structur~~s such as CASE may be implemented by using
BRANCH and OBRANCH within new immediate compiling ideograms.

CAUTION: Executing BRANCH directly from the terminal or screen will
crash your system.

ALL ABOUT FORTH

BUFFER

BYE

n addr 130 F 0 R T H -79

Obtain the next block buffer, assigning it to block n. The block is not read
from mass storage. If the previous contents of the buffer has been marked as
UPDATEd , it is written to mass storage. If correct writing to mass
storage is not possible, an error condition exists. The address Left is the
first byte within the buffer for data storage. n is an unsigned number.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

BUFFER
BEGIN
USE
IF R@
R@

USE @ DUP >R
+B U F UNTIL
R@ @ 0<
2+ R@ @ 7FFF

R@ PREV R>
AND

2+ ;
0 R/W THEN

Source usage: B L 0 C K EMPTY-BUFFERS SA V E -BUFFERS

Example:

S A V E -B U F F E R S #B U F F 1 + 0
DO 0 BUFFER DROP LOOP ;

The implementation of SAVE-BUFFERS illustrates this ideogram and is
fully described under its discussion.

Comment: Allows one to enter data into a new block for Later storage without
reading the current content of that block from the disk. If the buffer is
marked for update it will be Later written to disk.

M V P- F 0 R T H

Leave F 0 R T H and return to the underlying operating system.

Defined in: MVP-FORTH

Implementation:

BYE FREEZE HERE 0 100 U/M 0 D
SWAP DROP 1+ 2/ 2*
DECIMAL CR II PAGEs II CR 0 GO ;

Source usage: None.

Example:

BYE

Entering this ideogram calculates and then prints the space neces!:>ary for

ALL ABOUT FORTH 89

c !

c,

90

saving as a CP/M C 0 M file, rounded up to the next even integer value as
required, and then exits to CP/M.

Comment: Though not included in the usual FORTH vocabulary it is
available in many implementations. It allows one to exit F 0 R T H to an
underlying operating system. The size indicates• the number of segments
which must be included to save F 0 RT Has a load module, in this case by CP/M.
The actual implementation is implementation dependent.

n addr 219 F 0 R T H -79

Store the Least significant 8-bits of n at addr •

Pronounced: c-store

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

CODE C! H POP D POP E M MOV
N E X T J M P EN D-C 0 DE

Source usage: C, EXPECT HOLD WORD

Example: CAUTION: May corrupt or crash your system.

HEX 41 4AC2 C! DECIMAL

Place the ASCII value of the character A on the stack followed by an
address. This ideogram will store that value in the addressed byte.

Comment: Note that the most significant bits of n are ignored and lost.
Since C! will store anywhere in your memory space, take care not to corrupt
your dictionary, F 0 R T H nucleus, or operating system.

n 152 M V P- F 0 R T H

Store the Low order 8 bits of n at the next byte in the dictionary, advancing
the dictionary pointer.

Pronounced: c-comma

Defined in: FORTH-79(R), fig-FORTH, STARTING FORTH

Implementation:

: c, HERE c ! 1 ALLOT . ,

ALL ABOUT FORTH

C/L

C@

Source usage: D 0 ES>

Example:

00 c,

Insert the code for an 8080/Z80 N 0 0 P on the top of the dictionary.

Comment: A convenient byte operator for filling dictionary space one byte
at a time, as when constructing name headers, machine code sequences, or
parameter fields. It may not be available on some 16-bit machines.

n M V P- F 0 R T H

Constant Leaving the number of characters per Line; used by the editor.

Defined in: fig-FORTH (8080>

Implementation:

40 CONSTANT C/L

Source usage: <LINE> WHERE

Example:

C/L

This ideogram places the value of the Length of a Line on a screen, and, in
the example, the value is printed.

Comment: C/L is used in calculations within the EDITOR. It is not
present in all systems, and its vaLue, normally 64, may be terminaL dependent.

addr byte 156 F 0 R T H -79

Leave on the stack the contents of the byte at addr <with higher bits zero, in
a 16-bit field).

Pronounced: c-fetch

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

CODE C@ H POP M L MOV 0 H MVI
H PUSH J M P END -C 0 DE

ALL ABOUT FORTH 91

CFA

CHANGE

92

Source usage: Many.

Example:

HEX 4AC2 COl EMIT DECIMAL

Place an address on the stack and fetch the byte value at that address.
Presuming that it is an ASCII character, then print it.

Comment: Allows fetching individual bytes in memory for inspection or
output as in text processing.

pfa cfa M V P- F 0 R T H

Convert the parameter field address of a definition to its code field address.

Defined in: fig-FORTH

Implementation:

: C FA 2- . ,
Source usage: Many.>
Example:

'?CONFIGURE CFA EXECUTE

Find the parameter field address of the ideogram ?C 0 N FIGURE and convert
it to the code field address so that it can be executed.

Comment: A function which is needed in an indirect threaded code
implementation of F 0 R T H, to allow execution of ideograms after being found
in the dictionary. This practice, useful in some applications, is
implementation dependent and violates the usage constraints of the F 0 R T H-
79 STANDARD.

MVP-FORTH

Modify the size of your F 0 RT H image and the number of buffers in use
according to the current values of LIMIT and #BUFF.

Defined in: MVP-FORTH

Implementation: Note - the following auxiliary definitions are compiled
headerless from source code. One can add those ideograms to his vocabulary.

CHANGE
I FIRST

F R E E Z E LIMIT H DB T #B U F F * D U P
US DUP RTS DUP !NIT-USER

ALL ABOUT FORTH

CLEAR

[INIT-USER 4 + J LITERAL
DUP [INIT-USER 2+ J LITERAL
UP OVER RPP ORIGIN HERE
HERE ROT ROT ROT ROT EXECUTE . ,

C Note: H DBT is compiled to a hex literal value 404 which is the number of
bytes in a block buffer plus four. US is compiled to a hex Literal value 4C
which is the size of the user area. R TS is compiled to a hex Literal value of
AO which is the offset below the return stack pointer at which the stack
pointer is Located.)

Source usage: None.

Example:

HEX
8000 LIMIT

4 #BUFF
CHANGE
DECIMAL

First set the constants LIMIT and #BUFF to the desired values, then
execute CHANG E.

Comment: This ideogram Lets you dynamically alter the number and Location
of your block buffers. Simply modify the values in the constants LIMIT and
#BUFF and enter CHANG E. ALL the other buffer management parameters,
including the startup data in Low memory, are adjusted accordingly. This
allows much greater flexibility in deployment of your available RAM.

n M V P- F 0 R T H

Clear Screen n to all blanks.

Defined in: MVP-FORTH

Implementation:

CLEAR OFFSET @ + BUFFER 400
BL FILL UPDATE . ,

Source usage: None.

Example:

WIPE SC R CLEAR . ,

This ideogram could be used to define WIPE for an EDITOR.

Comment: This ideogram performs the function in the original fig-F 0 R T H
EDITOR. It is included in the MVP-FORTH implementation so that
rudimentary screen editing can be done with the ideogram P P •

ALL ABOUT FORTH 93

C M 0 VE

COLD

94

~OM

addr1
-to ~
addr2 n 153 F 0 R T H -·79

Move n bytes beginning at address addr1 to addr2 • The contents of
addr1 1 s moved first proceeding toward high memory. If n is zero or
negative nothing is moved.

Pronounced: c-move

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

CMOVE DUP 1 <
IF DDROP DROP ELSE <CMOVE> THEN

Source usage: COLD FREEZE WORD TEXT

Example:

HEX 4AC2 6AC2 20 CMOVE DECIMAL

. ,

Place the source address and then the destination address followed by a
count on the stack followed by the ideogram and the move of 20 bytes wiLl be
accomplished. Make sure that it won't write over anything important.

Comment: This ideogram will propagate data toward high memory when source
and destination fields overlap. Although such an effect may sometimes be
desirable, BMOVE averts that phenomenon.

MVP-FORTH

The cold start procedure to adjust the dictionary pointer to the minimum
standard and restart via ABORT. May be called from the terminal to
remove application programs and restart.

Defined in: fig-FORTH

Implementation:

COLD EMPTY-BUFFERS
!NIT-USER UP @ 6
PAGE II MVP-FORTH
1 DENSITY FIRST
DRO 0 EPRINT

+ 2A CMOVE
VERSION 1.0
USE FIRST

!NIT-FORTH @ FORTH 2+
DECIMAL ABORT ;

II C R
PREV

Source usage: Used only for start up in the source code.

ALL ABOUT FORTH

Example: CAUTION: This will erase all new definitions.

COLD

This ideogram will cause the version of F 0 R T H in memory to be
reconfigured to its: condition on start up. All source code and application
programs loaded upon the start up image are lt::>st.

Comment: This ideogram is a start-up primitive present only in some
versions of F 0 R T H. In other versions other ideograms may be used to remove
application programs from the dictionary. Some versions of F 0 R T H
overwrite the star·tup information and it is impossible to restart without
rebooting the entire system. COLD is similar to EMPTY.

COMPILE c 146 F 0 R T H -79

When a word containing COMPILE executes, the 16-bit value following
the compilation address of COMPILE is copied <compiled) into the
dictionary. i.e., COMPILE DUP will copy the compilation address of
D UP.

Form: COMPILE [0 ,] (wiLl copy a zero).

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: COMPILE 2+ . , , ?COMP DUP >R R> @

Source usage: +LOOP ; ?COMP <."> AGAIN
DO DOES> ELSE IF LITERAL LOOP UNTIL

Example:

LITERAL STATE @

IF COMPILE LIT
IMMEDIATE

, THEN . ,

The implementation of LITERAL provides an example of this ideogram.

Comment: COMPILE is usually used within immediate words such as IF
and D 0 ES> •

ON FIGURE MVP-FORTH

This ideogram Lets you change the number of drives available on your system
and the physical sector formatting used on each drive. First, it asks you to
key in the total number of drives ---a digit from 1 through 5; any other key
will abort the process, changing nothing. Once the number of drives is set,
you·are prompted to enter a "density code" for each drive starting with drive

ALL ABOUT FORTH 95

o.

0 - 5" Single Sided, Single Density (5-SSSI>)
1 - 8" Single Sided, Single Density (8-SSS I>)
2 - 8" Double Sided, Single Density (8-DSSD)
3 - 8" Single Sided, Double Density (8-SSDD)
4 - 8" Double Sided, I> oub le Density (8- D S I> D)
5 - 8''' Single Sided, Extended Density (8-SS EXT)
6 - 8" Double Sided, Extended Density (8-1> SEX T)

No density parameters will be updated until a correct code has been keyed in
for every requested drive. Thus, this stage of C 0 N FIGURE may be
nondestructivel.y aborted by the user at any time. On successful completion,
OFFSET is cleared, directing BLOCK access to drive 0.

Defined in: MVP-FORTH

Implementation:

CONFIGURE ?CONFIGURE
CR ." NUMBER OF DRIVES? " KEY 31

DUP 5 U< NOT
ABORT" TOO MANY DRIVES"
D. U P 31 + E M I T 1 + M A X - D R V
MAX-DRV 0 DO CR." DRIVE II I II ? II

KEY 30 DUP 7 U< NOT
ABORT" OUT OF RANGE"
!>UP 30 + EMIT I 2* DEN + ! LOOP
ORO CR CR II ORO SELECTED II CR

Source usage: None.

Example:

CONFIGURE

The system shows you the current drive settings, and then prompts you to
change them.

Comment: This ideogram is designed to be used from the terminal. For
program control of drive configuration the array DEN and the alterable
constant MAX-DR V may be modified directly. The use of dynamically
adjustable disk parameters gives greater flexibility to the M V P-F 0 R T H
system. Note that DR 0 is always re-selected on completion, since the
previous value of 0 F FSET may no Longer be correct. The new disk
configuration parameters may be permanently stored into the cold-start
system image on disk. (See FREEZE)

CONSTANT n 185 FORTH-79

96

A defining word to create a dictionary entry for <name>, Leaving n in its
parameter field. When <name> is later executed, n will be Left on the

ALL ABOUT FORTH

CONTEX

stack.

Form: n CONSTANT <name>

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

CONSTANT CREATE , ;CODE D INX XCHG M E MOV
H INX M D MOV D PUSH NEXT JMP END-CODE

Source usage: USER

Example:

HEX 20 CONSTANT BL DECIMAL

This example is the implementation of BL, the ASCII value of the space
haracter in hex.

omment: Theuseof CONSTANT ismoreefficientthan VARIABLE if
he value is not to be changed frequently.

- .. - addr u, 151 FORTH-79

eave theaddres~s of a variable specifying the vocabulary in which dictionary
earches are to made, during interpretation of the input stream.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

mplementation:

6 USER CONTEXT

ource u -F 1 N D BYE DEFINITIONS FORGET

xample:

CONTEXT Gl CURRENT . ,

The im lementation of DEFINITIONS Hlustrates how this ideogram is
sed.

omment: Some implementations of FORTH will chain multiple vocabularies
or searc ing while F 0 R T H -79 requires every vocabulary to chain to the
0 R T H v cabulary. C 0 NT EXT contains a pointer to a pointer to the Length
yte of the first name to be searched, but this may vary among

implementations.

ALL ABOUT FORTH 97

CONVERT d1 addr1 d2 addr2 195 F 0 R T H-79

COPY

98

Convert to the equivalent stack number the text beginning at addr1 +1 with
regard to BASE. The new value is accumulated into double number d1,
being Left as d2 • addr2 is the address of the first non-convertable
character.

Defined in: FORTH-79, STARTING FORTH

Implementation:

CONVERT
BEGIN 1+ D UP >R C@ BASE @

SWAP BASE @ U* DROP ROT
D+ DPL @ 1+
IF 1 D PL +! THEN
R>

REPEAT R> ;

Source usage: <NUMBER>

Example:

HEX 0 0 4AC2 CONVERT DECIMAL

DIGIT
BASE

WHILE
@ U*

Place a double precision value of 0 on the stack and then an address in
memory at which the ideogram is to begin its conversion.

Comment: This ideogram replaces the now obsolete (NUMBER) in the
older fig-F 0 R T H. As you might expect, no error message is given if the
numeric text converts to a number Larger than 32 bits. Any higher bits are
Lost.

n1 n2 UTILITY

Copy the contents of screen n1 to screen n2.

Defined in: fig-FORTH (EDITOR), STARTING FORTH

Implementation:

: c 0 p y SWAP BLOCK 2- UPDATE . ,
Source usage: None.

Example:

20 120 COPY

Copies screen 20 to screen 120 •

ALL ABOUT FORTH

COUNT

CR

Comment: This ideogram is defined in the vocabulary of most editors.
However, it is convenient to have it defined in the F 0 RT H vocabulary,
too.

addr addr+1 n 159 M V P-F 0 R T H

Leave the address addr+1 and the eharacter count of text beginning at
addr. The first byte at addr must contain the character count n. Range
of n i s 0 •• 2 5 5 •

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: COUNT DUP 1+ SWAP CGI

Source usage: <."> <A B 0 R T">

Example:

PAD COUNT TYPE

. ,

PAD Leaves an address of a byte which contains the number of characters
presently in PAD. This byte is placed on the stack on top of an address
which increased by one.

Comment: A one-byte count Limits string Length to 255 characters.
ALthough intended primarily for string handling, this ideogram wiLL work for
any kind of data.

160 FORTH-79

Cause a carriage-return and Line-feed to occur on the current output device.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: C R •c R Q) I EXECUTE 0 ,

Source usage: Many.

Example:

CR CR ." HELLO"

The two ideograms cause the display to advance two Lines and then print
HELLO at the Left margin of the display.

Comment: Placing the ideogram, C R, in the input stream is not equivalent to

ALL ABOUT FORTH 99

CREATE

100

pressing the "Return" key on the terminal keyboard. Because of difference
among output devices in the inclusion of line-feeds, this ideogram i
vectored. This will simplify modification if necessary. Normally, c
vectors to <C R >.

239 F 0 R T H -79

A defining word used to create a dictionary entry for <name> , withou
allocating any parameter field memory. When <name> is subsequentl
executed, the address of the first byte of <name>'s parameter field i
left on the stack.

Form: C R E A T E <name>

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

CREATE BL WORD DUP DUP 1+ COl 0 =
ABORT" ATTEMPTED TO REDEFINE NULL"
DUP CONTEXT @ @ <FIND> '
IF DDROP WARNING @

IF DUP COUNT TYPE SPACE
II ISN'T UNIQUE II THEN

THEN C@ WIDTH @ MIN 1+ ALL 0 T D UP 80
T 0 G G L E H E R E 1- 80 T 0 G G L E LATEST , 2 ALLOT
CURRENT @ ;CODE D INX D PUSH NEXT JMP
END-CODE

Source usage: CONSTANT VARIABLE VOCABULARY

Example:

VARIABLE CREATE 2 ALLOT ;

The implementation of VA RIA B L E illustrates how this ideogram is used to
create a new header for an ideogram in the dictionary.

Comment: Under FORTH-79, CREATE builds a VARIABLE header with no
parameter space. In contrast, fig-F 0 R T H 's CREATE sets up a C 0 DE
definition which will jump into the parameter field and crash unless <;C 0 DE>
is used to redirect the code address toward a valid machine language routine.
F 0 R T H -79's CREATE now replaces the older <BUILDS ideogram in generating
defining words. Care must be taken by those already familiar with this word
when they move to different implementations of F 0 R T H. Note: Since the
ASCII null is used as an ideogram to terminate interpretation from terminal
and disk buffers, it must not be redefined.

ALL ABOUT FORTH

CSP addr u MVP-FORTH

A user variable temporarily storing the stack pointer position, for
compilation error checking.

Defined in: fig-FORTH

Implementation:

38 USER CSP

Source usage: ?CSP

Example:

:! c s p SP@ CSP . ,
This example comes from fig-FORTH and is not used in MVP-FORTH.

Comment: CSP stands for "check stack position." If the stack position is
changed within a colon definition, an error condition is raised. This
compiler security is a fig-F 0 R T H feature outside the scope of the F 0 R T H -79
STANDARD.

CURRENT addr u, 137 FORTH-79

Leave the address of a variable specifying the vocabulary into which new word
definitions are to be entered.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

3A USER CURRENT

Source usage: DEFINITIONS FORGET LATEST

Example:

LATEST CURRENT @ @ . ,
The implementation of LATEST illustrates the use of this variable.

Comment: Early printings of the fig-FORTH Glossary Left out this
ideogram. Now it is present in it and most other implementations ofF 0 R T H.
CURRENT contains a pointer to a pointer to the Length byte of the latest name
in the current vocabulary, but this may vary among implementations.

ALL ABOUT FORTH 101

D !

D+

102

d addr M V P- F 0 R T H

Store d as a double precision intege~

Pronounced: d-store

l>efined in: MVP-FORTH

Implementation:

8080:

C:ODE D! H POP D POP E M MOV H INX D M MOV H INX
D POP E M MOV H INX D M MOV NEXT JMP END-CODE

Source usage: None.

Example: C AUT I 0 N: May corrupt or crash your system.

HEX 33.33 4AC2 D! DECIMAL

Enter the double precision value on the stack taking four bytes. Then
remove these four bytes from the stack and store them in four bytes beginning
at memory address 4AC2. FORTH-79 leaves the order of the bytes in each
pair unspecified.

Comment: A useful operation whose function is provided in the extended
vocabulary of FORTH-79. This ideogram D! is used in MVP-FORTH to avoid
the misleading connotations of the numeral 2 • The synonym 2! may be
loaded as an alias for FORTH-79 Double Number Word Set compatibilty.

d1 d2 d3 241

Leave the arithmetic sum of d1 plus d2 •

Pronounced: d-plus

D'efined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

6 H LXI
M D M 0 V

SP DAD ME MOV C M MOV
B M MOV B POP H POP D DAD

F 0 R T H -79

CODE D+
H IN X
XCHG
B AD C

H POP L A MOV C ADC A L MOV H A MOV
A H M 0 V B POP DPUSH JMP END-CODE

Source usage: M+ M*/ CONVERT

Example:

ALL ABOUT FORTH

D+-

D-

2.2 3.3 D+

Place two double prec1s1on values on the stack and add them Leaving the
sum, 55, as a double precision value on the stack. Note that the Location of
the decimal point is not maintained.

Comment: A primitive present in most versions of F 0 R T H with which other
double precision ideograms can be defined.

d1 n d2 MVP-FORTH

Apply the sign of n to the double number d1 , Leaving it as d2 •

Pronounced: d-plus-minus

Defined in: fig-FORTH

Implementation:

: D +- 0< IF DNEGATE THEN . ,
Source usage: D.R DABS M/ M*

Example:

2.2 -1 0+-

Place a double precision value on the stack followed by a single precision
negative value and then the ideogram to convert, in this case, the 22 to -22.
Note that the position of the decimal point is Lost.

Comment: Similar to the ideogram, +- , for single precision numbers and
useful for double precision number manipulations.

d1 d2 d3 UTILITY

Subtract d2 from d1 and Leave the difference d3 •

Pronounced: d-minus

Defined in: FORTH-79(E), STARTING FORTH

Implementation:

: D- DNEGATE D+ . ,

Source usage: None.

Example:

ALL ABOUT FORTH 103

D.

D.R

104

3.3 2.2 D-

Place two double precision values on the stack and subtract them leaving
the difference as the double precision value, 11 • Note that the Location of
the decimal point is not maintained.

Comment: This is part of the FORTH-79 Double Number Word Set which can
be defined easily if it is not already present.

d (1 29) M V P- F 0 R T H

Display d converted according to BASE in a free-field format, with
one trailing blank. Display the sign only if negative.

Pronounced: d-dot

Defined in: FORTH-79(E), fig-FORTH

Implementation:

: D. 0 D.R SPACE . ,
Source usage: u.

Example:

2.2 D.

Place a double precision value on the stack and then print it. Note that
the Location of the decimal point is not maintained but the number of
s igni fie ant digits is.

Comment: The counterpart of with single precision numbers to display
double precision numbers. Note: The serial number assigned this
ideogram conflicts with that given 2-.

d n M V P- F 0 R T H

Display d converted according to BASE , right aligned in an n
character field. Display the sign only if negative.

Pronounced: d-dot-r

Defined in: FORTH-79(E), fig-FORTH, STARTING FORTH

Implementation:

D.R DEPTH 3 <
ABORT" EMPTY STACK"
> R S W A P 0 V E R D U P D +-

ALL ABOUT FORTH

DO=

D<

<# #S R 0 T
R> OVER

Source usage:

Example:

2.2 10 D. R

SIGN #>
SPACES TYPE

• R D.

. ,

Enter a double precision value, 22, and then a single precision value for
the field width, ten. This ideogram then prints the value 22 as two digits
preceded by 8 Leading blanks. Note that the Location of the decimal point is
Lost but that all of the digits are printed.

Comment: Allows formatting the output of double precision numbers. It is
actually the primitive for many of the other ideograms which output both
singLe and double precision numbers in some implementations of F 0 R T H
including M V P-F 0 R T H. Note that it traps an empty stack before garbage is
printed.

d flag UTILITY

Leave true if d is zero.

Pronounced: d-zero-equal

Defined in: FORTH-79(E), STARTING FORTH

Implementation:

: DO= OR 0= . ,
Source usage: None.

Example:

2. 2 D 0=

Enter a double precision value and test it. In this case a 0 flag will
be Left.

Comment: A Logical test for double precision numbers. The test destroys
the comparand.

d1 d2 flag 244 F 0 R T H -79

True if d1 is Less than d2 •

Pronounced: d-Less-than

ALL ABOUT FORTH 105

D=

D>

106

Defined in: FORTH-79, STARTING FORTH

Implementation:

D< ROT DDUP =
IF R 0 T R 0 T D N E G A T E D + 0<
ELSE SWAP < SWAP DROP
THEN SWAP DROP;

Source usage: U <

Example:

2.2 3.3 D<

Enter two double precision values on the stack and then compare them. In
t hi s case the v a L u e of the fLag Left on the s t a c k i s 1 • Note that the
location of the decimal point is Lost.

Comment: Though not present in many versions of F 0 R T H, it provides a
convenient tool when working with double prec1s1on numbers. The
comparison destroys both double precison comparands.

d1 d2 flag UTILITY

True if d1 equaLs d2 a

Pronounced: d-equal

Implementation:

: D = D- D 0= ;

Source usage: None.

Example:

2.2 3.3 D =

Enter two double precision values on the stack and compare them. In this
case the flag Left on the stack is 0. Note that the Location of the decimal
point is not considered.

Comment: Though not present in many versions of F 0 R T H, it provided a
convenient tool when working with double numbers. The comparison destroys
both double precision comparands.

d. d2 f UTILITY

True if d 1 is less than d 2 •

ALL ABOUT FORTH

D@

Pronounced: d-greater-than

Defined in: MVP-FORTH

Implementation:

: D > D SWAP D< 0 ,

Source usage: None.

Example:

22. 2.3 D >

Enter two double precision values on the stack and compare them. In this
case, the resulting flag is false. Note that no decimal point alignment was
performed.

Comment: This simple ideogram hardly needs adding to the vocabulary.
However, I have often tried it and found it missing, and therefore, have
included it among the UTILITY's for symmetry.

addr d UTILITY

Leave on the stack the contents of the four consecutive bytes beginning at
addr, as for a double number.

Pronounced: d-fetch

Defined in: MVP-FORTH

Implementation:

: D @ D UP 2+ @ SWAP @ 0 ,

Source usage: None.

Example:

HEX 4AC2 D@ DECIMAL

Take the four bytes beginning at address 4A C2 and place them on the stack.
F 0 R T H -79 leaves the storage order within byte pairs unspecified.

Comment: This operation is provided in M V P-F 0 R T H with the ideogram, D@,
to avoid misleading connotations of the numeral 2. The synonym 2@ may be
loaded as an alias for FORTH-79 Double Number Word Set compatibility.

ALL ABOUT FORTH 107

DABS d1 d2 MVP-FORTH

Leave as a positive double number d2 , the absolute value of a double
number, d1 • Range 0 •• 2,147,483,647.

Pronounced: d-abs

Defined in: FORTH-79(E), fig-FORTH, STARTING FORTH

Implementation:

: DABS DUP D+- . ,
Source usage: M*/

Example:

2.2 DABS

Enter a double precision value and then make its value absolute. In this
case it is left unchanged.

Comment: An almost indispensable ideogram when using double precision
arithmetic.

DCONSTANT d UTILITY

108

A defining word used to create a dictionary entry for <name>, leaving din its
parameter field. When <name> is later executed, d will be Left on the
stack.

Pronounced: d-constant

Form: 2 DCONSTANT <name>

Defined in: MVP-FORTH

Implementation:

DCONSTANT
DOES> DUP

CREATE SWAP
@ SWAP 2+

Source usage: None.

Example:

@

33.33 DCONSTANT NEW-VALUE

, , . ,

Enter the value 33.33, which will be a double precision number, and store it
in an ideogram named NEW-VALUE. Executing NEW-VALUE will then cause
the 3333 to be placed on the stack, the location of the decimal point being
Lost.

ALL ABOUT FORTH

DDROP

DDUP

Comment: In M V P•F 0 R T H, the prefix mnemonic D for double precision is
used in place of 2 which has the connotation of the numeral value. The
synonym 2CONSTANT may be used as an alias in the system for FORTH-79
doubLe precision word set compatibility.

d MVP-FORTH

Drop the top double number on the stack.

Pronounced: d-drop

Defined in: MVP-FORTH

Implementation:

8080:

CODE DDROP H POP H POP NEXT JMP END-CODE

Source usage: Many.

Example:

DDROP

This ideogram will cause the top four bytes on the stack to be removed,
which would drop a double precision number or any other four bytes.

Comment: In M V P-F 0 R T H, the prefix mnemonic D for double precision is
used in place of 2, which has the connotation of the numeral value. The
synonym 2D R 0 P may be loaded as an alias for F 0 RT H-79 Double Number Word
Set compatibility.

d d d M V P- F 0 R T H

Duplicate the top double number on the stack.

Pronounced: d-dup

Defined in: MVP-FORTH

Implementation:

8080:

CODE DDUP H POP D POP D PUSH H PUSH
DPUSH JMP END-CODE

Source usage: Many.

ALL ABOUT FORTH 109

Example:

33.33 DDUP

Place the double precision number on the stack and duplicate it.

Comment: In MVP-FORTH, the prefix mnemonic D for double precision,
is used in place of 2 which has the connotation of the numeral value. The
synonym 2DUP may be loaded as an alias for FO~RTH-79 Double Number Word
Set compatibility.

DECIMAL 197 F 0 R T H -79

Set the input-output numeric conversion base to ten.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: DECIMAL OA BASE . ,
Source usage: ABORT BYE COLD

Example:

DECIMAL

Using this ideogram assures you that the present value of BASE is decimal
10 •

Comment: This ideogram DECIMAL lets you put the value ten into BASE
without having to know its current value. Note that" 10 BASE!" is useless
regardless of the base you are currently using. Except for the disk
interface, all of the implementation code uses HE X for the number base.

DEFINITIONS 155 F 0 R T H -79

11 0

Set CURRENT to the C 0 NT EXT vocabulary so that subsequent
definitions will be created in the vocabulary previously selected as
CONTEXT.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: DEFINITIONS CONTEXT @ CURRENT . ,
Source usage: ABORT FORGET FORTH

ALL ABOUT FORTH

DEN

Example:

FORTH DEFINITIONS

This sets the necessary pointer so that new definitions will be added to the
FORTH vocabulary.

Comment: This ideogram is necessary in starting a new vocabulary or adding
to an existing one.

MVP-FORTH

An array of variables which stores a value of the variable, DENSITY, for each
of the drives up to a maximum of 5.

Defined in: MVP-FORTH

Implementation:

VARIABLE DEN 1 DEN 1 , 1 , 1 , 1 ,
Source usage: CONFIGURE DR-DEN

Example:

1 2* DEN + @

To select a value for DENSITY on drive 1, enter a value 1 and then
calculate the offset from the address of DEN to the Location of the current
density code for that drive. Then, fetch and print that value.

Comment: The values are initialized with a C 0 L D start and can be
subsequently changed according to the responses to C 0 N FIGURE. The
values associated with DENSITY are encoded as integers according to the
prompts given when C 0 N FIGURE is executed.

DENSITY addr M V P-F 0 R T H

A variable used by the disk interface. It may have a value from 0 to 6
according to the particular drive being selected.

Defined in: MVP-FORTH

Implementation:

VARIABLE DENSITY 1 DENSITY

Source usage: COLD DR-DEN SET-DRX SPDRV SPT <T&SCALC>

ALL ABOUT FORTH 111

DEPTH

DIGIT

112

Example:

DENSITY Ql

The address of the variable DENSITY
value of the variable is then fetched and

I

is ~laced
print!ed.

!

on the stack. The

Comment: In the M V P-F 0 R T H implementatidn, the original values
associated with the variable in the 8080 fig-F 0 R T H are extended to incLude a
number of possible configurations. For each vilue a different number of
sectors per track and tracks per disk are taken f om the appropriate arrays
and used i n T & S C A L C i n m a k i n g the n e c e s s ry a l c u lations to a c c e s s the
proper physical sector on the disks. The valu s are modified from those used
by fig-F 0 R T H 8080 to run with the curren inrerface.

n 238 FORTH-79

Leave the number of the quantity of 16-bit values c ntained in the data stack,
before n was added.

Defined in: FORTH-79

Implementation:

: DEPTH 2 . , so I SP Ql SWAP

Source usage: D.R

Example:

DEPTH

Find the number of values on the stack and it.

Comment: This ideogram is the FORTH-79 hi her Level alternative to
calculations which can be made with SO and SP • It is more general and
Less implementation dependent, but it is not defin d in fig-F 0 R T H and some
other systems.

c n1
c n1

n2 tf
ff

Co k)
(bad)

Converts the ASCII character c (using
equivalent n2, accompanied by a true flag.
Leaves only a false flag.

Defined in: fig-FORTH

Implementation:

ALL ABOUT FORTH

MVP-FORTH

base n1) to its binary
If the conversion is invalid,

8080:

CODE DIGIT H POP D POP E A MOV 30 SUI
1DIGIT JM OA CPI ODIGIT· JM 7 SUI OA CPI
1DIGIT JM

HERE LABEL ODIGIT L CMP 1DIGIT JP A E M 0 V
1 H LXI DPUSH JMP

HERE LABEL 1DIGIT H L M 0 V HPUSH JMP END -C 0 DE

Source usage: CONVERT

Example:

CONVERT
BEGIN 1+ DUP >R C@ BASE @ DIGIT
WHILE SWAP BASE @ U* DROP ROT BASE @

U* D+ D PL @ 1+
IF 1 D PL +! THEN
R>

REPEAT R> . ,
In this example taken for the source code of M V P-F 0 R T H, C 0 NV E R T calls

DIGIT to test whether the ASCII character on the stack is a valid numeric.

Comment: It is a primitive in most versions of F 0 R T H.

DISK-ERROR addr MVP-FORTH

A variable used by the disk interface, containing the disk status for the Last
sector read or written. 0 means no error.

Defined in: fig-FORTH (8080>

Implementation:

VARIABLE DISK-ERROR 0 DISK-ERROR

Source usage: SEC-READ SEC-WRITE

Example:

DISK-ERROR @

Check the value of the variable by fetching it and printing it.

Comment: This worc;:J makes it possible to check for disk errors from F 0 R T H.
After calling CP/M's I/0 routines via SEC-READ or SEC-WRITE, this
variable contains the byte error code returned by the operating system. See
the CP/M MANUAL for details if you wish to implement action based on the
error codes.

ALL ABOUT FORTH 113

D LIST NOT USED

List the names of the dictionary entries in the C 0 NTE XT vocabulary.

Defined in: fig-FORTH

Implementation:

(This ideogram has not been implemented.)

Comment: This ideogram differs from VLIST by listing only the CONTEXT
vocabulary without chaining to FORTH. It is not used in many fig-FORTH
implementations.

DLITERAL C, I MVP-FORTH

114

d
d

d (executing)
(compiLing)

If compiling, compile a stack double number into a LiteraL. Later execution
of the definition containing this literal will push it to the stack. If
executing, the number will remain on the stack.

Defined in: fig-FORTH

Implementation:

DLITERAL STATE @

IF SWAP [COMPILE] LITERAL
[COMPILE] LITERAL THEN . , IMMEDIATE

Source usage: INTERPRET

Example:

INTERPRET
BEGIN -FIND

IF STATE @ <
IF 2- , ELSE 2- EXECUTE THEN ?STACK

ELSE HERE NUMBER DPL @ 1+
IF [COMPILE] DLITERAL
ELSE DROP [COMPILE] LITERAL
THEN ?STACK

THEN
AGAIN ;

This example comes from an earlier version of the M V P-F 0 R T H source code.

Comment: Though not always present in F 0 R T H it is usually necessary for
any serious double precision arithmetic.

ALL ABOUT FORTH

DMAX

DMIN

d1 d2 d3 UTILITY

Leave the larger of two double numbers.

Pronounced: d-max

D e fined in: F 0 R T H -7 9 (E), S T A R T I N G F 0 R T H

Implementation:

: D MAX D 0 VE R DOVER D< IF D SWAP THEN DDROP . ,
Source usage: None.

Example:

2.2 3.3 DMAX

Enter the two double precision values and then test them, leaving the larger
on the stack. In this case the value 33 as a double precision, 4 byte value is
left. Note that the decimal point is not considered.

Comment: A convenient double precision operator.

d1 d2 --- d3 UTILITY

Leave the smaller of two double numbers.

Pronounced: d-min

Defined in: FORTH-79(E), STARTING FORTH

Implementation:

DMIN DOVER DOVER D< NOT
IF DSWAP THEN DDROP ;

Source usage: None.

Example:

2.2 3.3 DMIN

Enter two double precision values and then test them, Leaving the smaller
on the stack. In this case the double precision value 22 is left in the top
4 bytes on the stack. N,ote that the decimal point is not considered.

Comment: A convenient double precision operator.

ALL ABOUT FORTH 115

DMINUS d1 NOT USED

Convert d1 to its double number two's complement.

Defined in: fig-FORTH

Implementation:

DMINUS DNEGATE . ,
Source usage: None.

Example:

2.2 DMINUS

Enter the double precision value on thestack and then change the sign. In
this case, the double precision value -22 is left on the stack.

Comment: This ideogram is now obsolete and its function is replaced with
D NEGATE • Furthermore, its pronunciation would clash with D- • It may
appear in older programs.

DNEGATE d1 -d1 245 F 0 R T H-79

116

Leave the two's complement of a double number.

Pronounced: d-negate

Defined in: FORTH-79, STARTING FORTH

Implementation:

CODE NEGATE H POP D POP A SUB E SUB A E MOV
0 A MVI D SBB A D MOV 0 A MVI L SBB A L MOV
0 A MVI H SBB A H MOV DPUSH JMP END-CODE

Source usage: D +- D < N U M BE R

Example:

2.2 D NEGATE

Enter the double precision value on the stack and then leave the negative of
its value. In this case, the double precision value -22 is left on the stack.

Comment: This ideogram replaces the now obsolete one, DMINUS.

ALL ABOUT FORTH

DO

D 0 ES>

n1 n2 I, C, 142 FORTH-79

Use only in a colon definition. Begin a loop which will terminate based on
control parameters. The loop index begins at n2, and terminates based on
thelimit n1. At LOOP or +LOOP,theindexismodifiedbyapositive
or negative value. The range of a D 0 -L 0 0 P is determined by the terminating
word. DO-LOOP may be nested. Capacity for three Levels of nesting is
specified as a minimum for standard systems.

Form: DO
DO

LOOP
n +LOOP

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: D 0 COMPILE <DO> HERE 3 . , IMMEDIATE

Source usage: <R/W> -TRAILING EMPTY-BUFFERS EXPECT
SAVE -B U F FER S SPA C E S

Example:

TEST 10 1 DO I L 0 0 P ;

This definition used the D 0 structure to print the digits 1 through 9.

Comment: DO-LOOPs are one of the three major control structures< IF,
BEGIN, DO) in FORTH. They are more efficient than BEGIN loops when an
index must be incremented and compared with a limit. The ideogram LEAVE
may be used to terminate a D 0-L 0 0 P before the index has run its full course.
This implementation keeps the loop limits and indices on the return stack.
For indexing on addresses, use a step value with /L 0 0 P.

I, C, 168 F 0 R T H -79

Define the run-time action of a word created by a high-Level defining word.
It marks the termination of the defining part of the defining word <name>
and begins the definition of the run time action for words that will later be
defined by <name> • On execution of <namex> the sequence of words
between D 0 ES> and ; will be executed, with the address of <name>'s
parameter field on the stack.

Form : <name> C R E A T E D 0 E S > . ,
and then <name> <namex>

Pronounced: does

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

ALL ABOUT FORTH 117

DOVER

118

8080:

HEX
D 0 E S> ? C S P C 0 M PILE <; C 0 DE> C D C,

COMPILE [HERE 4 + , J ;
IMMEDIATE HEX ASSEMBLER

HERE LABEL DODOES D INX RPP LHLD
H DCX B M MOV H DCX C M MOV RPP SHLD
B POP D PUSH NEXT JMP FORTH

DECIMAL

Source usage: CONSTANT VOCABULARY

Example:

DCONSTANT CREATE SWAP , ,
DOES> DUP @ SWAP 2+ @ ;

This example comes from the implementation of MVP-FORTH utilities.

Comment: This implementation uses the FORTH-79 CREATE ••• DOES>
technique which differs internally from fig-FORTH's now obsolete <BUILDS
••• DOES>. DOES> is immediate. It compiles <;CODE> and a machine
Language caLl to the Low LeveL routine La be led "D 0 D 0 E S". By embedding
that one machine instruction in the body of the defining word, two bytes are
saved from every one of its generated offspring. But perhaps more
importantly, the FORTH-79 approach makes ' (tick) work on DOES>
products without the inconsistent adjustment by two required in fig-F 0 R T H.

d1 d2 d2 d1 UTILITY

Leave a copy of the second double number on the stack.

Pronounced: d-over

Defined in: MVP-FORTH

Implementation:

: DOVER 4 PICK 4 PICK ;

Source usage: None.

Example:

33.33 44.44 D 0 V E R

Place the two double precision numbers on the stack and then place a copy
of the first one on top.

Comment: The prefix mnemonic D for double precision is used in place of

ALL ABOUT FORTH

DP

DPL

2 which has the connotation of the numeral value.. However, its synonym,
20 V E R, may be loaded as an alias for compatibility with the F 0 R T H -79
Double Precision Number Word Set ..

addr u MVP-FORTH

A user variable, the dictionary pointer, which contains the address of the
next free memory above the dictionary.. The value may be read by HERE
and altered by ALLOT •

Defined in: fig-F 0 R T H

Implementation:

12 USER DP

Source usage: ALLOT FORGET HERE

Example:

D P @ U.

Entering the user variable name leaves the address of the variable which
can then be fetched and printed as an unsigned number ..

Comment: This is a primitive in most implementations ofF 0 R T H even if it is
not immediately available to the programmer.. Some implementations may give
it the name H ..

addr u MVP-FORTH

A user variable containing the number of digits to the right of the decimal on
double integer input. It may also be used to hold output column location of a
decimal point, in user generated formatting. The default value on single
number input is -1.

Pronounced: d-p-l

Defined in: FORTH-79(R), fig-FORTH

Implementation:

3C USER DPL

Source usage: CONVERT INTERPRET NUMBER

Example:

2.2 DPL @

ALL ABOUT FORTH 119

DPUSH

DR-DEN

120

Entering a double precision value, followed by fetching the value at this
user variable and printing it, will show the number of digits which were
entered to the right of the decimal point; in this case, 1 •

Comment: This ideogram may save you expense and worry with a floating
point package. User-defined numeric input routines may inspect the value of
D P L and adjust the converted number as necessary. This makes the use of
scaled, fixed point arithmetic transparent to the user who, for example, need
not type in unnecessary trailing zeros after a decimal point.

addr M V P- F 0 R T H

A constant used in 8080/Z80 implementations pointing to a machine code entry
point which pushes the DE register followed by the H L register onto the stack
and then falls through to NEXT, the inner ·interpreter.

Defined in: MVP-FORTH

Implementation:

DPUSH CONSTANT DPUSH

(The cross-compiler takes the Label DPUSii and makes it a constant.)

Source usage: Several.

Example:

CODE DDUP
H POP D POP D PUSH H PUSH
DPUSH JMP END-CODE

The example of 8080 code is from the MVP-FORTH source.

Comment: This is a machine, system and implementation dependent location
used only at the machine code Level. It allows trimming two bytes off C 0 DE
definitions which would otherwise end with: D PUSH H PUSH NEXT JMP.

n1 n2 M V P- F 0 R T H

Converts the drive number to the current density code for that drive.

Defined in: MVP-FORTH

Implementation:

: DR-DEN DEN + .
I

Source usage: <T&SCALC> ?CONFIGURE SET-DRX

ALL ABOUT FORTH

D RO
DR 1
DR2
D R3
DR4

DRIVE

Example:

2 DR-DEN

Enter the number for a given drive and the ideogram wiLL convert the value
on the stack to the current code value of DENSITY •

Comment: The calculation is made by reference to the array DEN. Nothing
is actually fetched from or stored into the variable DENSITY with this
ideogram.

M V P- F 0 R T H

Installation dependent commands to select disk drives, by presetting
OFFSET. Thecontentsof OFFSET isaddedtotheblocknumberinBLOCK
to allow for this selection.

Defined in: MVP-FORTH, fig-FORTH

Implementation:

DRO 0 OFFSET . ,
DR 1 DRO 0 SET-DR X ;
DR2 DR1 1 SET-DR X . ,
D R3 DR2 2 SET-DR X . ,
DR4 DR3 3 SET-DR X . ,

Source usage: None.

Example:

DRO

Entering this ideogram sets the value of the variable 0 F FSET to 0 •

Comment: These ideograms affect only the value in 0 F FSE T. Because they
use the current disk configuration parameters in their calculation, they are
safer, easier, and more flexible than storing a value directly into 0 F F SET.
More than five drives cannot be accommodated without re-cross-compiling
MVP-FORTH.

addr MVP-FORTH

A variable used by the disk interface, containing the disk drive number< 0 to
MAX-DR V) used on the last sector read or written.

ALL ABOUT FORTH 121

DROP

DSWAP

Defined in: fig-FORTH (8080)

Implementation:

VARIABLE DRIVE 0 DRIVE

Source usage: <T&SCALC> SET-DRIVE

Example:

1 DRIVE

Enter the desired drive number, in this case 1, and store it in the variable
designated by this ideogram.

Comment: This ideogram SET-DRIVE passes the value of this variable to the
operating system to select a physical drive. Ordinarily, this value should
be no greater than the value of the alterable constant, MAX-DR V, less one.

n 233 FORTH-79

Drop the top number from the stack.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

CODE DROP H P 0 P NEXT J M P EN D-C 0 DE

Source usage: Many.

Example:

45 DR 0 P

Enter a number and then drop it as though nothing happened.

Comment: A common ideogram used in virtually all implementations of
F 0 R T H.

d1 d2 d2 d1 UTILITY

Exchange the top two double numbers on the stack

Pronounced: d-swap

Defined in: MVP-FORTH

122 ALL ABOUT FORTH

D U<

DUMP

Implementation:

: DSWAP 4 ROLL 4 ROLL ;

Source usage: None.

Example:

33.33 44.44 D SWAP

Place two double precision numbers on the stack and then exchange their
order. The location of the decimal point is ignored.

Comment: The prefix mnemonic D for double precision is used in place of
2, which has the connotation of the numeral value. However, its synonym,
2SWAP, may be loaded as an alias for compatibility with the FORTH-79
Double Precision Number Word Set.

ud1 ud2 flag UTILITY

True if ud1 is less than ud2. Both numbers are unsigned.

Pronounced: d-u-Less

Defined in: FORTH-79(E), STARTING FORTH

Implementation:

DU<
R>

>R
R>

>R
8000

8000 +
+ D<

Source usage: None.

Example:

3.3 2.2 0 u <

. ,

Enter two double precision values and compare them as unsigned numbers, in
this case, Leaving a false flag of 0 on the stack. Note that the location
of the decimal point is not considered.

Comment: With some double precision operations unsigned numbers are
important and this comparison is necessary. Note that both double precision
comparands are destroyed by the comparison.

addr n UTILITY

List the contents of n addresses starting at addr. Each line of vaLues
may be preceded by the address of the first value.

ALL ABOUT FORTH 123

DUP

124

Defined in: FORTH-79(R), fig-FORTH, STARTING FORTH

Implementation:

DUMP 0 BASE @ >R HEX
DO CR DUP I + DUP 0 6

D.R 2 SPACES DUP 8 0
DO DUP I + COl 3 .R LOOP
DROP SPACE DUP 8 + 8 0
DO DUP I + COl 3 .R LOOP
DROP 3 SPACES 10 0
DO D UP I + COl DUP 20 <

IF DROP 2E THEN EMIT
LOOP DROP 10
PAUSE
?TERMINAL

/L 0 0 P
IF LEAVE THEN

DROP CR R> BASE

Source usage: None.

Example:

HEX
100 80 DUMP
DECIMAL

. ,

OVER 7E > OR

Dump the first 128 bytes starting from the normal origin of FORTH.

Comment: A variety of implementations of this ideogram generate various
formats. Some of them include printing the ASCII characters where printable
or a dot if they are not. The MVP-FORTH version incorporates a PAUSE
feature, by which pressing any key will freeze the display. Once suspended,
the DUMP may be resumed by a single keystroke, or aborted by striking any two
keys in rapid succession.

n n n 205 FORTH-79

Leave a copy of the top stack number.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

CODE DUP H POP H PUSH HPUSH JMP END-CODE

Source usage: Many.

Example:

ALL ABOUT FORTH

45 D UP

Enter the value 45 on the stack and then duplicate its value on the top of the
stack.

Comment: A common ideogram present in virtually aLL implementations of
F 0 R T H.

DVARIABLE UTILITY

EDITOR

A defining word used to create a dictionary entry of <name> and assign 4
bytes for storage in the parameter field. When <name> is later executed,
it will Leave the address of the first byte of its parameter field on the stack.

Form: DVARIABLE <name>

Defined in: MVP-FORTH

Implementation:

: D VARIABLE CREATE 4 ALLOT . ,

Source usage: None.

Example:

D VARIABLE NEW-VALUE

Make a new ideogram referring to a double precision variable. Its value is
not initialized.

Comment: The prefix mnemonic D for double precision is used in place of
2, which has the connotation of the numeral value. However, its synonym,
2 V A R I A B L E, may be loaded as an a L i a s for co m pat i b iL it y w i t h the F 0 R T H -7 9
Double Precision Number Word Set.

I, 172 N 0 T USE D

The name of the editor vocabulary. When this name is executed, ED IT 0 R is
established as the C 0 NTE XT vocabulary.

Defined in: FORTH-79(R), STARTING FORTH

ImpLementation:

(An editor is not incLuded as a part of the M V P-F 0 R T H source code; however,
the Line editor from FORTH DIMENSIONS is added to the full:f configured
F 0 R T H binary image.)

Comment: A variety of EDITORS is available. They are of various

ALL ABOUT FORTH 125

ELSE

EMIT

126

degrees of complexity. The fig-FORTH INSTALLATION MANUAL includes
a simple version. A version which performs all of the functions as defined in
STARTING FORTH is available in FORTH DIMENSIONS. The latter can be
loaded directly with fig-F 0 R T H and, after minor modifications, with M V P
FORTH. A Screen Editor has been published in DR. DOBBS which can be
Loaded with either fig-F 0 R T H or F 0 R T H -79 with appropriate changes. The
full MVP-FORTH binary file includes the EDITOR from FORTH
DIMENSIONS, Vol III No.3., which complies with the EDITOR description
in STARTING FORTH.

I, C, 167 FORTH-79

Used in a colon-definition and executes after the true part following IF.
ELSE forces execution to skip till just after THEN. It has no effect on
the stack. (See IF)

Form: IF ••• ELSE ••• THEN

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

ELSE
SWAP

2 ?PAIRS COMPILE BRANCH HERE 0 ,
2 [COMPILE] THEN 2 ; IMMEDIATE

Source usage: Many.

Example:

TEST ?D UP IF ELSE ." zero " THEN . ,
This definition will test the value on the top of the stack and if it is 0,

wiLL print the word 'zero' in place of the number.

Comment: In keeping with the traditions of structured programming, the
ELSE clause is optional, and the IF ••• ELSE ••• THEN constructs may be
nested. Note that IF ••• ELSE ••• ELSE ••• THEN will go untrapped in this
implementation.

c 207 FORTH-79

Transmit a character to the current output device.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: EMIT 'EMIT EXECUTE . ,
Example:

ALL ABOUT FORTH

EMPTY

65 EMIT

Entering the decimal value 65 followed by this ideogram will cause the
character A to be printed.

Comment: ALL FORTH terminal output is handled through EMIT.
Installation dependencies, though unavoidable, are at Least confined within
this ideogram. MVP-FORTH builds a vector into EMIT so that output may be
redirected to printers, alternate terminals, or even operating system files.
By default, EMIT vectors to <EMIT>.

SUPPLEMENTAL

Forget all new words added to the dictionary by the user.

Defined in: STARTING FORTH

Implementation:

EMPTY !NIT-FORTH F 0 R T H 2+
INIT-USER UP @ 6 + 2A CMOVE . ,

Source usage: None.

Example:

EMPTY

This ideogram wiLl reconfigure the system to the initial values at the time
of start up, or the Last FREEZE.

Comment: This ideogram does essentially the same thing as C 0 L D i.e.
restarts the F 0 RT H system. The only difference is that the stack is not
cleared, and the block buffers are unaffected.

EMPTY-BUFFERS 145 FORTH-79

Mark all block buffers as empty, without necessarily affecting their actual
contents. UPDATEd blocks are not written to mass storage.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

EMPTY-BUFFERS
#BUFF 0
DO 7FFF HDBT

FIRST LIMIT OVER - 0 <FILL>

I * FIRST + LOOP . ,

Note: H DBT is compiled to a hex Literal value 404 which is the number of

ALL ABOUT FORTH 127

bytes in a block buffer plus four.

Source usage: COLD

Example:

EMPTY-BUFFERS

This idE~ogram wiLL empty the contents of all buffers in memory so that those
marked for UPDATE will also be erased and not written back to disk.

Comment: In this implementation, EMPTY-BUFFERS clears all buffers to
nulls.

C AU TI 0 N: Think twice before using it, to make sure you aren't destroying
irreplaceable data.

ENCLOSE addr1 c addr1 n1 n2 n3 M V P- F 0 R T H

128

The text scanning primitive used by W 0 RD. From the text address addr1
and an ASCII delimiting character c, is determined the byte offset to the
first non-delimiter character n1, the offset to the first delimiter after the
text n2 , and the offset to the first character not included n3 • This
procedure will not process past an ASCII 'null' , treating it as an
unconditional delimiter.

Defined in: fig-FORTH

1 mplementation:

8080:

CODE ENCLOSE D POP H POP H PUSH E A MOV
-1 D LX I H DC X

HERE LABEL OENCLOSE H INX D INX M CMP
OENCLOSE JZ D PUSH M INR M OCR 1ENCLOSE JNZ
D INX D PUSH D DCX D PUSH NEXT JMP

HERE LABEL 1ENCLOSE H INX D INX M CMP
2ENCLOSE JZ M INR M OCR 1ENCLOSE JNZ
D PUSH D PUSH NEXT JMP

HERE LABEL 2ENCLOSE D PUSH D INX D PUSH
NEXT JMP END-CODE

Source usage: W 0 R D

Example:

WORD BLK @

IF BLK @ BLOCK ELSE
>IN @ + SWAP ENCLOSE
IF WHAT II INPUT> 255"
HERE 22 B L FILL >IN +!

TIS @ THEN
DUP 4 PICK
QUIT THEN
0 V E R >R

ALL ABOUT FORTH

FF

R@

>

END

END IF

HERE C! + HERE 1+ R> CMOVE HERE ;

The example comes from an early version of the M V P-F 0 R T H source code.

Comment: ENCLOSE is a highly specialized ideogram useful only for
implementing W 0 RD. In such usage, the ASCII null marks the end of the input
stream and n3, the "offset to the first character not included," is added
directly into >IN.

I, C, NOT USED

A synonym for UNTIL.

Defined in: FORTH-79(R), fig-FORTH

Implementation:

: END [COMPILE] UN TIL . , IMMEDIATE

Source usage: None.

Example:

TEST 0 BEGIN 1+ D UP DUP 10 = END DROP . ,
A definition to print the numbers 1 through 10 ;

Comment: This ideogram is now obsolete and replaced by UNTIL. It may
appear in older programs.

addr n (campi Le) C, I, NOT USED

Occurs in a colon-definitionf At run-time, END IF serves only as the
destination of a forward b anch from IF or ELSE • It marks the
conclusion of the conditional structure. THEN is another name for EN DIF.
Both names are supported in ig-FORTH. See also IF and ELSE. At
compile-time, END IF computes the forward branch offset from addr to
HERE and stores it at addr • n is used for error tests.

Defined in: fig-FORTH

Implementation:

: ENDIF [COMPILE] THEN . , IMMEDIATE

Source usage: None.

Example:

: TEST ?D UP IF END IF . ,

ALL ABOUT FORTH 129

EPRINT

ERASE

With this new definition, if a value of 0 is on the stack, nothing will be
done, otherwise, the value on the stack will be printed.

Comment: This ideogram is now obsolete and has been replaced by THEN. It
may appear in older programs.

addr MVP-FORTH

A variable directing the output of PEMIT through CP/M. 0 = Terminal
Device; 1 = List Device.

Defined in: MVP-FORTH

Implementation:

VARIABLE EPRINT 0 EPRINT

Source usage: C P 0 U T

Example:

1 EPRINT

Change output of PEMIT,andthereby also EMIT, to the CP/M LIST Device.

Comment: This ideogram is used in most fig-F 0 RT H implementations, but is
usually not available to the programmer. In M V P-F 0 R T H, it is made
available.

addr n SUPPLEMENTAL

Clear a region of memory to zero from addr over n addresses.

Defined in: fig-FORTH, STARTING FORTH

Implementation:

: ERASE 0 . , FILL

Source usage: None.

Example:

PAD 40 ERASE

Beginning with the address of PAD, fill the next 40 bytes with nulls.

Comment: Though not present in all implementations ofF 0 R T H it can easily

130 ALL ABOUT FORTH

ERROR

be added with the FILL function.

line in blk NOT USED

Execute error notification and restart of system. WARNING is first
examined. If 1, the text of linen, relative to screen 4 of drive 0 is printed.
This line number may be positive of negative, and beyond just screen 4. If
WARNING is 0, n is just printed as a message number (non disk
installation). If WARNING is -1, the definition (ABORT) is
executed, which executes the system ABORT. The user may cautiously
modify this execution by altering (ABORT). fig-FORTH saves the
contents of IN (now >IN) and BLK to assist in determining the Location
of the error. Final action is execution of QUIT •

Defined in: fig-FORTH

Implementation:

(This ideogram is not implemented)

Comment: ALmost all implementations of F 0 R T H have a unique way of
handling error messages. There are no standard techniques. Instead of
using mysterious error numbers or messages out on disk, M V P-F 0 R T H keeps
memory resident error messages in-line with system code.

EXECUTE addr 163 F 0 R T H -79

Execute the dictionary entry whose compilation address is on the stack.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

CODE EXECUTE H POP NEXT1 JMP END-CODE

Source usages: <I N T E R P R E T >

Example:

CR 'CR iil EXECUTE;

This example comes from the M V P-F 0 R T H source code and illustrates
vectoring.

Comment: This ideogram is most often used with execution vectors and with
the code field addresses stored in variables. In some systems, EXEC UTE
takes a parameter field address instead of the code field address. Though
there is only two bytes' difference, it is sufficient to trigger catastrophe.

ALL ABOUT FORTH 131

EXIT

EXPECT

132

CAUTION: Trying to execute a garbage value may crash your system.

C, 117 FORTH-79

When compiled within a colon-definition, terminate execution of that
definition, at that point. May not be used within a D 0 ••• L 0 0 P

Defined in: FORTH-79, STARTING FORTH

Implementation:

CODE EXIT RPP LHLD M C MOV H INX
M B MOV H INX RPP SHLD NEXT JMP END-CODE

Source usage: . ,
Example:

. . . , COMPILE EXIT [COMPILE] [;IMMEDIATE

This is a simplified version of the ideogram
unsmudging is performed.

..... , . No error checking or

Comment: This ideogram replaces the now obsolete ;S in fig-F 0 R T H.
When encountered outside of a colon definition, it will fool L 0 AD into
thinking the end of the screen has been reached. This latter function wiLl
save some Load time, but may not work on all systems.

addr n 189 F 0 R T H -79

Transfer characters from the terminal beginning at addr, upward, until a
"return" or the count of n has been received. Take no action for n
Less than or equal to zero. One or two nulls are added at the end of text.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

EXPECT OVER + 0 VE R
DO KEY DUP 8 = OVER 7F = OR

IF DROP DUP I = DUP R> 2- + >R
IF BELL
ELSE BSOUT D UP EMIT 20 EMIT THEN

ELSE DUP OD =
IF LEAVE DROP BL 0
ELSE DUP THEN I c! 0 I 1+

THEN EMIT
1 /L 0 0 P D R 0 P ;

ALL ABOUT FORTH

FENCE

FILL

Source usage: QUERY

Example:

QUERY TIB @ 50 EXPECT 0 >IN . ,
This example comes from the M V P-F 0 R T H implementation.

Comment: This ideogram takes a Line from the input terminal and places it
anywhere you Like. EXPECT includes some features, such as backspace
handling, which may be installation dependent.

addr MVP-FORTH

A user variable containing an address below which F 0 R GETting is trapped.
To forget below this point the user must alter the contents of FENCE.

Defined in: fig-FORTH

Implementation:

10 USER FENCE

Source usage: FORGET

Example:

LIST NFA FENCE

Change the protected part of the dictionary to the name fie~d address of
LIST. Subsequently, it will be possible to forget from the top of the
d i c tiona ry b a c k to and i n c L u ding L I S T.

Comment: This variable is set by a value in Low memory at the time of
system boot or execution of C 0 L D. By changing its value the boundary
between the full F 0 R T H implementation and the application definitions can
be changed.

addr n byte 234 F 0 R T H -79

FiLl memory beginning at address with a sequence of n copies of byte. If the
quantity is less than or equal to zero, take no action.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

FILL 0 V E R 0>
IF <FILL>
ELSE DDROP DROP THEN . ,

ALL ABOUT FORTH 133

FIND

FIRST

134

Source usages: <WORD> BLANK EMPTY-BUFFERS

Example:

BLANK BL FILL . ,
This example is taken from the M V P-F 0 R T H implementation.

Comment: ERASE and BLANKS, if not already in the system, may easily be
defined using this ideogram.

addr 203 FORTH-79

Leave the compilation address of the next word name which is accepted from
the input stream. If that word cannot be found in the dictionary after a
search of CONTEXT and FORTH Leave zero.

Defined in: FORTH-79

Implementation:

: FIND -FIND IF DROP CFA ELSE 0 THEN . ,
Source usage: None.

Example:

FIND DUP

Leaves the code field address of the ideogram, D UP, on the stack.

Comment: This ideogram is closely related to the older -FIN D. Note that
FIND leaves the code field address while -FIND leaves the parameter field
address and a length byte.

n M V P- F 0 R T H

A constant that leaves the address of the first <Lowest) block buffer.

Defined in: fig-FORTH

Implementation:

BUF1 CONSTANT FIRST

Source usage: +BUF COLD EMPTY-BUFFERS PREV USE

Example:

ALL ABOUT FORTH

F L D

FLUSH

FIRST

This ideogram is a constant which leaves the address on the stack.

Comment: The value of this constant is implementation dependent. It is
not available in all implementations of F 0 R T H. In M V P-F 0 R T H, its value
may be modified dynamically with CHANG E.

addr u M V P- F 0 R T H

A variable pointing to the field length reserved for a number during output
conversion.

Pronounced: f-l-d

Defined in: FORTH-79(R), fig-FORTH

Implementation:

3E USER FLO

Source usage: None.

Example:

F L D @

Fetch the value of this variable and print it.

Comment: Though defined in the INSTALLATION MANUAL, it has not been
implemented in fig-FORTH or FORTH-79 but is included in the FORTH-79
Reference Word Set.

SUPPLEMENTAL

A synonym for SAVE-BUFFERS.

Defined in: FORTH-79(R), STARTING FORTH

Implementation:

: FLUSH SA V E -B U F F E R S ;

Source usage: None.

Example:

FLUSH

This ideogram, without taking any parameters, causes all buffers marked for

ALL ABOUT FORTH 135

FORGET

UPDATE to be written back to disk.

Comment: This obsolete synonym for SAVE-BUFFERS may be included for
compatibility with older programs. However, its use is well established and
it is included in the FORTH-79 Reference Word Set. FLUSH may therefore
continue to be used. It is included in MVP-FORTH.

186 F 0 R T H -79

Delete from the dictionary <name> (which is in the CURRENT vocabulary)
and all words added to the dictionary after <name>, regardless of their
vocabulary. Failure to find <name> in CURRENT or FORTH is an
error condition.

Form: FORGET <name>

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

FORGET BL WORD CURRENT @ @ <FIND> 0=
ABORT" NOT IN CURRENT VOCABULARY"
DROP NFA DUP FENCE @ U<
ABORT" IN PROTECTED DICTIONARY"
>R R@ CONTEXT @ U<
IF [COMPILE] FORTH THEN
R@ CURRENT @ U<
IF [COMPILE] FORTH DEFINITIONS THEN
VOC-LINK@
BEGIN R@ OVER U< WHILE @ REPEAT
D U P V 0 C -L I N K
BEGIN DUP 4

BEGIN PFA LFA @ DUP R@ U< UNTIL
0 V E R 2- @ ? D U P 0=

UNTIL R> DP ;

Source usage: None.

Example:

FORGET TEST

This ideogram will forget everything from the top of the dictionary to the
most recent definition of TEST.

Comment: This is an implementation of a smart FOR GET as discussed in
FORTH DIMENSIONS, Vol II, No.6. With multiple vocabularies containing
ideograms added at various times, all ends must be properly Linked together or
the system will crash. This implementation, though appearing moderately
complex, is quite safe. FENCE serves as a movable address boundary to
protect ideograms defined prior to that point.

136 ALL ABOUT FORTH

FORTH

FREEZE

I, 187 FORTH-79

The name of the primary vocabulary. Execution makes F 0 R T H the
C 0 NT EXT vocabulary. New definitions become a part of F 0 R T H until a
differing cURRENT vocabulary is established. User vocabularies
conclude by 'chaining' to F 0 R T H , so it should be considered that
F 0 R T H is 'contained' within each users' vocabulary.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

VOCABULARY FORTH IMMEDIATE

Source usage: <ABORT> COLD FORGET

Example:

FORTH

Set CONTEXT to point to FORTH and leave CURRENT unchanged.

Comment: MVP-FORTH conforms with FORTH-79. All vocabularies chain
only to F 0 R T H. In fig-F 0 R T H, daughter vocabularies chain to their parents
before F 0 R T H. There is some ambiguity in the definition of the proper
function and not aLl implementations of F 0 R T H are the same.

M V P- F 0 R T H

Save the current values of the user variables and the top of the dictionary in
low memory in place of the original values.

Defined in: MVP-FORTH

Implementation:

FREEZE UP Q) 6 + INIT-USER 2A C M 0 VE
F 0 R T H 2+ Ol IN IT-F 0 R T H . ,

Source usage: None.

Example:

FREEZE

Tr.is ideogram requires no parameters. It sets the start up values in Low
m em ry to the current vaLues of the user variables. When C 0 L D is executed
Later, the system will return to the configuration at the time of the most
recent execution of FREEZE. Nothing is written to disk.

ALL ABOUT FORTH 137

GO

Comment: This ideogram reconfigures low memory, changing the startup
parameters. A new startup image can be saved on disk.

addr MVP-FORTH

Makes the address on the stack the next address in the hardware program
counter.

Defined in: MVP-FORTH

Implementation:

8080:

CODE GO H POP PCHL END-CODE

Source usage: BYE

Example:

HE X 100 G 0

Execution of this example is equivalent to C 0 L D.

Comment: The implementation of this ideogram is system dependent. As
used in the implementation of BYE, it wiLL return to the operating system.

H addr SUPPLEMENTAL

138

A synonym for D P, the dictionary pointer.

Defined in: MVP-FORTH, STARTING FORTH

Implementation:

: H DP . ,

Source usage: None.

Example:

H @ U.

This ideogram is identical to DP and returns the address of the value
returned by HERE which in this case is then printed.

Comment: Though not used in the Forth Interest Group community, this
ideogram has been in use for a number of years in the University of Rochester
implementation among others.

ALL ABOUT FORTH

HERE addr 188 F 0 R T H -79

Return the address of the next available dictionary location.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: HERE DP . ,
Source usage: Many.

Example:

SP@ HERE

This example is implementation dependent. In M V P-F 0 R T H, the address
of the top of the stack (actually the bottom) less the address of the top of the
dictionary is printed. It is the free space available in memory.

Comment: In MVP-FORTH,the address returned by HERE, is the Lower Limit
of free space between the top of the dictionary and the bottom of the stack.
Note that the Location of PAD moves in this free space.

HEX MVP-FORTH

Set the numeric conversion base to sixteen (hexadecimal).

Defined in: FORTH-79CR), fig-FORTH, STARTING FORTH

Implementation:

: HE X 10 BASE . ,

Source usage: Occasional.

Example:

HEX FF DECIMAL

Convert the hex value F F to decimal and print it: 255 •

Comment: This ideogram is not included in FORTH-79. It may be easily
defined if you know the current value of BASE.

HLD addr u MVP-FORTH

A user variable that holds the address of the Latest character of text during

ALL ABOUT FORTH 139

HOLD

H PUSH

140

numeric output conversion.

Defined in: fig-FORTH

Implementation:

40 USER HLD

Source usage: #> <# HOLD

Example:

H L D @ U.

Get the value of the user variable H L D, and print it unsigned.

Comment: In fig-FORTH and MVP-FORTH, this user variable determines
the number of characters below PAD which contain the formatted string
resulting from a binary number conversion. Not all implementatia,ns utilize
this method of formatting number conversions.

char 175 F 0 R T H -79

Insert char into a pictured numeric output string. May only be used
between <# and #> •

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: H 0 L D -1 HLD +! HLD @ c! . ,

Source usage: # SIGN

Example:

3.33 <# # # 46 H 0 L D #S #> TYPE

Enter the double precision value with two digits to the right of the decimal
and then print it in the same format.

Comment: The ASCII value for the desired character is used to form the
output picture such as decimal47 for each slash when outputting the date as
01/01/81. Note the backward order of the picture generation.

addr M V P- F 0 R T H

A constant used in 8080/Z80 implementations pointing to a machine code entry
point which pushes the contents of the H L register onto the stack and then
falls through to NEXT, the inner interpreter.

ALL ABOUT FORTH

I

Defined in: MVP-FORTH

Implementation:

HPUSH CONSTANT HPUSH

<The cross-compiler takes the Label HPUSH and makes it a constant.)

Source usage: Many - in C 0 DE definitions.

Example:

C 0 DE +
D POP H POP D DAD HPUSH JMP END-CODE

This example is taken from the MVP-FORTH 8080 source code.

Comment: This is a machine, system, and implementation dependent Location
used only at the machine code Level. It allows trimming one byte off C 0 DE
definitions which would otherwise end with H PUSH NEXT JMP.

n c, 136 FORTH-79

Copy the Loop index onto the data stack. May be only used in the D 0-L 0 0 P
control structure.

Form: DO ••• I ••• LOOP (or +L 0 0 P)

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

CODE I RPP LHLD ME MOV H INX M D MOV
D PUSH NEXT JMP END-CODE

Source usage: Many.

Example:

TEST 10 0 DO I. LOOP;

This new definition wiLl print the values of the digits 0 through 9.

Comment: In this implementation the indices and Limits are held on the
return stack. Thus, I is synonymous with R iil • Some implementations
hold the loop parameters in a separate stack.

ALL ABOUT FORTH 141

I'

I D.-

n c M V P- F 0 R T H

Used within a colon-definition executed only from within a DO-LOOP to
return the corresponding Loop index.

Pronounced: i-prime

Defined in: FORTH-79(R), STARTING FORTH

Implementation:

8080:

CODE I' D DAD ME MOV
H IN X

RPP LHLD
M D M 0 V

2 D LXI
D PUSH NEXT JMP END-CODE

Source usage: None.

Example:

TEST 10 0
DO 45 >R I' R> DROP LOOP 0 ,

This contrived example will print the digits from 0 through 9.

Comment: This ideogram is useful for accessing the index when it has been
buried one level in the return stack. The return stack must be restored at the
end of the D 0-LO OP. This ideogram is not available in all implementations.

addr UTILITY

Print a definition's name from its name field address.

Defined in: fig-FORTH

Implementation:

: I D. COUNT 1 F AND TYPE . ,
Source usage: None.

Example:

ID. @ 2+ NFA ID.

This example could be used as a factor in a decompiler. Since I D. is a
colon definition, its parameter field address contains the code field address
of its first ideogram. The 2+ moves to its parameter field address and
then N FA to its name field address. Then I D. will print the first ideogram in
its definition: COUNT.

Comment: Such poking around the header structure is prohibited in the

142 ALL ABOUT FORTH

IF

F 0 R T H-79 STANDARD. However, it can be most useful in a development
system. Clearly, its implementation depends on the structure of the header.
If the ideogram being decompiled is not a colon definition, I D. as used in the
example, will produce garbage. For names truncated to Less than their
natural WIDTH when defined, I D. will represent the Lost character(s) with
garbage.

flag I, C, 210 F 0 R T H -79

Used only in a colon definition. If flag is true, the words following IF
are executed and the words following ELSE are skipped. The ELSE
part is optional. If flag is false, words between IF and ELSE , or
between IF and THEN (when no ELSE is used), are skipped. IF-ELSE
THEN conditionaLs may be nested.

Form: IF
IF

ELSE ••• THEN
THEN

or

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: IF COMPILE 08 RANCH HERE 0 , 2 ; IMMEDIATE

Source usage: Many.

Example:

TEST 1 IF II ONE II THEN . ,

This definition will always print the text " 0 N E " •

Comment: An indispensable control structure. However, in place of
extensive nesting, it may be more efficient to define and use one of the
several CASE utilities which have been defined in FORTH
DIM ENS I 0 N S.

IMMEDIATE 103 FORTH-79

Mark the most recently made dictionary entry as a word which will be executed
when encountered during compilation rather than compiled.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: IMMEDIATE LATEST 40 T 0 G G L E . ,

Source usage: Make the following ideograms immediate:

ALL ABOUT FORTH 143

IN

INDEX

144

II --> <."> ; +LOOP
(AGAIN BEGIN DLITERAL DO ELSE END

ENDIF IF LITERAL LOOP REPEAT THEN
WHILE [

Example:

(-1 >IN +! 29 WORD DROP . , IMMEDIATE

This example comes form the M V P-F 0 R T H implementation.

Comment: This ideogram forces execution during compiling by flipping the
precedence bit in the most recently defined name. When the precedence bit
is set, the ideogram will execute, regardless of whether the system is
compiling or executing.

addr NOT USED

A user variable containing the byte offset within the current input text buffer
(terminal or disk) from which the next text will be accepted. W 0 R D uses
and moves the value of IN •

Defined in: fig-FORTH

Implementation:

: IN >IN . ,

Source usage: None.

Example:

IN @

Get the present value of the offset in the input stream and print it.

Comment: This ideogram is now obsolete having been replaced by >IN in
F 0 R T H -79. It may appear in older programs.

from to UTILITY

Print the first line of each screen over the range from, to. This is used to
view the comment lines of an area of text on disk screens.

Defined in: FORTH-79(R), fig-FORTH

Implementation:

INDEX CR 1+ SWAP
DO CR I 4 .R 4 SPACES I .INDEX

ALL ABOUT FORTH

PAUSE ?TERMINAL IF LEAVE THEN
1 /L 0 0 P ;

Source usage: None.

Example:

20 40 INDEX

This will cause the first Line of each of the screens 20 through 40,
incLusive, to be printed in succession.

Comment: If you adopt the convention of putting a descriptive comment on
line 0 of every screen, INDEX will generate something Like a table of
contents. This MVP-FORTH version incorporates a PAUSE feature, which
holds the display still when any key is pressed. Once suspended, the INDEX
may be resumed by striking any key once, or aborted by striking any two keys
in rapid succession.

INIT-FORTH addr MVP-FORTH

A constant Locating the bootup parameter used to initialize the F 0 R T H
vocabulary.

Defined in: MVP-FORTH

Implementation:

INIT-FORTH CONSTANT INIT-FORTH

(The cross-compiler uses the label IN IT-F 0 R T H to define the constant
!NIT-FORTH).

Source usage: COLD FREEZE
Example:

INIT-FORTH @ ID.

Fetch the name field address of the topmost ideogram in the current cold
start image. This address is passed, without adjustment, to I D. which types
the name at the terminal.

Comment: This element within the INIT-USER array is important enough to
deserve its own ideogram. A C 0 L D start stores this value into the body of
the F 0 R T H vocabulary. Executing FREEZE reverses the process, expanding
or cutting back the bootup system image to match the current system
configuration.

ALL ABOUT FORTH 145

!NIT-USER addr M V P- F 0 R T H

A constant returning a pointer to the start of the bootup parameter area in Low
memory. This area is an array containing cold-start values for the user
variables.

Defined in: MVP-FORTH

Implementation:

INIT-USER CONSTANT !NIT-USER

<Thecross-compilerusesthe Label INIT-USER to define the constant INIT
U S E R).

Source usage: CHANGE COLD FREEZE

Example:

!NIT-USER U.

Print the beginning address of the low memory array containing the initial
user variables.

Comment: Access to this array allows one to modify the initial values of
some of the user variables, as is done in FREEZE and CHANG E.

INTERPRET M V P- F 0 R T H

146

Begin interpretation at the character indexed by the contents of >IN relative
to the block number contained in BLK, continuing until the input stream is
exhausted. If BL K contains zero, interpret characters from the terminal
input buffer.

Defined in: FORTH-79(R), fig-FORTH, STARTING FORTH

Implementation:

:INTERPRET 'INTER P R E T @ EXECUTE . ,

Source usage: <LOAD> CONFIGURE QUIT

Example:

<L 0 AD>
BLK

BL K @ >R
INTERPRET

>IN @

R > >IN
>R 0

R>
>IN
BLK

I

I . ,
This example is taken from the MVP-FORTH source code.

Comment: The ideogram used to interpret text source in M V P-F 0 R T H. This
ideogram is vectored in M V P-F 0 R T H for the convenience of the programmer.
Normally, it calls <INTERPRET>.

ALL ABOUT FORTH

J

KEY

n c, 225 F 0 R T H -79

Return the index of the next outer Loop. May be used only within a nested
DO-LOOP.

Form: DO ••• DO ••• J ••• LOOP ••• LOOP (or +L 0 0 P)

Defined in: FORTH-79, STARTING FORTH

Implementation:

8 080: .· A I)!) ttL, i)t
t D I-\L1 (~PP) LD Dt.~\'-f LD f.:, (1:-k)

CODE J RPP LHLD 4 D LXI D DAD ME MOV
H INX M D MOV D PUSH NEXT JMP END-CODE

INC... ttL l-0 D J tth~ P\AJ H 0€ ·JP N b)(T.
Source usage: None.

Example:

TEST 3 0 DO CR 10 0 DO J LOOP LOOP . ,

This definition will print a row of 10 D's, 10 1's, and 10 2's.

Comment: This utility allows reference to both Loops from within the inner
one as may be required for some two dimensional array applications.

--- char 1 00 F 0 R T H -79

Leave the ASCII value of the next available character from the current input
device.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: KEY 'KEY @ EXECUTE . ,
Source usage: EXPECT

Example:

KEY

Execution of this ideogram causes the program to wait for any single input
from the keyboard and upon receiving it places the ASCII value of the input on
the stack.

Comment: The ideogram provides a way of finding out the ASCII value of

ALL ABOUT FORTH 147

LATEST

LEAVE

148

characters without reference to a chart. It may also be used in selecting
·from a menu requiring only a single character input or for a wait until any
character is input from the terminal. The internal details of KEY are
·installation dependent. Therefore, KEY has been vectored in M V P-F 0 R T H,
defaulting to <KEY>.

addr M V P- F 0 R T H

Leave the name field address of the topmost word in the CURRENT vocabulary.

!Defined in: fig-F 0 R T H

Implementation:

: LATEST CURRENT . ,
Source usage: <; C 0 DE> C REATE I M MEDIATE S M U D G E

Example:

LATEST ID.

This example causes the name of the topmost ideogram in the CURRENT
vocabulary to be printed.

Comment: Though not included in F 0 R T H-79 it is usually available in most
systems. Note that switching vocabularies for new definitions will change
the address left by L A T EST •

c, 213

Force termination of a D 0 -L 0 0 P at the next L 0 0 P or
the loop Limit equal to the current value of the index.
remains unchanged, and execution proceeds normally
terminating word is encountered.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

FORTH-79

+L 0 0 P by setting
The index itself
until the loop

CODE LEAVE RPP LHLD ME MOV H INX M D MOV
H INX E M MOV H INX D M MOV
NEXT JMP END-CODE

Source usage: <T&SCALC> -TRAILING EXPECT

Example:

ALL ABOUT FORTH

LFA

LIMIT

TEST 20000 0 D 0 I ?TERMINAL IF LEAVE THEN LOOP;

This definition starts printing digits which can be stopped by typing any
key.

Comment: Using LEAVE within a conditional structure within a D 0-
LOOP makes it function somewhat like a BEGIN-UNTIL with an escape
clause.

CAUTION: Executing LEAVE outside of a colon definition may crash your
system.

pfa l fa MVP-FORTH

Convert the parameter field address of a dictionary definition to its link
field address.

Defined in: fig-FORTH

Implementation:

: l FA 4 ;

Source usage: FORGET

Example:

U* LFA U.

Find and print the link field address of U*, perhaps in anticipation of
sealing the dictionary at that point.

Comment: Although this activity is forbidden by F 0 R T H -79 STANDARD, it
is a convenient utility for moving around the header structure in a F 0 R T H
development system. Its definition is dependent upon the implementation of
the header structure.

n M V P- F 0 R T H

A constant leaving the address just above the highest memory available for a
disk buffer. Usually this is the highest system memory.

Defined in: fig-FORTH

Implementation:

EM CONSTANT LIMIT

Source usage: +BUF EMPTY-BUFFERS

ALL ABOUT FORTH 149

LIST

LIT

Example:

LIMIT U.

Examine the first location in memory not currently used by F 0 R T H.

Comment: Really, this is the limit for the FORTH program in memory. In
some implementations, this limit may not include all of RAM available.
F 0 R T H can access all existing RAM addresses even if they are not within the
confines of the F 01 R T H program. Such areas can be used for buffers by
FORTH. In MVP-FORTH, modifying the value in LIMIT and then executing
CHANGE wilL change the upper bound of the F 0 R T H image in memory. In
MVP-FO.RTH, its value may be altered and then CHANGE will dynamically
r e con fig u r e me m o ry to the new v a l u e of L I M I T.

n 109 FORTH-79

List the ASCII symbolic contents of screen n on the current output device,
setting SCR to contain n.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

LIST CR DUP SC R
." SC R #" u. 10 0
DO CR I 3 .R SPACE I SC R @

.LINE ?TERMINAL
IF LEAVE THEN

LOOP CR . ,
Source usage: None.

Example:

45 LIST

This causes Screen 45 to be printed.

Comment: This utility allows one to view the text contents in the selected
screen.

n c MVP-FORTH

Within a colon-definition, LIT is automatically compiled before each 16
bit literal number encountered in input text. Later execution of LIT
causes the contents of the next dictionary address to be pushed to the stack.

Defined in: fig-FORTH

150 ALL ABOUT FORTH

Implementation:

8080:

CODE LIT B LDAX B INX A L MOV B LDAX B INX
A H MOV HPUSH JMP END-CODE

Source usage: LITERAL

Example:

LITERAL STATE @

IF COMPILE LIT , THEN . , IMMEDIATE

This example comes from the M V P-F 0 R T H implementation.

Comment: An ideogram which tells the address interpreter that the next two
bytes in the compiled definition are not an address to be executed but rather a
numeric value to be pushed.

LITERAL n I, 215 FORTH-79

LOAD

If compiling, then compile the stack value n as a 16-bit Literal, which
when Later executed, will Leave n on the stack.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

LITERAL STATE @

IF COMPILE LIT , THEN ; II~ MEDIATE

Source usage: DLITERAL

Example:

ADD-RECORDLENGTH [BLOCKSIZE
RECORDS-PER-BLOCK I] LITERAL + . ,

A time-consuming calculation using constants is done once at compile time
and placed into the definition by LITEI~AL. Note that BLOCKSIZE and
RECORDS-PER-BLOCK used in the example must also be defined.

Comment: LITERAL, while harder to spell than LIT, is transportable,
implementation independent and F 0 R T H -i'9 STANDARD.

n

Begin interpretation of screen
the locators of the present

202 FORTH-79

n by makiing it the input stream; preserve
input str1eam (from >IN and BL K). If

ALL ABOUT FORTH 1 51

LOOP

152

interpretation is not terminated explicitly it will be terminated when the
input stream is exhausted. Control then returns to the input stream
containing LOAD, determined by the input stream locators >IN and BLK.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: L 0 AD 'L 0 AD @ EXECUTE . ,

Source usage: None.

Example:

45 L 0 A D

This example will start loading the contents of Screen 45.

Comment: Screens which end with several blank lines will Load faster if the
ideogram, EXIT, appears following the Last definition or operation. Also,
one can avoid loading the whole screen without erasing the undesired
contents by terminating the desired source with this ideogram. This
technique is not sanctioned by FORTH-79 and is implementation dependent.
This ideogram is vectored in M V P-F 0 R T H for the benefit of the program mer.
Normally, it invokes <L 0 AD>. Note that sdreen zero is unloadable.

I

I, C, 124 FORTH-79

Increment the D 0 -L 0 0 P index by one, terminating the loop if the new index
is equal to or greater than the limit. The limit and index are signed
numbers in the range -32,768 •• 32,767 •

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: L 0 0 P 3 ? PAIRS C 0 M PILE <L 0 0 P > H ERE

Source usage:
LIST <R/W>
<T &SC A LC>

Example:

TEST 10 0

-TRAILING CONFIGURE
SAVE -B U F FER S SPACES

DO I LOOP . ,

, ; IMMEDIATE

This definition will cause the digits 0 through 9 to be printed.

Comment: This ideogram completes a D 0-L 0 0 P control structure. In the
FORTH-79 STANDARD and MVP-FORTH, the comparison uses signed
arithmetic which may lead to problems if addresses are used as the
parameters. The D 0 -L 0 0 P structure can aLso be terminated with +L 0 0 P or

ALL ABOUT FORTH

M*

M *I

/L 0 0 P. Both of these take an explicit increment from the stack; the Latter
uses unsigned arithmetic.

n1 n2 d MVP-FORTH

A mixed magnitude math operation which Leaves the double number signed
product to two signed numbers.

Defined in: fig-FORTH, STARTING FORTH

Implementation:

: M* DDUP X 0 R >R A BS SWAP A BS U* R> D+- . ,
Source usage: */M 0 D

Example:

45 2 M* D.

The two single precision values are placed on the stack and operated upon
to Leave a double precision value which is then printed.

Comment: With this ideogram, overflow is impossible. Use U* for full
precision unsigned multiplication.

d1 n1 n2 d2 MVP-FORTH

Multiplies d1 by n1 and divides the triple precision product by n2
leaving the quotient d2. All values are signed.

Defined in: MVP-FORTH, STARTING FORTH

Implementation:

M *I D D.U P XOR SWAP ABS >R SWAP ABS
OVER XOR ROT ROT DABS SWAP R@ U*
R> U* ROT 0 D+ R@ U/MOD ROT ROT
SWAP DROP SWAP ROT D+- . ,

Source usage: None.

Example:

IN >C M 254 100 M*/ . ,

>R
ROT

R> U/MOD

This example converts inches in double precision to centimeters, also in
double precision. The result is rounded toward zero.

Comment: This ideogram is most useful in maintaining precision in double

ALL ABOUT FORTH 153

M+

M/

154

number arithmetic. Its scaling capagilities frequentl-y avert the expense of
a full floating point math package. The notation in the book, STARTING
FORTH, showing the divisor to be unsigned is in error.

d1 n d2 M V P- F 0 R T H

Add d1 to n and return d2. Note all values are signed.

Defined in: MVP-FORTH, STARTING FORTH

Implementation:

: M + S->D D+ . ,
Source usage: None.

Example:

3456. 4 M + D.

The integer value 3456 is entered as a double prec1s1on number by
appending a decimal point, and then the single precision value of 4 is entered.
The latter is converted to a double precision value and summed by the
operator, leaving the double precision value on the stack to be printed.

Comment: This ideogram relieves some of the inconvenience of double
precision arithmetic. Note that carry and overflow are ignored.

d n1 n2 n3 M V P- F 0 R T H

A mixed magnitude math operator which leaves the signed remainder n2 and
signed quotient n3, from a double number dividend and divisor n1 • The
remainder takes its sign from the dividend.

Defined in: fig-FORTH, STARTING FORTH

Implementation:

M/ OVER >R >R DUP D+- R@ ABS U/M 0 D
R > R @ X 0 R +- S W A P R > +- S W A P . ,

Source usage: /M 0 D */M 0 D

Example:

45. 7 M I

Enter a double precision integer by ending the value with a decimal point,
and then the single precision value followed by the operator. Then print
the quotient followed by the remainder.

ALL ABOUT FORTH

M/M 0 D

MAX

Comment: An integer operator which permits greater precision than simple
integer division. Note that the remainder is left on the stack according to
the definition though it is not implied in the ideogram. Overflow if it occurs
is ignored, as is division by zero. Note that the implementation used in
MVP-FORTH is taken from fig-FORTH and differs from that given in
STARTING FORTH.

ud1 u2 --- u3 ud4 MVP-FORTH

An unsigned mixed magnitude math operation which leaves a double quotient
ud4 and remainder u3, from a double dividend ud1 and single precision
divisor u2 •

Defined in: fig-FORTH

Implementation:

M/M 0 D
U/M 0 D

>R
R>

0

Source usage: #

Example:

45. 7 M I M 0 D

R@ U/M 0 D R> SWAP >R . ,

<# #S #> TYPE SPACE U.

Enter a double precision integer by ending the value with a decimal point
and follow it by a single precision value. The quotient is then printed
followed by the remainder. In the absence of a double precision unsigned
output operator, numerical conversion is used in the example.

Comment: This fig-F 0 R T H function does not conform with the convention for
the prefix " M " which implies the use of signed values. In this case, the
input values are unsigned. Note that this ideogram is very similar to M/

both Leave the remainder and quotient, but one is signed and the other is
not.

n1 n2 n3 218

Leave the greater of two numbers.

Pronounced: max

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

MAX
IF

D D UP <
SWAP THEN DROP ;

ALL ABOUT FORTH

F 0 R T H -79

155

Source usage: SPACES MOVE

Example:

4 3 MAX

Enter two single prec1s1on values on the stack, leave only the maximum
value, and print it.

Comment: Provides a simple way of putting a lower limit on numbers. A
signed comparison is used.

MAX-DRV n MVP-FORTH

A constant which returns the current maximum number of drives.

Defined in: MVP-FORTH

Implementation:

2 CONSTANT MAX-DRV

Source usage: <T&SCALC> ?CONFIGURE CONFIGURE

Example:

MAX-DRV

This example will print the maximum number of drives for which the system
is presently configured.

Comment: In some implementations of F 0 R T H this value is fixed and not
available to the programmer. However, in other implementations the value
may be changed from time to time. It therefore needs to be placed in the
F 0 R T H vocabulary. In M V P-F 0 R T H provisions are made for up to 5 drives.
More than five drives cannot be accomodated without re-cross-compiling your
system. It will require extending the array, DEN.

MESSAGE n NOT USED

1 56

Print on the selected output device the text of line n relative to screen 4 of
drive 0. n may be positive or negative. MESS AGE may be used to print
incidental text such as report headers. If WARNING is zero, the
message will simply be printed as a n~mber (disk un- available).

I

Defined in: fig-FORTH

Implementation:

ALL ABOUT FORTH

MIN

MIN US

(This ideogram is not implemented in M V P-F 0 R T H.)

Comment: This provides one method of accessing error and warning
messages without having the text reside in memory. However, it is often
more efficient and really takes Little more space to place the required error
messages in Line as in M V P-F 0 R T H. The convention in fig-F 0 R T H of
having the text of messages on screen 4, often overlaps binary code used to
boot up the system on drive 0 •

n1 n2 n3 127 F 0 R T H -79

Leave the Lesser of two numbers.

Pronounced: min

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

MIN DDUP >
IF SWAP THEN DROP ;

Source usage: CREATE SPDRV SPT

Example:

4 2 MIN

Enter two single precision integers and leave only the minimum value on the
stack which is then printed.

Comment: Provides a way of placing a ceiling on a number, such as the
maximum number of drives. A signed comparison is used.

n1 n2 NOT USED

Leave the two's complement of a number.

Defined in: fig-FORTH

Implementation:

: MINUS NEGATE . ,
Source usage: None.

Example:

45 MINUS

ALL ABOUT FORTH 157

MOD

Enter an integer and then negate it and print the negative value.

Comment: This now obsolete fig-F 0 R T H ideogram has been replaced by
NEGATE in F 0 R T H -79. Note that its pronunciation could be confused with
the ideogram which does a subtract operation. It may appear in older
programs.

n1 n2 n3 104 FORTH-79

Divide n1 by n2, Leaving the remainder n3, with the same sign as n1.

Pronounced: mod

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: M 0 D /M 0 D DROP . ,
Source usage: None.

Example:

45 7 M 0 D

Enter two integers, divide them Leaving the remainder which is then printed.

Comment: A signed integer arithmetic operator. Note that division by zero
is ignored; its result is unpredictable.

MON NOT USED

158

Exit to the system monitor, Leaving a re-entry to F 0 R T H, if possible.

Defined in: fig-FORTH

Implementation:

(This ideogram has not been implemented in the M V P-F 0 R T H. The
ideogram BYE is similar but returns to the operating system rather than the
monitor.)

Comment: Though defined in the INSTALL A TI 0 N MANUAL, it is usually not
implemented in fig-F 0 R T H. BYE will usually exit fig-F 0 R T H to the
underlying operating system from which FORTH's current image may be saved.

ALL ABOUT FORTH

M 0 VE

NEGATE

addr1 addr2 n 113 FORTH-79

Move the specified quantity n of 16-bit memory cells beginning at addr1
into addr2. The contents of addr1 is moved first. If n is negative or
zero, nothing is moved.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: M 0 V E 0 MAX 2* <CMOVE> . ,
Source usage: None.

Example:

HERE PA D 20 M 0 V E

This example will move 40 bytes from the address of HERE to the address of
PAD.

Comment: This ideogram moves two bytes at a time but otherwise is similar to
C M 0 V E • Nothing is said about overlapping source and destination fields.
It is probably best reserved for implementation on 16-bit machines where
word boundaries may be important.

n -n 177 FORTH-79

Leave the two's complement of a number, i.e., the difference of 0 Less n •

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

CODE NEGATE H POP LA MOV CMA A L MOV H A MOV
CMA A H MOV H INX HPUSH JMP END-CODE

Source usage: +-

Example:

45 NEGATE

Enter an integer and then convert to its negative value which is printed.

Comment: This FORTH-79ideogram replaces MINUS in fig-FORTH. Note
that HE X -8000, when negated, has a value outside the range of signed single
precision integers. No error condition is raised.

ALL ABOUT FORTH 159

NEXT

N EX T1

160

M V P- F 0 R T H

A constant used in 8080/Z80 implementations pointing to the machine code
entry point of the inner interpreter.

Defined in: MV-FORTH

lmplementation:

NEXT CONSTANT NEXT

C The cross-compiler uses the label NEXT to define the constant NEXT.)

Source usage: Many.

Example:

CODE DROP H POP NEXT JMP END-CODE

This example is taken from the M V P-F 0 R T H 8080 source code.

Comment: A memory location unique to the system implementation, whose
execution enters the inner interpreter. The machine code instruction NEXT
JMP is the usual exit from a CODE definition.

MVP-FORTH

A constant used in 8080/Z80 implementations, pointing to the entry point
within the NEXT routine to be used by EXECUTE.

Defined in: MVP-FORTH

Implementation:

NEXT1 CONSTANT NEXT1

(The cross-compiler uses the label NEXT1 to define the constant NEXT1.)

Source usage: EXECUTE

Example:

CODE EXECUTE H POP NEXT1 JMP END-CODE

This example comes from the M V P-F 0 R T H 8080 source code.

Comment: A memory location unique to the system implementation, which
causes the function of EXEC UTE to begin.

ALL ABOUT FORTH

NFA

NOOP

NOT

pfa nfa MVP-FORTH

Convert the parameter field address of a definition to its name field.

D e fined in: fig- F 0 R T H

Implementation:

: N FA 5 -1 TRAVERSE . ,
Source usage: FORGET

Example:

FORGET NFA ID.

In this contrived example, get the parameter field address of F 0 R GET and
then the name field address and print the name: F 0 R GET.

Comment: This manipulation, though prohibited by FORTH-79, is most
convenient in development systems. It sets up the address for I D ••

NOT USED

A F 0 R T H 'no operation' •

Defined in: fig-FORTH (8080)

Implementation:

: NOOP ;

Source usage: None.

Example:

NOOP

Entering this ideogram does nothing but return the prompt.

Comment: This is just a word which does nothing except take up time and
space which, in fact, is sometimes useful.

flag1 flag2 165 FORTH-79

Reverse the boolean value of flag1 • This is identical to 0= •

Defined in: FORTH-79, STARTING FORTH

Implementation:

ALL ABOUT FORTH 161

NUMBER

162

8080:

CODE NOT H POP L A MOV H ORA 0 H LXI
0= I F H I N X T H E N
HPUSH JMP END-CODE

Source usage: Many.

Example:

0 NOT

Enter a false flag 0 , make it true and print it.

Comment: N 0 T and 0= have the same function; however, depending on the
context, one may be more readable than the other. Note: N 0 T is not the
bitwise one's complement which has the FORTH-79 reference word set
ideogram COM, (not implemented in MVP-FORTH).

addr d MVP-FORTH

Convert the count and character string at addr, to a signed 32-bit integer,
using the current base. If numeric conversion is not possible, an error
condition exists. The string may contain a preceding negative sign.

Defined in: FORTH-79(R), fig-FORTH, STARTING FORTH

Implementation:

: NUMBER 'NUMBER iil EXECUTE;

Source usage: <I N T E R P R E T >

Example:

? v A L u E • II I N p u T A v A L u E --- II

QUERY BL WORD NUMBER QUIT . ,

This example prompts for a value, then converts the value to a double
precision number.

Comment: The version and implementation of this ideogram in M V P-F 0 R T H
conforms with that in the F 0 R T H -79 reference word set and fig-F 0 R T H. It
will recognize two non-numeric characters: a decimal point and a leading
negative sign. The position of the decimal point is recorded in the user
variable D PL. This feature enables a user program to scale or adjust the
converted value as desired. It will give an error message if any other
special character is used. Note that the definition given in STARTING
F 0 R T H is different. Because of the possible variations, this ideogram
utilizes an execution vector which will permit easy redefinition. It
defaults to <NUMBER>.

ALL ABOUT FORTH

OCTAL

OFFSET

SUPPLEMENTAL

Set the number conversion base to decimal 8.

Defined in: FORTH-79(R), STARTING FORTH

Implementation:

: OCTAL 8 BASE . ,
Source usage: None.

Example:

HEX FF OCTAL

Input the hex value F F and print its octal equivalent.

Comment: If octal values are to be used this is the ideogram to use to set the
appropriate value of BASE •

addr 128 M V P- F 0 R T H

A variable that contains the offset added to the block number on the stack by
B L 0 C K to determine the actual physical block number. The user must add any
desired offset when utilizing BUFFER.

Defined in: FORTH-79(R), fig-FORTH, STARTING FORTH

Implementation:

42 USER OFFSET

Source usage: BLOCK ORO SET-DRX

Example:

ORO 0 OFFSET . ,

This definition sets the value of the user variable, OFFSET, to 0, such
that subsequent Screen accesses will be to drive 0.

Comment: This variable is available in a variety of implementations of
F 0 R T H and is convenient not only for accessing different disk drives but for
setting a base BL 0 C K from which data can be read for purposes of drive
selection. However, using the ideograms DR 0, DR 1, etc. is safer, easier and
more convenient.

ALL ABOUT FORTH 163

OR n1 n2 n3 223

Leave the bitwise inclusive-or of two numbers.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

CODEOR DPOP HPOP EAMOV LORA ALMOV
D A MOV H ORA A H MOV HPUSH JMP END-CODE

Source usage:

Example:

HEX
20 30 0 R
DECIMAL

#S E X P E C T U P D A T E

F 0 R T H -79

The bit pattern associated with 20 and 30 will be logically 0 R 'ed together
and left on the stack: 30 •

Comment: An ideogram which performs a logical operation common in
computing.

0 U T addr M V P- F 0 R T H

164

A user variable that contains a vaLue incremented by EMIT. The user may
alter and examine 0 UT to control display formatting.

Defined in: fig-FORTH

Implementation:

44 USER OUT

Source usage: <EMIT> <CR>

Example:

0 UT @

Examine the present value in the user variable, 0 UT, and print it.

Comment: This ideogram, though not present in all implementatit::ms, is
useful for checking space rema1mng on a Line of output. EMIT always
increments it by one, even for nonprinting control characters.

ALL ABOUT FORTH

OVER

p!

n1 n2 n1 n2 n1 170 FORTH-79

Leave a copy of the second number on the stack.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

CODE OVER D POP H POP H PUSH
DPUSH JMP END-CODE

Source usage: TRAVERSE M/ D.R TYPE

Example:

45 7 0 V E R

Enter two integers and then make a copy of the first one entered on the top
of the stack Leaving three values on the stack.

Comment: This is one of the most common stack operators.

b n MVP-FORTH

Output byte b to port n on an 8080 or Z80 system.

Pronounced: port store

Defined in: fig-FORTH 8080

Implementation:

8080:

CODE P! D POP P!PORT H LXI E M MOV
H POP L A MOV

HERE 1+ LABEL P!PORT 0 OUT NEXT JMP END-CODE

Source usage: None.

Example:

HEX 41 EO P! DECIMAL

Go to hex and output the ASCII value of the character, A, on port EO and
return to decimal.

Comment: Gives access to any port of an 8080 or Z80 system. Thus it is

ALL ABOUT FORTH 165

POl

PAD

166

possible to write any value to any port. The use of this is obviously
hardware dependent.

n b MVP-FORTH

Inputs byte b from port n on an 8080 or Z80 system.

Pronounced: port fetch

Defined in: fig-FORTH (8080)

Implementation:

8080:

CODE POl D POP POIPORT H LXI E M M 0 V
HERE 1+ LABEL POIPORT 0 IN A L MOV

0 H MVI HPUSH JMP END -C 0 DE

Source usage: None.

Example:

HEX EO POl DECIMAL

Go to hex and get the value presently on port EO and return to decimal and
print that value. !

I

I

Comment: Gives access to any port of an 8080 or Z80 system. Any port pn an
8080 or Z80 CPU is read and its content placed on the top of the stack.

i
I

I

addr 226 F 0 R T H -79!
I

The address of a scratch area used to hold character strings for interme~iate
processing. The minimum capacity of PAD is 64 characters. < addr
through addr+63)

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: PAD HERE 44 + . ,
Source usage: #> <

Example:

H E R E P A D 20 C M 0 V E

From the address of HERE to the address of PAD, move 20 bytes.

ALL ABOUT FORTH

PAGE

Comment: The location of PAD changes as the dictionary grows. Text
strings build up from PAD while numbers are formatted downward.

M V P- F 0 R T H

CLear the terminal screen or perform an action suitable to the output device
currently active.

Defined in: FORTH-79(R), STARTING FORTH

Implementation:

: PAGE 'PAGE @ EXECUTE . ,

Source usage: None.

Example:

PAGE

Entering this ideogram will clear the terminal screen by vectoring to
<PAGE>.

Comment: There are many different terminals. Therefore, a new definition
must be written and vectored into 'PAGE, before this ideogram will function
properly. It should allow one to start with a clear screen and the cursor at
home.

PAUSE UTILITY

Test the terminal keyboard for actuation of any key. If true, wait until a key
has been pressed again.

Defined in: MVP-FORTH

Implementation:

PAUSE ?TERMINAL
IF K E Y D R 0 P 1 000 0 D 0 L 0 0 P

BEGIN ?TERMINAL UNTIL KEY DROP
2000 0 D 0 L 0 0 P

THEN ;

Source usage: None.

Example:

INDEX CR 1+ SWAP
D 0 C R I R .R R SPACES I .IN DE X
PAUSE ?TERMINAL IF LEAVE T H E N 1 /L 0 0 P ;

ALL ABOUT FORTH 167

PFA

PICK

168

This example allows one to interrupt the INDEX listing by striking any
key.

Comment: When PAUSE is followed by ?TERMINAL as in the example,
striking any key once will continue the listing and striking any key twice in
rapid succession will terminate the listing. The delay loops may have to be
adjusted for individual systems and user preferences.

nfa pfa MVP-FORTH

Convert the name field address of a compiled definition to its parameter field
address.

Defined in: fig-FORTH

Implementation:

: P FA 1 TRAVERSE 5 + . ,
Source usage: <;CODE> FORGET

Example:

HEX 4AC2 PFA DECIMAL

Go to HEX and, presuming that the value, 4AC2, is a name field address, it
will be replaced with its parameter field address.

Comment: ALlows one to move around in the header of a definition.
Although F 0 R T H -79 forbids this, you sometimes have no alternative. See
I D.

n1 n2 240 FORTH-79

Return the contents of the n1-th stack value, not counting n1 itself. An
error condition results for n Less than one. 2 PICK is equivalent to
OVER. 1 •• n

Defined in: FORTH-79

Implementation:

PICK DUP 1 <
ABORT" PICK ARGUMENT < 1" 2* SP@ + @ . ,

Source usage: ROLL W 0 R D

Example:

ALL ABOUT FORTH

POP

pp

2 PICK

This example is equivalent to 0 V E R, although 0 V E R is much faster.

Comment: Allows one to pick out of the stack any item and push a copy of it
onto the top. In contrast with ROLL, PICK increases the stack depth by one,
not counting the parameter eaten by PICK.

NOT USED

The code sequence to remove a stack value and return to NEXT. POP is not
directly executable, but is a F 0 R T H re-entry point after machine code.

Defined in: fig-FORTH

Implementation:

C This ideogram is not implemented in MVP-FORTH)

Comment: Though given in the INSTALLATION MANUAL, it is not
available in FORTH implemented on an 8080 or Z80 CPU.

n <text>

On the latest screen listed, put <text> on Line n.

Defined in: MVP-FORTH

Implementation:

PP 0 TEXT PAD 1 + SWAP
SCR @ <LINE> DROP C/L CMOVE UPDATE;

Source usage: None.

Example:

99 LIST 99 CLEAR 99 LIST
0 PP (THIS IS A NEW SCREEN)
99 LIST

MVP-FORTH

After Listing the screen, it is cleared with CLEAR and"(THIS IS A NEW
SCREEN)"is put in line 0.

Comment: This implementation is adapted from the EDITOR included in the
fig-FORTH INSTALLATION MANUAL. Before loading an EDITOR, this
ideogram makes it possible to enter new source text on a screen for loading.
Without such an ideogram it is difficult to get started unless you are
fortunate enough to have a disk already containing the source screens for an
EDITOR. Note that this function is different from that described in

ALL ABOUT FORTH 169

PREV

PUSH

PUT

STARTING FORTH.

addr M V P- F 0 R T H

A variable containing the address of the disk buffer most recently referenced.
The UPDATE command marks this buffer to be later written to disk.

Defined in: fig-F 0 R T H

Implementation:

VARIABLE PREV FIRST PREV

Source usage: +B U F B L 0 C K BUFFER C 0 L D UPDATE

Example:

PREV @ U.

Get the value of this variable and print it.

Comment: The buffer management routines use PRE V to monitor the most
recently referenced buffer. It is seldom useful in applications.

NOT USED

This code sequence stores machine registers to the computation stack and
returns to NEXT. It is not directly executable, but is a FORTH re-entry
point after machine code.

Defined in: fig-F 0 R T H

Implementation:

<This ideogram is not implemented in MVP-FORTH.)

Comment: This ideogram is not usually a part of an 8080 or Z80
implementation of FORTH. It is usually a part of the ASSEMBLER
vocabulary. In M V P-F 0 R T H, the equivalent entry point is named H PUSH,
which should not be confused with DPUSH.

NOT USED

This code sequence stores machine register contents over the topmost
computation stack value and returns toNE XT. It is not directly executable,
but is a F 0 R T H reentry point after machine code.

Defined in: fig-FORTH

170 ALL ABOUT FORTH

QUERY

QUIT

Implementation:

<This ideogram is not implemented in MVP-FORTH.)

Comment: This ideogram is not used on an 8080 or Z80 CPU implementation of
F 0 R T H.

235 FORTH-79

Accept input of up to 80 characters Cor until a 'return') from the operator's
terminal, into the terminal input buffer. W 0 R D may be used to accept text
from this buffer as the input stream, by setting >IN and BL K to zero.

Defined in: FORTH-79, fig-FORTH

Implementation:

:QUERY TIB Ql 50 EXPECT 0 >IN . ,

Source usage: QUIT

Example:

TEST ."Input value---" QUERY BL WORD
NUMBER ;

This definition will print a prompt, then wait for an input value and place it
on the stack.

Comment: Places a Line of input in the terminal input buffer, where it may be
processed by WORD, NUMBER , INTERPRET, or any user-defined
routine.

211 FORTH-79

Clear the return stack, setting execution mode, and return control to the
terminal. No message is given.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

QUIT
BEGIN

IF
AGAIN

0, BLK [COMPILE] [
CR RP! QUERY INTERPRET

." OK" THEN . ,
Source usage: <A B 0 R T> <A B 0 R T">

ALL ABOUT FORTH

STATE NOT

171

R

R#

172

Example:

." HELLO" QliJIT

Print the text, HELL 0, and then return to F 0 R T H without the usual prompt,
0 K.

Comment: Makes it possible to end the execution of a definition without
having the ever.lpresent 0 K produced. QUIT is also useful for user defined
error message routines and application specific prompts.

c NOT USED

Copy the top of the return stack to the computation stack.

Defined in: fi!g-FORTH

Implementation:
< This ideogram is not implemented in M V P-F 0 R T H.)

Comment: Thisi ideogram is now obsolete having been replaced by R iii in
F 0 R T H -79.

aiddr u MVP-FORTH

A user variable which may contain the Location of an editing cursor, or other
file related function.

Defined in: figt--FORTH, STARTING FORTH

Implementation:

46 USER R#

Source usage: None.

Example:

R # iii

Get the address of this user variable, fetch its value and print it.

Comment: This ideogram is generally only used when in the EDITOR
vocabulary. If it is not in the range of 0 •• 1023, an error message of out of
bounds is sometimes given.

ALL ABOUT FORTH

R/W

RO

addr blk f MVP-FORTH

The fig-F 0 RT H standard disk read-write Linkage. addr specifies the
source or destination buffer <not a F 0 R T H-79 block buffer), blk is the
sequential! number of the referenced block; and f is a flag for f = 0 write
and f = 1 read. R/W determines the Location on mass storage, performs the
read or write and performs any error checking.

Defined in: fig-FORTH

Implementation:

: R/W I R I w EXECUTE 0 ,

Source usage: <B L 0 C K > B U F F E R

Example:

BUFFER
BEGIN
USE
IF R@
R@

USE @ DUP >R
+B U F UN TIL
R@ @ 0<
2+ R@ @ 7F F F

R@ PREV R>
AND

2+ ;
0 R/W THEN

This definition is one of the principal uses of the ideogram, R/W.

Comment: This ideogram is a primitive in many implementations of F 0 R T H.
If it is available, it is possible to read an~ write from disk to any area in
memory such as a special buffer, without doing through the regular block
buffers. Of course such a procedure is installation dependent and
prohibited by F 0 R T H -79. It is vectored for the benefit of the program mer,
defaulting to the routine <R/W >.

addr u MVP-FORTH

A user variable containing the initial loc tion of the return stack. See
R p !.

Pronounced: r-zero

Defined in: fig-FORTH

Implementation:

08 USER RO

Source usage: None.

Example:

R 0 @ U.

ALL ABOUT FORTH 173

R>

R@

174

Get the address of this user ,variable, fetch its value and print it.

Comment: Though it is in M V P-F 0 R T H and may be present in other
implementations, it is not a part of F 0 R T H -79 vocabulary.

n c, 110 FORTH-79

Transfer n from the return stack to the data stack.

Pronounced: r-from

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

CODE R> RPP LHLD M E MOV H INX M D MOV H IN X
RPP SHLD D PUSH NEXT JMP END-CODE

Source usage: Many.

Example:

TRY >R R> . ,

This example accomplishes the same thing as" SWAP.". Though it
illustrates the ideogram, it would be poor programming practice.

Comment: An ideogram allowing manipulations of the return stack.
Occasionally values from the data stack can be temporarily stored in the
return stack and returned with this ideogram. However, this is a potentially
dangerous procedure. Be careful to leave the return stack as you found it
before exiting your definition, otherwise you will certainly crash the system.

n c, 228 F 0 R T H -79

Copy the number on the top of the return stack to the data stack.

Pronounced: r-fetch

Defined in: FORTH-79

Implementation:

8080:

CODE R@ RPP LHLD M E MOV H INX M D MOV

ALL ABOUT FORTH

REPEAT

R 0 LL

D PUSH NEXT JMP END-CODE

Source usage: Many.

Example:

R@

Get the value present value on top of the return stack and print it.

Comment: This ideogram fetches the value on top of the return stack without
changing it, and places it on the data stack. It is useful when using the
return stack for temporary storage but be careful to finally leave the return
stack as you found it. Otherwise, you will crash the system.

I, C, 120 F 0 R T H -79

Used in a colon-definition. At run-time, REPEAT returns to just after
the corresponding BEGIN •

Form: BEGIN ••• WHILE ••• REPEAT

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

REPEAT >R >R [COMPILE] AGAIN R> R>
2- [COMPILE] THEN ; IMMEDIATE

Source usage: <NUMBER> CONVERT FORGET

Example:

TEST 0 BEGIN DUP 9 < WHILE 1+ REPEAT . ,
This definition illustrates another way of printing the digits 0 through 9.

Comment: REPEAT is a closing delimiter for a BEGIN control structure.
Since it compiles an unconditional branch, the structure may be exited only at
the corresponding WHILE.

n 236 FORTH-79

Extract the n-th stack value to the top of the stack, not counting n itself,
moving the remaining values into the vacated position. An error condition
results for n Less than one. 1 •• n

Form: 3
1

ROLL
ROLL

= ROT
= null operation

ALL ABOUT FORTH 175

ROT

176

Defined in: FORTH-79

Implementation:

ROLL DUP 1 <
ABORT" ROLL ARGUMENT< 1"
1+ DUP PICK SWAP 2* SPiil

BEGIN D UP 2- iil 0 V E R
OVER U< NOT

UNTIL DDROP ;

Source usage: None.

Example:

2 ROLL

+
2-

This example is the equivalent of the ideogram, SWAP.

Comment: This ideogram is the companion of PICK. While PICK copies its
victim onto the top of the stack, ROLL moves it. PICK increases the stack
depth by one while R 0 L L leaves it unchanged -- not counting the parameter
eaten by ROLL.

n1 n2 n3 n2 n3 n1 212 FORTH-79

Rotate the top three values, bringing the deepest to the top.

Pronounced: rote

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

CODE ROT D POP H POP XTHL DPUSH JMP END-CODE

Source usage: II CONVERT D.R D< M*/ NUMBER

Example:

45 73 89 ROT

Enter three values and then take the first one in, 45, and move it to the top
of the stack.

Comment: This ideogram performs the function of 3 ROLL, but rather more
quickly.

ALL ABOUT FORTH

R p!

RP@

M V P- F 0 R T H

A computer dependent procedure to initialize the return stack pointer from
user variabLe R 0 •

Defined in: fig-FORTH

Implementation:

8080:

CODE RP! UP LHLD 8 D LXI D DAD ME MOV H INX
M D MOV XCHG RPP SHLD NEXT JMP END-CODE

Source usage: QUIT

Example:

QUIT
BEGIN

IF
AGAIN

0 BLK [COMPILE] [
CR RP! QUERY INTERPRET STATE @ NOT

II OK" THEN . ,
This example is taken from the M V P-F 0 R T H implementation.

Comment: This ideogram is not a part of F 0 R T H -79, but may remain in the
primitives.

addr MVP-FORTH

Leaves the current value in the return stack pointer register.

Defined in: fig-FORTH (8080)

Implementation:

8080:

CODE RP@ RPP LHLD HPUSH JMP END-CODE

Source usage: None.

Example:

RP@ @ U.

Nondestructively fetch and print the top item on the return stack.

Comment: Provides more general access to the insides of F 0 R T H, which is,
of course, prohibited by F 0 R T H-79 STANDARD.

ALL ABOUT FORTH 177

RPP

S->D

178

addr MVP-FORTH

A constant returning a pointer to the cell in Low memory which holds the
FORTH return stack pointer. It is used in the 8080/Z80 implementation.

Defined in: MVP-FORTH

Implementation:

RPP CONSTANT RPP

(The cross-compiler uses the label R PP to define the constant R PP.)

Source usage: RP! RP@

Example:

R P P @ @ U.

This example achieves the same result as R @.

Comment: The cell at address R PP is a pseudo register for the simulated
F 0 R T H machine. Since the 8080/Z80 version needs its internal registers for
more time-critical activities, the return stack pointer resides at this fixed
Location in RAM.

n d M V P- F 0 R T H

Sign extend a single number to form a double number.

Defined in: fig-FORTH

Implementation:

8080:

C 0 DE S-> D D P 0 P 0 H LX I D A M 0 V 80 AN I
0# IF H DCX THEN DPUSH JMP END-CODE

Source usage: .R /M 0 D

Example:

22 S-> D

Enter a single precision number on the stack and sign extend it to a double
precision value. It is equivalent to entering twenty-two with a terminating
decimal point (22. >.

I
Comment: A convenient operation with integer ari~hmetic
the correct value of the sign in the extension. I

!

which maintains

ALL ABOUT FORTH

so addr MVP-FORTH

Returns the address of the bottom of the stack, when empty.

Pronounced: s-zero

Defined in: FORTH-79(R), fig-FORTH, STARTING FORTH

Implementation:

: SO SPO m ;

Source usage: None.

Example:

so u.

Get the address of the bottom of the stack and print it unsigned.

Comment: Allows one to reference the empty position of the data stack. It
can be used to implement a nondestructive stack display sue h as .s . In fig
F 0 R T H, SO is defined as a user variable to which M V P-F 0 R T H has assigned
the ideogram SPO, in order to free the use of SO in accordance with F 0 R T H-
79CR). STARTING FORTH appears to use the fig-FORTH definition.

S A V E -B U F F E R S 221 FORTH-79

Write all blocks to mass-storage that have been flagged as UP I> AT Ed. An
error condition results if mass-storage writing is not completed.

Defined in: FORTH-79

Implementation:

Source usage: None.

: S A V E -B U F F E A S #B U F F 1 + 0 I> 0 7 F F F
BUFFER I>ROP LOOP;

Example:

S A V E -B U F F E R S

Write all buffers marked by UP 1> ATE back to the disks.

Comment: This ideogram replaces the older one FLUSH • Often the older
ideogram is continued as at least an alias because it is so deeply embedded in
FORTH.

ALL ABOUT FORTH 179

SAVE-FORTH UTILITY

SCR

180

Save the current image of F 0 R T H as a replacement for the original
F 0 R T H. C 0 M file on the default drive.

Defined in: MVP-FORTH

Implementation:

DECIMAL
SAVE-FORTH FREEZE

13 0 SYSCALL DROP
14 0 SYSCALL DROP
C R C R • " FILE NAME ? ---"

(RESET DISK SYSTEM)
(SELECT DISK)

P A D 33 0 FILL P A D 1 + 11 BLANK
QUERY (MAKE PAD FCB)
46 W 0 R D C 0 U N T 8 M I N P A D 1 + S W A P C M 0 V E
BL WORD COUNT 3 MIN PAD 9 +SWAP CMOVE
19 PAD SYSCALL DROP (DELETE FILE)
22 PAD SYSCALL DROP (MAKE FILE)
256 HERE 0 256 U /M 0 D SWAP DR 0 P 1 + 2/ 2* 2*
0 DO DUP 26 SWAP SYSCALL DROP (SET DMA ADDRESS)

21 P A D S Y S CALL DR 0 P 128 + (W RITE SEQ U ENTIA L)

LOOP DROP
16 PAD SYSCALL DROP; (CLOSE FILE)

Source usage: None.

Example: CAUTION: This could destroy your present COM file.

SAVE-FORTH

Execution of this ideogram will prompt for the desired CP/M file name and
erase it if it is present. It will then write the FORTH image in memory to
the file you selected. Drive 0 is selected.

Comment: This ideogram makes it possible to save a binary image of F 0 R T H
at any time. It makes a rapid restart after a system crash possible. In
this implementation all error messages from CP/M are discarded. You may
wish to modify the code to better suit your needs. It is particularly useful
in turnkey systems which submit your F 0 R T H binary image upon booting up.

addr u, 217 FORTH-79

Leave the address of a variable containing the number of the screen most
recently listed. The value of the variable is unsigned.

Pronounced: s-c-r

ALL ABOUT FORTH

SEC

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

48 USER SCR

Source usage: LIST PP

Example:

L SCR LIST . ,
This definition re-lists the Last screen listed.

Comment: Using ! or +! to alter the contents of SC R is permitted.
Some editors do this in commands which step forward or backward in a series of
screens.

--- addr MVP-FORTH

A variable used by the disk interface, containing the sector number last read
or written relative to the last drive used.

Defined in: fig-FORTH (8080)

VARIABLE SEC 0 isEC

Source usage: <T&SCALC> SET-IO

Example:

SEC @ U.

Get the address of this variable, then fetch its contents and print it.

Comment: Used together with TRACK in the calculations and setting up of
the calls· to the operating system.

SEC-READ MVP-FORTH

Reads a disk sector (128 bytes) into memory. All parameters must have been
set by SET-DRIVE and SET-IO. The status on completion is stored in DISK
ERROR.

Defined in: fig-FORTH (8080>

Implementation:

8080:

CODE SEC-READ B PUSH RDSEC D LXI
DISK-ERROR STA B POP NEXT JMP

ALL ABOUT FORTH

lOS CALL
END-CODE

181

Source usage: <R/W >

Example:

<R/W> USE @ >R SWAP SEC/BLK * ROT USE
SEC/BLK 0

DO DDUP T&SCALC SET-IO
IF SEC-READ ELSE SEC-WRITE THEN 1+ BPS USE+!

LOOP DDROP R> USE ;

The definition illustrates the use of this ideogram.

Comment: One of the basic disk read/write operators. With this it is
possible to read any physical sector on a disk to any 128 byte segment of
memory. It is highly hardware dependent, but it belongs in a good F 0 R T H
development system.

SEC-WRITE MVP-FORTH

182

Writes a disk-sector (128 bytes) from memory. AlL parameters must have
been set by SET-DRIVE and SET-I 0. The status on completion is stored in
DISK-ERROR.

·Defined in: fig-FORTH (8080)

Implementation:

8080:

CODE SEC-WRITE B PUSH RITSEC D LXI IOS CALL
DISK-ERROR STA B POP NEXT JMP END-CODE

Source usage: <R I W >

Example:

<R/W> USE @ >R SWAP SEC/BLK * ROT USE
SEC/BLK 0

DO DDUP T&SCALC SET-IO
IF SEC-READ ELSE SEC-WRITE THEN 1+ BPS USE+!

LOOP DDROP R> USE ;

The definition illustrates the use of this ideogram.

Comment: One of the basic disk read/write operators. With this it is
possible to write any sector on a disk from any Location in memory. It is
highly hardware dependent, but it belongs in a good F 0 R T H development
system.

ALL ABOUT FORTH

SEC/BLK n MVP-FORTH

SEC/DR

A constant leaving the number of sectors per block in the particular
implementation.

Defined in: fig-FORTH (8080>

Implementation:

8 I CONSTANT SEC/BLK

Source usage: <R/W >

Example:

SEC/BLK

Get the value of this constant and print it.

Comment: Since most disk formats use something other than 1024 bytes per
sector, it is necessary to know how many are necessary for a block. For CP/M
the vaLue is always 8.

--- addr MVP-FORTH

A variable beginning a seven item array containing the number of sectors on a
drive of a given density format.

Defined in: MVP-FORTH

Implementation:

DECIMAL
VARIABLE

4000 ,
HEX

SEC/DR
8000 ,

SEC/DR 800
4928 , 9856

Source usage: SP DR V

Example:

SPDRV DENSITY @ 6 MIN

2000 , 4000 ,
,

2 * SEC/DR + @ . ,
The definition leaves the value of the sectors on a drive according to the

present value of DENSITY.

Comment: An array used to calculate the actual drive being accessed
according to the block number being requested. Some systems may require
changing these values. If so, it will be necessary to poke the correct values
in the proper places, and reselect your drive.

ALL ABOUT FORTH 183

SEC/TR --- addr M V P-F 0 R T H

A variable beginning a seven item array containing the number of sectors on
each track on a drive of a given density formrt.

Defined in: MVP-FORTH

Implementation:

DECIMAL
VARIABLE SEC/TR

52 , 52 , 64
HEX

Source usage: SPT

Example:

SPT DENSITY

20
64

SEC/T R 26 ,
, ,

@ 6 MIN 2 * SEC/TR

26 ,

+ @ . ,
The definition leaves the number of sectors per track on a drive according

to its current density.

Comment: An array used to calculate the actual drive being accessed
according to the block number being requested. Some systems may require
changing these values. If so, it will be necessary to poke the correct values
in the proper places.

SET-DRIVE MVP-FORTH

184

A CP/M service call which makes subsequent disk reads and writes use the
drive designated in DRIVE. T&SCALC is usually used to set DRIVE and
calls SET-DRIVE. Drive numbers range from Othrough MAX-DRV less one.

Defined in: fig-FORTH (8080>

Implementation:

8080:

CODE SET-DRIVE B PUSH DRIVE LOA A C MOV SETDSK
D LXI IOS CALL B POP NEXT JMP END-CODE

Source usage: <T&SCALC>

Example:

SET-DRIVE

Issue a command to the CP/M operating system to set a value for drive
access according to the value presently in the variable DRIVE.

ALL ABOUT FORTH

Comment: A utHity which interlinks FORTH to CP/M.

SET-DR X n MVP-FORTH

SET-IO

For drive number n, calculates and adds the necessary value to 0 F FSE T.

Defined in: MVP-FORTH

Implementation:

: SET-DRX
OFFSET

DR-DEN
+! . ,

DENSITY

Source usage: DR1 DR2 DR3 DR4

Example:

0 R 1 ORO 0 SET-DRX . ,

SP 0 R V 8 I

The definition calculates the necessary value for the variable 0 F FSE T
according to the present values established by CONFIGURE.

Comment: SET-DR X dynamically monitors changes in the value of MAx-oR V
and the array DEN, but only when you execute it. When C 0 N FIGURE is used
to change the density on the various drives it is necessary to recalculate the
values for OFFSET according to the selected drive.

MVP-FORTH

A CP/M service call which makes subsequent disk reads and writes use the
drive Last set by SET-0 RIVE, the memory address in variable USE, the sector
number in SEC, and the track number in TRACK. T & S CALC is usually used to
set these variables.

Defined in: fig-FORTH (8080)

Implementation:

8080:

CODE
I

SET-IO B PUSH
USE LHLD H B
SEC LHLD
TRACK LHLD H B
B POP NEXT JMP

Source usage: <R/W>

Example:

MOV L C MOV SETDMA 0 LXI lOS CALL
L C MOV SETSEC 0 LXI lOS CALL

MOV L C MOV SETTRK 0 LXI lOS CALL
END-CODE

ALL ABOUT FORTH 185

SIGN

SMUDGE

186

<R/W> USE @ >R SWAP SEC/BLK * ROT USE
SEC/BLK 0

DO DDUP T&SCALC SET-IO
IF SEC-READ ELSE SEC-WRITE THEN 1+ BPS USE+!

LOOP DDROP R> USE ;

This example comes from the M V P-F 0 R T H implementation.

Comment: A utility used to interface FORTH with the CP/M operating
system.

n 140 FORTH-79

Insert the ASCII "-" (minus sign) into the pictured numeric output string,
if n is negative.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

SIGN 0<
IF 2D HOLD THEN . ,

Source usage: D. R

Example:

-22. DUP ROT ROT DABS <# #S ROT SIGN#> TYPE

Enter a double precision negative value by ending with a decimal point and
then format and type the value.

Comment: This ideogram will only function between <# and #> • The
publication, F 0 R T H -79, flags SIGN as a "compile-only" ideogram; it is,
however, generally conceded that was a typographical error.

MVP-FORTH

Used during word definition to toggle the "smudge bit" in a definition•s
name field. This prevents an uncompleted definition from being found during
dictionary searches, until compiling is completed without error.

Defined in: fig-FORTH

Implementation:

:SMUDGE LATEST 20 TOGGLE . ,

Source usage: . ,

ALL ABOUT FORTH

SP!

SPO

Example:

; ?CSP COMPILE EXIT SMUDGE [COMPILE] [. ,

This example comes from the M V P-F 0 R T H implementation.

Comment: The closing smudge in 11 ; 11 cancels out the initial smudge
performed by 11 : 11 • If, because of an error, a colon definition is terminated
before completion, its smudge bit will hide it from any dictionary searches.
Although you will see it in your VLIST,trying to FORGET it will return an
error with the message 11 NOT IN CURRENT VOCABULARY 11 • If the
offending ideogram is at the top of the dictionary, executing SMUDGE will
expose it for removal.

MVP-FORTH

A computer dependent procedure to initialize the stack pointer from SO •

Defined in: fig-FORTH

Implementation:

8080:

CODE SP! UP LHLD
M D M 0 V

8 D LXI D DAD M E M 0 V
H IN X XCHG SPHL NEXT JMP END-CODE

Source usage: <ABORT> <ABORT">

Example:

<ABORT> SP! ?STACK [COMPILE]
QUIT ; FORTH DEFINITIONS

The definition is used in conjunction with an error routine to reset the
stack to its empty position.

Comment: Only the data stack is cleared. The return stack and everything
else remain intact.

addr u M V P- F 0 R T H

A user variable that contains the initial value of the stack pointer. (See
so).
Pronounced: s-p-zero

Defined in: MVP-FORTH

Implementation:

ALL ABOUT FORTH 187

SP@

SPACE

188

06 USER SPO

Source usage: SO

Example:

so SPO @ 0 ,

The example is from the M V P-F 0 R T H source code.

Comment: Although this user variable is given a different name in fig
FORTH and STARTING FORTH, its MVP-FORTH identifier makes the
ideogram SO available to function according to F 0 R T H -79CR).

addr 214 MVP-FORTH

Return the address of the top of the stack, just before SP@ was executed.

Pronounced: s-p-fetch

Defined in: FORTH-79(R), fig-FORTH

Implementation:

8080:

CODE SP@ 0 H LXI SP DAD HPUSH JMP END-CODE

Source usage: ?CSP ?STACK DEPTH PICK ROLL

Example:

DEPTH SP@ so SWAP 2 I 0 ,

This example is taken from the MVP-FORTH implementation.

Comment: The F 0 R T H -79 STANDARD prefers you to use the ideogram
DEPTH in place of the implementation dependent SP @.

232 FORTH-79

Transmit an ASCII blank to the current output device.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: SPACE BL EMIT . ,

ALL ABOUT FORTH

SPACES

SP DR V

Source usage: D. LIST SPACES

Example:

333 3 .R SPACE 444 3 .R

This example illustrates the formatted output of two 3-digit numbers
separated by one space.

Comment: This ideogram will place the proper ASCII value regardless of the
current number base.

n 231 FORTH-79

Transmit n spaces to the current output device. Take no action for n
of zero or less.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

SPACES
IF 0

DO
THEN . ,

0 MAX ?DUP

SPACE LOOP

Source usage: D.R ?CONFIGURE TRIAD

Example:

33 4 • R 20 SPA C E S 44 4 • R

This example illustrates the formatted output of two 4-digit numeric fields
separated by twenty spaces.

Comment: The usefulness of this somewhat trivial ideogram justifies its
inclusion in FORTH-79 and MVP-FORTH.

n MVP-FORTH

Find the value in the array SEC/DR according to the value of DENSITY.

Defined in: MVP-FORTH

Implementation:

: S P D R V DENSITY @ 6 MIN 2* SEC/DR + @ . ,

Source usage: <T&SCALC> SET-DRV

ALL ABOUT FORTH 189

SPT

STATE

190

Example:

SPDRV

Get the number of sectors on a drive according the the present value of
DENSITY and print it.

Comment: A factored FORTH utility used in setting up CP/M for disk
access.

n MVP-FORTH

Find the value in the array SEC/TR according to the value of DENSITY.

Defined in: MVP-FORTH

Implementation:

: SPT DENSITY @ 6 MIN 2* SEC/TR + . ,
Source usage: <T&SCALC>

Example:

SPT

Get the number of sectors per track according to the value present value of
DENSITY and print it.

Comment: A factored FORTH utility used in setting up CP/M for disk
access.

addr u, 164 FORTH-79

Leave the address of the variable containing the compilation state. A non
zero content indicates compilation is occurring, but the value itself may be
installation dependent.

Defined in: FORTH-79, fig-FORTH

Implementation:

4A USER STATE

Source usage: " <INTERPRET> ?COMP DLITERAL
LITERAL QUIT []

Example:

:] CO STATE . ,

ALL ABOUT FORTH

SWAP

This example comes from the M V P-F 0 R T H implementation.

Comment: Although STATE is widely used and is·part of the FORTH-79
STANDARD, it is not indispensable. STARTING FORTH seems to manage
quite weLL without it.

n1 n2 --- n2 n1 230 FORTH-79

Exchange the top two stack values.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

CODE SWAP H POP XTHL HPUSH JMP END-CODE

Source usage: Many.

Example:

33 44 SWAP

Enter two values on the stack and then exchange them.

Comment: This ideogram is' one of the fundamental stack operators.

SYSCALL n1 n2 n3 M V P- F 0 R T H

Setup and execute CP/M function calls. n1 is the function code number and
n2 is the parameter value to be placed in the DE register. CP/M BOOS is
then called and the error code in register A, if any, is placed on the stack.

Defined in: MVP-FORTH

Implementation:

8080:

CODE SYSCALL
BOOS CALL
HPUSH JMP

D POP H POP B PUSH L C MOV
B POP 0 H MVI A L MOV
END-CODE

Source usage: None.

Example:

2 65 SYSCALL DROP

ALL ABOUT FORTH

The character A will be printed at the terminal and, since thi~ function
returns no error, a meaningless value returned on the stack is dropped.

Comment: This ideogram gives the user access to most of the CP/M
functions. It is used to implement SAVE-FORTH.

T&SCALC n MVP-FORTH

TASK

Track & Sector and drive calculations for disk I 0. n is the total sector
displacement from the first Logical drive to the desired sector. The
corresponding drive, track, and sector numbers are calculated. If the drive
number is different from the contents of DRIVE, the new drive number is
stored in DRIVE and SET-DRIVE is executed. The track number is stored in
TRACK; the sector number is stored in SEC. T&SCALC is usually executed
before SET-DRIVE.

Defined in: fig-FORTH (8080)

Implementation:

: T&SCALC 'T&SCALC @ EXECUTE . ,
Source usage: <R/W>

Example:

<R/W> USE @ >R SWAP SEC/BLK
SEC/BLK 0

DO DDUP T&SCALC SET-IO
IF SEC-READ ELSE SEC-WRITE
1+ BPS USE +!

LOOP DDROP R> USE . ,

* R 0 T USE

THEN

This example comes from the M V P-F 0 R T H source code.

Comment: This is a revised implementation from that in fig-F 0 R T H; it takes
into account the number of sectors which are present on each disk in making
the calculation. If T&SCALC cannot map n onto a physical sector, no
error message is given and the values of DRIVE, TRACK, and SEC are not
altered. In MVP-FORTH, this ideogram is vectored for the convenience of
the program mer, defaulting to <T & S CALC>.

NOT USED

A no-operation word which can mark the boundary between applications. By
forgetting TASK and re-compiling, an application can be discarded in
its entirety.

Defined in: fig-F 0 R T H

192 ALL ABOUT FORTH

TEXT

THEN

Implementation: < Not implemented in M V P-F 0 R T H. >

: TASK . ,

Source usage: None.

Example:

FORGET TASK : TASK . ,
The example first forgets the ideograms in the dictionary through TASK,

frequently the end of the boot up version, and then replaces it.

Comment: Regardless of the ideogram you use for this purpose, remember to
redefine it after forgetting it. The name you choose is secondary to the
technique. TASK is simply a dum my placeholder marking a certain point in
the dictionary.

c MVP-FORTH

Accept characters from the input stream, as for W 0 R D, into PAD, blank
filling the remainder of PAD to 64 characters.

Defined in: FORTH-79(R), STARTING FORTH

Implementation:

TEXT
DUP

HERE C/L 1+ BLANK
Clil 1+ C! PAD C/L

Source usage: PP

Example:

: DELIMIT BL TEXT . ,

WORD BL
1+ CMOVE

OVER . ,

DELIMIT, when executed, will take the next word from the input stream and
place it with a preceding Length byte, at PAD.

Comment: Though this ideogram is usually present only in the EDITOR
vocabulary, it can be convenient to have it available along with a few others
in F 0 R T H when 'the E 0 IT 0 R vocabulary is not loaded.

I, C, 161 FORTH-79

Used in a colon-definition. THEN is the point where execution resumes
after ELSE or IF (when no ELSE is present).

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

ALL ABOUT FORTH 193

THRU

TIB

194

Implementation:

THEN ?COMP 2 ?PAIRS HERE OVER
SWAP IMMEDIATE . ,

Source usage: Many.

Example:

TEST 1 IF ." ONE II THEN ;

The definition will always print 'ONE'.

Comment: END IF, an obsolete alias for THEN, may appear in older programs.

n1 n2 UTILITY

Load consecutively the blocks from n1 through n2.

Defined in: FORTH-79(R)

Implementation:

THRU 1+ SWAP
D 0 I U. I L 0 AD LOOP . ,

Source usage: None.

Example:

10 20 T H R U

This example will load screens 10 through 20, printing the number of each
screen as it is loaded.

Comment: This ideogram is the preferred alternative to "-->"for Loading a
contiguous series of screens. By typing each screen's number as it is
loading, this version lets one monitor the progress of a lengthy compilation.

addr u MVP-FORTH

A user variable containing the address of the terminal input buffer.

Defined in: fig-FORTH

Implementation:

OA USER TIB

ALL ABOUT FORTH

Source usage: 'STREAM QUERY

Example:

TIB iil U.

Get the address of this user variable, fetch its contents and print it
unsigned.

Comment: Although F 0 R T H -79 requires a terminal input buffer, the means of
locating it is left up to the implementation. The M V P-F 0 R T H
implementation uses the fig-F 0 R T H approach.

TITLE UTILITY

TOGGLE

Print a fixed message," MOUNTAIN VIEW PRESS FORTH VERSION 1.0,"
followed by a carriage return.

Defined in: MVP-FORTH

Implementation:

TITLE CR 10 SPACES
." MOUNTAIN VIEW PRESS FORTH VERSION 1.0" CR ;

Source usage: None.

Example:

FIND .TITLE 'TITLE !

This example resets TRIAD to print its default message.

Comment: This default message is printed at the bottom of each page by
TRIAD using the vector 'TITLE. Any other ideogram may be defined and used
to replace TITLE. The ideogram then vectored by 'TITLE will be invoked by
TRIA D.

addr b MVP-FORTH

Complement the contents of addr by the bit pattern b.

Defined in: fig-FORTH

Implementation:

8080:

CODE TOGGLE D POP H POP M A MOV
E X R A A M M 0 V NEXT J M P END -C 0 DE

ALL ABOUT FORTH 195

TRACK

Source usage: CREATE IMMEDIATE SMUDGE

Example:

SMUDGE LATEST 20 T 0 G G L E . ,

The definition, taken from the M V P-F 0 R T H implementation, utilizes this
ideogram to complement the value of bit 6 in the byte at LATEST.

Comment: Only the byte at addr is affected.

--- addr MVP-FORTH

A variable used by disk I-0. Contains the track number last read or written
relative to the current drive.

Defined in: fig-FORTH (8080)

Implementation:

VARIABLE TRACK 0 TRACK

Source usage: <T&SCALC>

Example:

TRACK @

Get the address of the variable, fetch its contents and print it.

Comment: A variable used in interfacing FORTH with CP/M.

TRAVERSE addr1 n addr2 MVP-FORTH

196

Move across the name field of a fig-F 0 R T H variable Length dictionary header.
addr1 is the address of either the length byte or the last Letter. If n = 1 ,
the motion is toward high memory; if n = -1, the motion is toward Low memory.
The addr2 resulting is the address of the other end of the name.

Defined in: fig-F 0 RTH

Implementation:

TRAVERSE SWAP
BEGIN 0 V E R + 07 F 0 V E R C@ < UNTIL
SWAP DROP ;

Source usage: NFA PFA

ALL ABOUT FORTH

TRIAD

TYPE

Example:

NFA 5 -1 TRAVERSE . ,

The definition is used to find the name field address, given the parameter
field address.

Comment: This ideogram is necessary in implementations of FORTH with
fig-F 0 R T H style name headers. However, F 0 R T H -79 STANDARD prohibits
such poking around with the header and the operation would remain headerless
in a "pure" implementation. On the other hand, a good F 0 R T H development
system should have it available.

scr UTILITY

Display on the selected output device the three screens which include that
numbered scr, beginning with a screen evenly divisible by three. Output 'is
suitable for source text records and includes an alterable bottom title.

Defined in: fig-F 0 R T H

Implementation:

TRIAD
3

DO

0 3 U/MOD SWAP DROP
* 3 OVER +SWAP

CR I LIST ?TERMINAL
IF LEAVE THEN

1 /L 0 0 P 'TITLE @ EXECUTE ;

Source usage: None.

Example:

31 TRIAD

The example will print three screens beginning with screen 30.

Comment: By making each page evenly divisible by three, screen Listings
may be maintained in a Loose-Leaf notebook. This version ofT RIA D prints a
vectored bottom title. Substituting a different title text is possible by
defining a .new message routine and storing its compilation address in
'TITLE.

addr n 222 FORTH-79

Transmit n characters beginning at address to the current outp4t device.
No action takes place for n less than or equal to zero. I

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

ALL ABOUT FORTH 197

198

Implementation:

TYPE
DO

ELSE

D UP 0>
I C@ EMIT

DDROP THEN

IF OVER
1 /L 0 0 P
;

Source usage: <.II> D. R • L I N E

Example:

PAD COUNT TYPE

+ SWAP

Get the address of PAD, then get the length of the text at PAD and advance
the address by 1, and then type out the contents.

Comment: The definitions vary slightly but for most work they function
identically. Note that you should expect trouble if your implementation wHL
not handle fields crossing the addresses 0 or decimal 32768 --the transition
from positive to negative signed integers.

un1 un2 ud3 242 FORTH-79

Perform an unsigned multiplication of un1 by un2 , leaving the double
number product ud3. All values are unsigned.

Pronounced: u-times

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

8080:

ASSEMBLER
HERE LABEL MPYX
HERE LABEL MPYX1

0 H LXI
H DAD

0 A C I
C DCR

8 C M VI
RAL

MPYX2 JNC D DAD
HERE LABEL MPYX2

FORTH
MPYX1 JNZ RET

CODE U* D POP H POP B PUSH H B MOV l A MOV
MPYX CALL H PUSH A H MOV BAMOV HBMOV
MPYX CALL D POP DC MOV B DAD 0 ACI
L D MOV H L MOV A H MOV B POP D PUSH
HPUSH JMP END-CODE

Source usage: CONVERT M*

Example:

333 444 U * <# #S #> TYPE

Enter two unsigned single precision values, return the 32 bit unsigned

ALL ABOUT FORTH

u.

U.R

product to the stack and print it.

Comment: Allows working with unsigned numbers and provides full precision
in the double precision result. No data is lost and no overflow is possible.
U* can be the basis for all other multipilcations.

un 106 F 0 R T H -79

Display un converted according to BASE as an unsigned number, in a
free-field format, with one trailing blank.

Pronounced: u-dot

Defined in: FORTH-79, STARTING FORTH

Implementation:

: u. 0 D. . ,

Source usage: None.

Example:

HEX BCAD DECIMAL U.

Enter a hex value greater than 8000, return to decimal and print it unsigned.
If simply were used, the value printed would be negative.

Comment: This ideogram permits the output of an address which might
otherwise appear as a negative number. It is defined in many
implementations of FORTH including fig-FORTH even though it is not
included in the INSTALLATION MANUAL.

un1 n2 216 SUPPLEMENTAL

Output un1 as an unsigned number right justified in a field
wide. If n2 is smaller than the characters required for
spaces are given.

Pronounced: u-dot-r

Defined in: FORTH-79(R), STARTING FORTH

Implementation:

: U. R 0 SWAP D.R . ,

Source usage: None.

Example:

ALL ABOUT FORTH

n2 characters
n1 , no Leading

199

U/

U/M 0 D

200

HEX BCDA DECIMAL 6 U.R

Enter a hex value greater than 8000, return to decimal and print the value in
a field right justified to six spaces.

Comment: This allows the output of addresses or block numbers in a formatted
field.

ud u1 u2 u3 NOT USED

Leave the unsigned remainder
unsigned double dividend ud

Defined in: fig- F 0 R T H

Implementation:

: U/ U/MOD ;

Source usage: None.

Example:

45000. 36000 U/

u2 and unsigned quotient
and unsigned divisor u1 •

u3 from the

Divide the double dividend by the single divisor, printing the quotient and
remainder. U/ treats all quantities as unsigned. A signed division would
return different results for the same inputs.

Comment: This obsolete synonym for U/M 0 D may appear in older programs.

ud1 un2 un3 un4 243 F 0 R T H -79

Perform the unsigned division of double number ud1 by un2, leaving the
remainder un3 , and quotient un4 • All values are unsigned.

Pronounced: u-divide-mod

Defined in: FORTH-79, STARTING FORTH

Implementation:

8080:

CODE U/MOD 4 H LXI
H INX M D MOV
L A MOV C SUB
FFFF H LXI FFFF

HERE LABEL USLA1
HERE LABEL USLA2

SP DAD ME MOV C M MOV
B M MOV B POP H POP
H A MOV B SBB USLA1 JC

D LXI USLA7 JMP
10 A MVI
H DAD RAL XCHG

ALL ABOUT FORTH

U<

H DAD USLA3 JNC D INX A ANA
HERE LABEL USLA3 XCHG RAR PSW PUSH. USLA4 JNC

L A MOV C SUB A L MOV H A MOV B SBB
A H MOV USLA5 JMP

HERE LABEL USLA4 L A MOV C SUB A L MOV H A MOV
B SBB A H MOV USLA5 JNC B DAD D DCX

HERE LABEL USLA5 D INX
HERE LABEL USLA6 PSW POP A OCR USLA2 JNZ
HERE LABEL USLA7 B POP H PUSH D PUSH

NEXT JMP END-CODE

Source usage: M/ M/MOD

Example:

45000. 36000 U/M 0 D

Divide the double dividend by the single divisor, printing the quotient and
remainder. U/M 0 D treats all quantities as unsigned. A signed division
such as M/ would return different results for the same inputs.

Comment: All division, signed and unsigned, may be expressed in terms of
U /M 0 D •

un1 un2 flag 150 FORTH-79

Leave the flag representing the magnitude comparison . of un1 < un2
where un1 and un2 are treated as 16 bit unsigned integers.

Pronounced: u-less-than

Defined in: FORTH-79, STARTING FORTH

Implementation:

: u < SWAP 0 D< . ,

Source usage: ?STACK FORGET ROLL

Example:

45000 35000 u <

Enter two large values which if signed would be negative, and compare them
leaving a flag on the stack, in this case a 0 for false,.

Comment: This ideogram is useful when dealing with addresses which may
otherwise confuse negative values.

ALL ABOUT FORTH 201

UN TIL

UP

202

addr n
fl

(compiling)
(executing)

I, C, 237 FORTH-79

Within a colon-definition, mark the end of a BEGIN-UNTIL loop, which
will terminate based on a flag. If flag is true, the loop is terminated.
If flag is false, execution returns to the first word after BEGIN •
BEGIN-UNTIL structures may be nested.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

UNTIL 1 ?PAIRS COMPILE OBRANCH HERE . , ,
IMMEDIATE

Source usage: Many.

Example:

TEST -1 BEGIN 1 + D UP DUP 9 =UNTIL DROP;

The definition will print the digits 0 through 9.

Comment: 0 Lder versions of F 0 R T H use the obsolete synonym, EN D.

addr MVP-FORTH

A constant returning a pointer to the cell in low memory which holds the
pointer to the user area. It is used in the 8080/Z80 implementation and some
others.

Defined in: M V P-F 0 R T H

Implementation:

UP CONSTANT UP

(The cross-compiler uses the Label UP to define the constant UP.)

Source usage: None.

Example:

I s PO @ up @ + @ u.

This contrived example will print the value in the user variable SPO.

Comment: Multi-user F 0 RT H systems maintain a separate set of user
variables for each terminal task. Switching between tasks involves saving
and restoring CPU registers and selecting a new user area. In 8080/Z80
systems, a user area is activated by storing its starting addres into the cell

ALL ABOUT FORTH

UPDATE

USE

at UP.

229 FORTH-79

Mark the most recently referenced block as modified. The block will
subsequently be automatically transferred to mass storage should its memory
buffer be needed for storage of a different block, or upon execution of
SA V E -B U F F E R S.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: UPDATE P R E V @ @ 8000 0 R P R E V @ ;

Source usage: CLEAR

Example:

50 BLOCK UPDATE

Enter a block number and then BL 0 C K followed by this ideogram, ensuring
that this block will be written back to disk when the buffer's space is needed.
The buffer address from BL 0 C K remains on the stack unchanged.

Comment: This ideogram is particularly useful when blocks are accessed for
the addition or modification of data rather than as source screens.

addr M V P- F 0 R T H

A variable containing the address of the block buffer to use next, as the Least
recently written.

Defined in: fig-FORTH

Implementation:

VARIABLE USE FIRST VARIABLE

Source usage: ?LOADING BUFFER COLD <R/W> SET-IO

Example:

<R/W> USE iil >R SWAP SEC/BLK * ROT USE
SEC/BLK 0

DO DDUP T&SCALC SET-IO
IF SEC-READ ELSE SEC-WRITE THEN
1+ BPS USE +!

LOOP DDROP R> USE . ,

ALL ABOUT FORTH 203

USER

This definition is from the M V P-F 0 R T H implementation.

Comment: This ideogram is important to the implementation dependent block
I/O and buffer management routines, but it is of Little value to applications.

n M V P- F 0 R T H

A defining word which creates a user variable <name>. n is the cell offset
within the user area where the value for <name> is stored. Execution of
<name> leaves its absolute user area storage address.

Form: n USER <name>

Defined in: FORTH-79(R), fig-FORTH

Implementation:

8080:

USER
D IN X
D DAD

CONSTANT ;CODE
XCHG M E MOV 0 D MVI·
HPUSH JMP END-CODE

Source usage: Many.

Example:

08 USER SPO

UP LHLD

Enter the offset from the beginning of the user field, followed by the
ideogram and then the name being assigned to that location.

Comment: A number of variables present in F 0 R T H -79 could be defined with
this construction, though the ideogram is not a part of the 79-ST AND A R D
vocabulary. It is, however, in the Reference Word Set and is customarily
utilized, headerless if necessary. A group of them is usually initialized
with data from low memory when FORTH is started. In MVP-FORTH and in
most implementations of fig-F 0 R T H, a block of 64 bytes is reserved for the
user area. The use of cells in the F 0 R T H-79CR) definition is interpreted to
mean two bytes but not that word boundaries are required. The unused
portion of this area is available to the programmer.

VARIABLE 227 F 0 R T H -79

204

A defining word to create a dictionary entry for <name> and allot two bytes
for storage in the parameter field. The application must initialize the
stored value. When <name> is Later executed, it will place the storage
address on the stack.

Form: V A R I A B L E <name>

ALL ABOUT FORTH

V LIST

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: VARIABLE 2 . , ALLOT CREATE

Source usage: Many.

Example:

VARIABLE NEW-VALUE 0 NEW-VALUE

This ideogram will define the name of a new variable which is then
initialized.

Comment: There is a significant difference between the current FO RTH-79
function of this ideogram and that used by fig-FORTH. The MVP-FORTH
implementation conforms with F 0 R T H -79. The current function of this
ideogram is to create a dictionary space for a variable and leave its contents
undetermined. Thus all variables must be initialized after being defined.
This differs from fig-FORTH in which the defined function of VARIABLE
used the top value on the stack to initialize the variable at creation time.

UTILITY

List the word names of the C 0 NT EXT vocabulary starting with the most recent
definition.

Defined in: FORTH-79(R), fig-FORTH

Implementation:

V LIST C/L OUT CONTEXT @ @
BEGIN C/L 0 UT @ OVER C@ 1 F AND 4 + <

IF CR 0 OUT THEN
DUP I D. SPACE SPACE PF A 4 @ DUP
NOT PAUSE ?TERMINAL OR

UN TIL DR 0 P ;

Source usage: None.

Example:

V LIST

This ideogram will start a printing of the C 0 NTE XT vocabulary.

Comment: In most fig-F 0 R T H based implementations, pressing any key ~ill
terminate the listing. The M V P-F 0 R T H version incorporates a PAUSE
feature, by which pressing any key will freeze the display. Once suspended,
the VLIST may be resumed by a single keystroke, or aborted by striking any

ALL ABOUT FORTH 205

two keys in rapid succession.

VOC-LINK addr u MVP-FORTH

A user variable containing the address of a field in the definition of the most
recently created vocabulary. All vocabulary names are linked by these
fields to allow control for F 0 R GETting through multiple vocabularies.

Defined in: fig-FORTH

Implementation:

14 USER V 0 C-LINK

Source usage: FORGET VOCABULARY

Example:

VOC-LINK @ U.

Get the address of the user variable, fetch its value and print it.

Comment: An implementation dependent variable not available in all
vers·ions of FORTH.

VOCABULARY 208

206

A defining word to create (in the CURRENT vocabulary) a dictionary entry
for <name>, which specifies a new ordered list of word definitions.
Subsequent execution of <name> will make it the CONTEXT vocabulary.
When <name> becomes the CURRENT vocabulary (see DEFINITIONS), new
definitions will be created in that list. In Lieu of any further specification,
new vocabularies 'chain' to F 0 R T H. That is, when a dictionary search
through a vocabulary is exhausted, FORTH will be searched.

Form: VOCABULARY <name>

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

VOCABULARY
CREATE A 081 , FORTH ,

HERE V 0 C-LINK Ql , V 0 C-LINK
DOES> 2+ CONTEXT . ,

Source usage: None.

Example:

ALL ABOUT FORTH

WARM

FORTH DEFINITIONS VOCABULARY NEW-VOCABULARY

Create a new vocabulary with its name in F 0 R T H.

Comment: Though in fig-F 0 R T H daughter vocabularies may be chained to
parent vocabularies before finally chaining to F 0 R T H, the common
interpretation for F 0 R T H-79 is that all vocabularies must chain only to
FORTH. Though there are some applications in which multiple daughter
vocabularies might be desirable, in general the consensus of many F 0 R T H
programmers is that the number of vocabularies should be kept to a minimum.

R est art F 0 R T H with E M P T Y - B U F F E R S •

Defined in: fig-FORTH (8080)
Implementation:

: WARM EMPTY-BUFFERS

Source usage: None.

Example:

WARM

ABORT . ,

NOT USED

This ideogram will simply clear the buffers and restart F 0 R T H.

Comment: As implemented in the 8080 version of fig-F 0 RT H, this ideogram
simply empties the buffers and clears the stack. Nothing in the dictionary
is changed.

WARNING addr u MVP-FORTH

A user variable containing a flag which enables the output of selected non
fatal error messages.

Defined in: MVP-FORTH

Implementation:

OE USER WARNING

Source usage: CREATE

Example:

0 WARNING

Suppress the printing of system warninb messages.

ALL ABOUT FORTH 207

WHILE

WHERE

208

(This ideogram is not i mplement'd in M V P-F 0 R T H)
!

'

Comment: Within the MVP-FORT~ nucleus, this flag controls the "ISN'T
UNIQUE" message. It is avai labile for the program mer's use. Note that
fig-F 0 R T H uses this user variable in a completely different manner: to
control the source of all message texts.

flag I, C, 149 FORTH-79

Used in a colon-definition to select conditional execution based on the flag.
On a true flag, continue execution through to REPEAT, which then returns
back to just after BEGIN • On a false flag, skip execution to just after
REPEAT , exiting the structure.

Form: BEGIN ••• flag W HI L E REPEAT

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

WHILE [COMPILE]
I F 2+ ; I M M E D I A T E

Source usage: CONVERT FORGET

Example:

TEST
WHILE

0 BEGIN
DUP

DUP 10 <
1+ REPEAT DROP . ,

The definition illustrates this ideogram in another BEGIN construct which
wilL type the digits 0 through 9.

Comment: WHILE makes its exit decision in the middle of the loop. Thus
the test can be made and the loop exited before passing through the body of the
Loop at all. Compare this with the DO-LOOP and BEGIN-UNTIL Loops which
always make at least one complete pass through the body of the Loop before
testing the exit criterion.

MVP-FORTH

Display the Last character string parsed by the text interpreter, along with
the Line containing it. If loading, the screen and line numbers are printed.

Defined in: MVP-FORTH

Implementation:

ALL ABOUT FORTH

WIDTH

WHERE BLK @
IF BL K @ DUP SCR CR CR ." SCR# II

DUP >IN @ 3FF MIN C/L /M 6 D DUP
." LINE# II C/L * ROT BLOCK +
CR CR C/L -TRAILING TYPE

ELSE >IN @
THEN CR HERE C@ DUP >R
1+ C@ 20 =
IF 1- THEN SPACES R> 0 DO

Source usage: <A B 0 R T ">

Excunple:

<ABORT">
IF WHERE CR R@ COUNT
ELSE R> DUP C@ + 1+ >R

TYPE
THEN

>IN @ 3FF > +

HERE R@ +

SE EMIT LOOP ;

SP! QUIT
0 ,

This example from the M V P-F 0 R T H source code shows how A B 0 R T" tells you
exactly where the text interpreter encountered an error.

Comment: WHERE makes use of the count and character string stored at
HERE, to identify the last ideogram interpreted. It is useful for locating
the source of common errors during L 0 AD i ng or terminaL interpretation, but is
no substitute for good debugging skills.

addr MVP-FORTH

In fig-F 0 RT H, a user variable containing the maximum number of Letters
saved in the compilation of a definition's name. It must be 1 through 31, with
a default value of 31. The name character count and its natural characters
are saved, up to the value in WIDTH. The value may be changed at any time
within the above Limits.

Defined in: fig-FORTH

Implementation:

OC USER WIDTH

Source usage: CREATE

Example:

WIDTH @

Get the address of this user variable, then fetch its value and print it to
show the present maximum size of a name in the dictionary header.

Comment: Though ideograms may have up to 31 characters in F 0 R T H -79,
the M V P-F 0 R T H implementation gives you the option of truncating them to
the Length specified in this user variable.

ALL ABOUT FORTH 209

WORD

X

210

char addr 181 FORTH-79

Receive characters from the input stream until the non-zero delimiting
character is encountered or the input stream is exhausted, ignoring Leading
delimiters. The characters are stored as a packed string with the character
count in the first character position. The actual delimiter encountered
(char or null> is stored at the end of the text but not included in the count.
If the input stream was exhausted as W 0 R D is called, then a zero length
will result. The address of the beginning of this packed string is left on the
stack.

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

. WORD I w 0 R D @ EXECUTE . . ,

Source usage: (II -FIND CREATE FORGET

Example:

INPUT II Input an integer "
QUERY BL WORD NUMBER DROP ;

The definition provides for a prompt and then a pause for the operator to
input the requested integer. Then the input character stream is parsed with
this ideogram, converted to a double precision value and reduced to a single
precision value left on the stack.

Comment: Care must be taken in moving source code from fig-F 0 R T H to
F 0 R T H -79 which includes the ideogram W 0 RD. In F 0 R T H -79, W 0 R D Leaves
the address of HERE on the top of the stack. ALso, while in fig- F 0 R T H the
string is stored at HERE, in F 0 R T H -79 another buffer may be used. Because
of the possible variations, this ideogram utilizes an execution vector which
will permit easy redefinition. It defaults to <W 0 R D>.

M V P- F 0 R T H

This is a pseudonym for the "null" or dictionary entry for a name of one
character of ASCII null. It is the execution procedure to terminate
interpretation of a line of text from the terminal or within a disk buffer, as
both buffers always have a null at the end.

Defined in: fig-FORTH

Implementation:

X BLK @

IF STATE @ ?STREAM THEN

ALL ABOUT FORTH

XOR

[

R> DROP ; IMMEDIATE IS-X
IMMEDIATE IS-X

Source usage: None.

Example:

This ideogram is not available to the programmer.

Comment: This somewhat confusing word is defined in the INSTALLATION
MANUAL but is not included in FORTH-79. Defining the null character as
an ideogram is a clever trick for telling <INTERPRET> that the end of a
buffer has peen reached. Note the intentionally unbalanced use of R > •
This ideogram IS- X, is part of the c R 0 ss-e 0 M pILE R. It locates the " X II

in the latest defijition's dictionary and overwrites it with a null. The
sequence "0 ' X NFA 1+ C! "would accomplish the same thing.

I

n1 n2 --- n3

Leave the bitwiselexclusive-or of two numbers.

Pronounced: x-orl

Defined in: FORTH-79, fig-FORTH

Implementation: I

8080:

CODE XOR D
A L MOV D
HPUSH JMP

Source usage:

Example:

PbP H POP E
A MOV H XRA
EIND-CODE

M/ M*

HE X 20 10 X 0 R DEC I M A L

I

A MOV L XRA
A H M 0 V

174 FORTH-79

The example does a logical exclusive-or operation on the bit patterns
which are perhaps more easily recognized when in hex. The two values are
replaced by the result on the stack.

Comment: This ideogram is a common logical operator.

I, 125 FORTH-79

End the compilation mode. The text from the input stream is s~bsequently
executed. See]

ALL ABOUT FORTH 211

[']

212

Pronounced: left-bracket

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

: [0 STATE . ,
Source usage: . ,
Example:

ADD-RECORDLENGTH
I J LITERAL +

IMMEDIATE

QUIT

[BLOCI<SIZE RECOR DS-PER-BLOCI< . ,
This ideogram [suspends compilation so that the division of two

constants is done, only once, at compile time.. Of course, the constants will
have been defined earlier.

Comment: Allows switching out of the compile mode within a definition. It
can be used for compile-time calculation, SM U D GE-ing the name of a
recursive definition, or anything else. Take care, however not to interfere
with the compiler's use of the stack, as inside IF or BEGIN constructs.

I, C, SUPPLEMENTAL

Used in a colon definition to compile the parameter field address of the next
word in the input stream as a literal.

Form: (compile time)
adr (run time >

Pronounced: bracket-tick-bracket

Defined in: STARTING FORTH

Implementation:

: ['] ?COMP [COMPILE] . , IMMEDIATE

Source usage: None.

Example:

TEST ['] BIB U F . ,

The parameter field address of BIB U F is compiled as a literal into the
definition of TEST. TEST will behave like a constant, always pushing the
same literal value onto the stack.

Comment: Tliis form of is used in colon definitions apparently to keep
things straight in poly-F 0 R T H. Note that the address returned by ['J

ALL ABOUT FORTH

should not be EXECUTEd in this version until it has been adjusted by the
operator C FA.

[COMPILE] I, C, 179 FORTH-79

Used in a colon-definition to force compilation of the following word. This
allows compilation of an IMMEDIATE word when it would otherwise be
executed.

Form: [COMPILE] <name>

Pronounced: bracket-compile

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

[COMPILE] ?COMP -FIND NOT
ABORT" NOT FOUND" DROP CFA . , , IMMEDIATE

Source usage: Many.

Example:

END IF [COMPILE] THEN . , IMMEDIATE

The example illustrates the renaming of an ideogram which. is marked
immediate.

Comment: This is another ideogram which give~ versatility to the defining
ideograms in F 0 R T H. It overrides an ideogrim•s precedence bit.

\ UTILITY

Ignore all subsequent characters on this line. Begin interpretation with the
next line. May be used only while loading.

Pronounced: back-slash

Implementation:

\ ?LOADING
C/L * >IN
IMMEDIATE

>IN iii . ,

Source usage: None.

Example:

\ THIS IS A COMMENT

C /L I 1 +

ALL ABOUT FORTH 213

]

214

The interpreter will ignore this text.

Comment: This ideogram offers an alternative method for commenting a
source program. While it has the advantage of not requiring a closing
delimiter, it is non-standard and works only for the 16 x 64 screen format.

126 FORTH-79

Set the compilation mode. The text from the input stream is subsequently
compiled. See [•

Pronounced: right-bracket

Defined in: FORTH-79, fig-FORTH, STARTING FORTH

Implementation:

:] CO STATE . ,
Source usage:

Example:

ADD-RECORDLENGTH [BLOCKSIZE R E c·o R D S-P E R -B L 0 C K
I J LITERAL + . ,
This ideogram, J , resumes compilation after a compile-time calculation

has been performed.

Comment: This ideogram works with [to allow access to F 0 R T H 's
execution-time functions within a colon definition. Take care not to disturb
stack data being used by the compiler, as in IF, BEGIN and DO-LOOP
conditional constructs.

ALL ABOUT FORTH

FOR'IH-79 STANDARD

A PUBLICATION OF '!HE FORTH STANOARD.S TEAM

0. FOREWORD

The computer language FORTH was created by Mr. Charles Moore, as an
extensible, multi-level environment containing elements of an operating system,
a machine monitor, and facilities for program development and testing.

This Standard is a direct descendant of FORI'H-77, a work of the FOR'lli:
Users Group (Europe). The constituency of the Standards Team has steadily
broadened, to include users of an increasing variety of host computers.

1. PURPOSE

The purpose of this FORTH Standard is to allow transportability of standard
FORTH programs in source form among standard FOR'lli: systems. A standard program
shall execute equivalently on all staooard FORTH systems.

2. SCOPE

This standard shall apply to any Standard FOR'IH program executing on any
Standard FORTH system, provided sufficient computer resources (memory, mass
storage) are available.

3. ORGZ\NIZATION

This standard consists of:

1} General Text
2} Definitions of Terms
3) Required Word Set
4) Extension W::>rd Sets

Word sets may be subdivided for conceptual purposes by function:

Nucleus
Interpreter
Compiler
Devices

ALL ABOUT FORTH 215

Tradeoffs

\~en conflicting choices must be made, the following order shall guide the
Standards Team.

1) Functional correctness
- known bounds, non-ambiguous.

2) Portability
- repeatable results when transported anong Standard systems.

3} Simplicity.

4) Naming clarity

5)

6)

7)

8)

9)

10)

11)

- uniformity of expression. Descriptive names are preferred over
procedural. (i.e., [COOPILE] rather than 'C, and ALLOr rather
than DP+! •)

Generality.

Execution speed.

Memory compactness.

Compilation speed.

Historical continuity.

Pronounceability.

Teachability.

4. DEFINITIONS OF TERMS

These definitions, when in lower case, are terms used within this Standard.
They present terms as specifically used within FORTH.

address, byte

An unsigned number that locates an 8-bit byte in a standard FORTH address
space over { 0 •• 65,535}. It may be a native machine address or a repre
sentation on a virtual machine, locating the 'addr-th' byte within the
virtual byte address space. Address arithmetic is III01ulo 65,536 without
overflow.

address, compilation

216

The numerical value equivalent to a FORTH word definition, which is
compiled for that definition. The address interpreter uses this value to
locate the machine code corresponding to each definition. (May also be
called the code field address.)

ALL ABOUT FORTH

address, native machine

The natural address representation of the host computer.

address, parameter field

The address of the first byte of memory associated with a word definition
for the storage of compilation addresses (in a colon-definition), numeric
data and text characters.

arithmetic

All integer arithmetic is perfo~ with signed 16 or 32 bit two's comple-
ment results, unless noted. ·

block

The unit of data from mass storage, referenced by block number. A block
must contain 1024 bytes regardless of the minimum data unit read/written
from mass storage. The translation from block number to device and
physical record is a function of the implementation.

block buffer

cell

A memory area where a mass storage block is maintained.

An assembly of 8 bits. In reference to merrory, it is the storage capacity
for 8 bits.

A 16-bit memory location. The n-th cell contains the 2n-th and (2n+l)-th
byte of the FORTH address space. The byte order is presently unspecified.

character

A 7-bit number which represents a terminal character. The ASCII character
set is considered standard. When contained in a larger field, the higher
order bits are zero.

compilation

The action of accepting text words from the input stream and placing
corresponding compilation addresses in a new dictionary entry.

defining word

A word that, when executed, creates a new dictionary entry. The new word
name is taken from the input stream. If the input stream is exhausted
before the new name is available, an error condition exists. Common

ALL ABOUT FORTH 217

defining words are:

CONSTANT CREATE

definition

See 'word definition'.

dictionary

A structure of word definitions in a computer Itteirory. In systems with a
text interpreter, the dictionary entries are organized in vocabularies to
enable location by name. The dictionary is extensible, growing toward
high merory.

equivalent execution

For the execution of a standard program, a set of non-time dependent inputs
will produce the same non-time dependent outputs on any FORTH Standard
System with sufficient resources to execute the program. Only standard
source code will be transportable.

error condition

218

An exceptional condition which requires action by the system other than the
expected function. Actions may be : I

I

1. ignore, and continue

2. display a message

3. execute a particular word

4. interpret a block

5. return control to the text interpreter

A Standard System shall be provided with a tabulation of the action taken
for all specified error conditions.
General error conditions:

1. input stream exhausted before a required <name>.

2. empty stack and full stack for the text interpreter.

3. an unknown word, not a valid number for the text interpreter.

4. compilation of incorrectly nested conditionals.

5. interpretation of words restricted to compilation.

ALL ABOUT FORTH

6. FORGETing within the system to a point that removes a word
required for correct execution.

7. insufficient space remaining in the dictionary.

false

A zero number represents the false condition flag.

A number that may have two logical states, zero and non-zero. These are
named 1 true 1 = non-zero, and 1 false 1 = zero. Standard word definitions
leave 1 for true, 0 for false.

glossary

A set of word definitions given in a natural language describing the
corresponding computer execution action.

immediate word

A word defined to automatically execute when encountered during compila
tion, which handles exception cases to the usual compilation. See IF
LITERAL " etc.

input stream

A sequence of characters available to the system, for processing by the
text interpreter. The input stream conventionally may be taken from a
terminal (via the terminal input buffer) and mass storage (via a block
buffer). >IN and BLK specify the input stream. Words using or altering
>IN and BLK are responsible for maintaining and restoring control of the
input stream.

inte reter, address

The (et of) word definitions which interprets (sequences of) FORTH
compil tion addresses by executing the word definition specified for each
one.

interpreter~ text

The csJt of) word definitions that repeatedly accepts a word name from the
input stream, locates the corresponding dictionary entry, and starts the
address interpreter to execute it. Text in the input stream interpreted
as a ~umber leaves the corresponding value on the data stack. When in
the c mpile mode, the addresses of FORTH words are compiled into the
dictio ary for later interpretation by the address. interpreter. In this
case, numbers are compiled, to be placed on the data stack when later
interpreted. Numbers shall be accepted unsigned or negatively signed,
accordtng to BASE.

.~LL ABOUT FORTH 219

load

The acceptance of text from a mass storage device and execution of the
dictionary definition of the words encountered. This is the general method
for compilation of new definitions into the dictionary.

mass storage

Data is read from mass storage in the form of 1024 byte blocks o This data
is held in block buffers. v~en indicated as UPDATEd (modified) data will
be ultimately written to mass storage.

number

When values exist within a larger field, the high order bits are zero.
When stored in memory the byte order of a number is unspecified.

bit
character
byte
number
positive number
unsigned number
double number

positive double number
unsigned double number

range

o •• l
0 •• 127
0 •• 255
-32,768 •• 32,767
0 •• 32,767
0 •• 65,535
-2,147,483,648 ••

2,147,483,647
0 •• 2,147,483,647
Ooo4,294,967,295

minimum field

1
7
8

16
16
16

32
32
32

When represented on the stack, the higher 16-bits (with sign) of a double
number are most accessible. When in memory the higher 16-bits are at the
lower address. Storage extends over four bytes toward high memory o The
byte order within each 16-bit field is unspecified.

output, pictured

The use of numeric output primitives, which convert numerical values into
text strings. The operators are used in a sequence which resembles a
symlx:>l ic 'picture' of the desired text format. Conversion proceeds from
low digit to high, from high memory to low.

program

A complete specification of execution to achieve a specific function
(application task) expressed in FORTH source code form.

return

220

The means of terminating text from the input stream. (Conventionally a
null (ASCII 0) indicates end of text in the input stream. This character
is left by the 'return' key actuation of the operator's terminal, as an
absolute stopper to text interpretation.)

ALL ABOUT FORTH

screen

Textual data arranged for editing. By convention, a screen consists of 16
lines (numbered 0 thru 15) of 64 characters each. Screens usually contain
program source text, but may be used to view mass storage data. The first
byte of a screen occupies the first byte of a mass storage block, which is
the beginning point for text interpretation during a load.

source definition

Text consisting of word names suitable for execution by the text inter
preter. Such text is usually arranged in screens and maintained on a rrass
storage device.

stack, data

A last in, first out list consisting of 16-bit binary values. This stack
is primarily used to hold intermediate values during execution of word
definitions. Stack values nay represent numbers, characters, addresses,
boolean values, etc.

When the name 'stack' is used, it implies the data stack.

stack, return

A last in, first out list which contains the nachine addresses of word
definitions whose execution has not been completed by the address inter
preter. As a word definition passes control to another definition, the
return point is placed on the return stack.

The return stack nay cautiously be used for other values, such as loop
control parameters, and for p::>inters for interpretation of text.

string

A sequence of 8-bit bytes containing ASCII characters, located in memory by
an initial byte address and byte count.

transportability

true

This term indicates that equivalent execution results when a program is
executed on other than the system on which it was created. See 'equivalent
execution' •

A non-zero value represents the true condition flag. Any non-zero value
will be accepted by a standard word as 'true' ; all standard v.Drds return
one when leaving a 'true' flag.

user area

An area in memory which contains the storage for user variables.

ALL ABOUT FORTH 221

variables, user

So that the ~rds of the FORTH vocabulary may be re-entrant (to different
users), a copy of each system variable is maintained in the user area.

vocabulary

~rd

An ordered list of word definitions. Vocabulary lists are an advantage
in reducing dictionary search time and in separating different word
definitions that may carry the same name.

A sequence of characters terminated by at least one blank (or 'return').
Words are usually obtained via the input stream, from a terminal or mass
storage device.

~rd definition

A named FORTH execution procedure compiled into the dictionary. Its
execution may be defined in terms of machine code, as a sequence of
compilation addresses or other compiled words. If named, it may be located
by specifying this name and the vocabulary in which it is located.

~rdname

'Ihe name of a word definition. Standard names must be distinguished by
their length and first thirty-one characters, and may not contain an ASCII
null, blank, or 'return'.

word set

A group of FORTH word definitions listed by common characteristics.
The standard ~rd sets consist of:

Required Word Set
Nucleus vbrds
Interpreter Words
Compiler Vbrds
Device Words

Extension Word Sets
32-bit Word Set
Assembler Word Set

Included as reference material only:
Reference Word Set

word set, compiler

222

Words which add new procedures to the dictionary or aid compilation by
adding compilation addresses or data structures to the dictionary.

ALL ABOUT FORTH

word set, devices

Words which allow access to mass storage and computer peripheral devices.

word set, interpreter

Words which support interpretation of text input from a terminal or mass
storage by execution of corresponding dictionary entries, vocabularies, and
terminal output.

word set, nucleus

The FORTH words generally defined in machine code that create the stacks
and fundamental stack operators (virtual FORTH machine).

word set, reference

This set of words is provided as a reference document only, as a set of
formerly standardized words and candidate words for standardization.

word set, required

The minimum words needed to compile and execute all Standard Programs.

word, standard

A named FORTH procedure definition, formally reviewed and accepted by the
Standards Team. A serial number identifier {100 •• 999} indicates a Standard
Word. A functional alteration of a Standard Word will require assignment
of a new serial number identifier.

The serial number identifier has no required use, other than to correlate
the definition name with its unique Standard definition.

5. REFERENCES

The following documents are considered to be a tort ion of this Standard:

American Standard Code for Information Interchange,
American National Standards Institute, X3.4-1968

vvebster' s Collegiate Dictionary shall be used to resolve conflicts
in spelling and English word usage.

The following documents are noted as pertinent to the FORTH-79 Standard,
but are not part of this Standard.

FORTH-77, FORTH Users Group, FST-780314

FORTH-78, FORTH International Standards Team

ALL ABOUT FORTH 223

FORTH-79, Reference Word Set

FORTH-79, Experimental Proposals

6. RECUIREMENTS

6.1 Documentation Requirements

Each Standard System and Standard Program shall be accompanied by a state
ment of the minimum (byte) requirements for:

1. System dictionary space

2. Application dictionary space

3. Data stack

4. Return stack

5. Mass storage contiguous block quantity required

6. An operator's terminal.
i

Each Standard System shall be provided with a 6tatement of the system
action upon each of the error oonditions as identified ~n this Standard.·

6.2 Testing Requirements

The following host computer configuration is specified as a minimum
environment for testing against this Standard. Applications may require
different capacities.

1. 2000 bytes of memory for application dictionary

2. Data stack of 64 bytes

3. Return stack of 48 bytes

4. Mass storage capacity of 32 blocks, numbered 0 through 31

5. One ASCII input/output device acting as an operator's terminal.

224 ALL ABOUT FORTH

7. COMPLIAOCE AND lABELING

The FORTH Standards Team hereby specifies the requirements for labeling of
systems and applications so that the conditions for program portability may be
established.

A system may use the specified labeling if it complies with the terms of
this Standard, and meets the particular WOrd Set definitions.

A Standard Program (application) may use the specified labeling if it
utilizes the specified standard system according to this Standard, and executes
equivalently on any such system.

FORTH Standard

A system may be labeled 'FORTH-79 Standard' if it includes all of the
Required WOrd Set in either source or object form, and complies with the text of
this Standard. After executing "79-STANDARD" the dictionary must contain all of
the Required Word Set in the vocabulary FORTH, as specified in this Standard.

Standard Sub-set

A system may be labeled 'FORTH-79 Standard Sub-set' if it includes a
portion of the Required Word Set, and complies with the remaining text of
this standard. However, no Required Word may be present with a non-standard
definition.

Standard with Extensions

A system may be labeled 'FORTH-79 Standard with <name> Standard Exten
sion(s}' if it comprises a FORTH-79 Standard System and one or rore Standard
Extension WOrd Set(s). The designation would be in the form:

'FORTH-79 Standard with Double-Number Standard Extensions'

ALL ABOUT FORTH 225

8. OOE

A FORTH Standard program may reference only the definitions of the Required
word Set, and definitions which are subsequently defined in terms of these
words. Furthermore, a FORTH Standard program must use the standard words as
required by any conventions of this Standard. Equivalent execution must result
from Standard programs.

The FORTH system may share the dictionary space with the user's apf.>lica
tion, and the native addressing protocol of the host computer is beyond the
scope of this Standard.

Therefore, in a Standard program, the user may only operate on data which
was stored by the application. No exceptions!

A Standard Program may address:

1. parameter fields of variables, constants and OOES> words. A OOES>
word's parameter field may only be addressed with respect to the
address left by DOES> , itself.

2. dictionary space ALLOTed.

3. data in mass storage block buffers. (Note restriction in BI.OCK on
latest buffer addressing.)

4. the user area and PAD.

A Standard Program may NOT address:

1. directly into the data or return stacks.

2. into a definition's name field, link field, or code field.

3. into a definition's parameter field if not stored by the application.

Further usage requirements are expected to be added for transporting programs
between standard systems.

FORTH Standard definitions have a serial nl.lirber assigned, in the range
100 thru 999. Neither a Standard System nor Standard Program may redefine these
word names, within the FORTH vocabulary.

226 ALL ABOUT FORTH

9. GIDSSARY Wl'ATION

Order

The Glossary definitions are listed in ASCII alphabetical order.

Stack Notation

The first line of each entry describes the execution of the definition:

stack parameters before execution
--- showing point of execution
stack parameters after execution

i.e., before--- after

In this notation, the top of the stack is to the right. Words may also
be shown in context, when appropriate.

Attributes

Capitalized symbols indicate attributes of the defined words:

C The word may only be used within a colon-definition.

I Indicates that the word is IMMEDIATE and will execute during compila
tion, unless special action is taken.

U A user variable.

Capitalization

Word names as used within the dictionary are conventionally written in
upper case characters. Within this Standard lower case will be used when
reference is made to the run-time machine code, not directly accessible,
i.e. , VARIABLE is the user word to create a variable. Each use of that
variable makes use of a code sequence 'variable' which executes the func
tion of the particular variable.

Pronunciation

The natural language pronunciation of FORTH names is given in double quotes
(").

Stack Parameters

Unless otherwise stated, all references to numbers apply to 16-bit signed
integers.

The implied range of values is shown as {from •• to} • The content of an
address is shown by double curly brackets 1, particularly for the contents of
variables. i.e., BASE {{2 •• 70}}

ALL ABOUT FORTH 227

-~

addr {O •• 65,535}

A v·alue representing the address of a byte, within the FORTH standard
memory space. This addressed byte may represent the first byte of a larger
data field in memory.

byte {0 •• 255}

A value representing an 8 bit byte. When in a larger field, the higher
bits are zero.

char {0 •• 127}

A value representing a 7 bit ASCII character oode. When in a larger field,
the higher bits are zero.

d {-2,147,483,648 •• 2,147,483,647}

flag

n

32 bit signed 'double' number. The most significant 16-bits, with sign, is
most accessible on the stack.

A numerical value with two logical states~ 0= false, non-zero = true.

{-32,768 •• 32,767}

16 bit signed integer number.

Any other symbol refers to an arbitrary signed 16-bit integer in the range
{-32,768 •• 32,767}, unless otherwise noted.

Input Text

<name>

228

An arbitrary FORTH word accepted from the input stream. This notation
refers to text from the input stream, not to values on the data stack.
If the input stream is exhausted before encountering <name>, an error
condition exists.

ALL ABOUT FORTH

10. RE(JJIRED WORD SET

The words of the Required WOrd Set are grouped to show like character
istics. No implementation requirements should be inferred from this grouping.

Nucleus Words

* */ */MOD + +! +loop - I
/MOD O< 0= 0> 1+ 1- 2+ 2- <
= > >R ?DUP @ ABS AND begin C!
C@ oolon CMOVE oonstant create D+
D< DEPI'H DNEGATE do does>
DROP DUP else EXEX::tJI'E EXIT FILL I
if J LEAVE literal loop MAX MIN
MOD MOVE NEGATE NO!' OR OVER PICK
R> R@ repeat IDLL RCYl' semicolon
SWAP then U* U/ U< until variable
while XOR

(note that the lower case entries refer to just the run-time code corresponding
to a compiling word.)

Interpreter Words

#> #S (-TRAILING •
79-STANDARD <# >IN ? ABORT BASE BLK
CONTEXT CONVERT COUNT CR CURRENT
DECIMAL EMIT EXPECT FIND FORTH HERE
HOLD KEY PAD QUERY QJIT SIGN SPACE
SPACES TYPE U. WOOD

Compiler Words

+LCX>P , " ; AUJ:Jr BEGIN
COMPILE CONSTANT CREATE DEFINITIONS DO
DOES> ElSE FORGET IF IMMEDIATE
LITERAL LCX>P REPFAT STATE THEN UNTIL
VARIABLE VOCABULARY WHILE [[CCMPILE]

Device Words

BIDCK BUFFER EMPl'Y -BUFFERS LIST
WAD SAVE-BUFFERS SCR UPDATE

ALL ABOUT FORTH 229

ASCII CHARACTERS & INDEX

ALL ABOUT FORTH
OCTAL DECIMAL HEX CHARACTER PAGE REFERENCE

041 33 21 6-7
042 34 22 II

043 35 23 fl 7-9
044 36 24 $
045 37 25 %
046 38 26 &
047 39 27 9-17
050 40 28 (18-21
051 41 29)
052 42 2A * 21-23
053 43 2B + 23-26
054 44 2C 26-27
055 45 2D 27-30
056 46 2E 31-34
057 47 2F I 34-36
060 48 30 0 36-38
061 49 31 1 38-40
062 50 32 2 40-47
063 51 33 3
064 52 34 !+

065 53 35 5
066 54 36 6
067 55 37 7 47
070 56 38 8
071 57 39 9
072 58 3A 47-48
073 59 3B 48-50
074 60 3C < 50-69
075 61 3D 69
076 62 3E > 69-72
077 63 3F ? 72-78
100 64 40 @ 78-79
101 65 41 A 79-82
102 66 42 B 82-90
103 67 43 c 90-101
104 68 44 D 102-125
105 69 45 E 125-133
106 70 46 F 133-138
107 71 47 G 138
110 72 48 H 138-141
111 73 49 I 141-146
112 74 4A J 147
113 75 4B K 147-148
114 76 4C L 148-153
115 77 4D M 153-159
116 78 4E N 159-162
117 79 4F 0 163-165
120 80 50 p 165-171
121 81 51 Q 171-172
122 82 52 R 172-178
123 83 53 s 178-192
124 84 54 T 192-198
125 85 55 u 198-204
126 86 56 v 204-207
127 87 57 w 207-210
130 88 58 X 210-211
131 89 59 y

132 90 SA z
133 91 5B r: 211-213
134 92 5C \ 213-214
135 93 5D J 214

230 ALL ABOUT FORTH

FORTH·78 HANDY REFERENCE
Stack Inputs and outputs are shown; top of stack on right. See operand key at bottom.

STACK MANIPULATION
DUP
DROP
SWAP
OVER
ROT
PICK
ROU.
?DUP
>R
R>
R@

DEPTH

COMPARISON
<
=
>
O<
0=
O>
0<
U<
NOT

(n- nn)
(n-)
(n1 n2 - n2 n1)
(n1 n2 - n1 n2 n1)
(n1 n2 n3 - n2 n3 n1)
(n1 - n2)
(n-)
(n-n(n))
(n-)
(- n)
(- n)
(- n)

(n1 n2 - flag)
(n1 n2 - flag)
(n1 n2 - flag)
(n-flag)
(n-flag)
(n-flag)
(d1d2-flag)
(un1 un2 - flag)
(flag - -.flag)

ARITHMETIC AND LOGICAL
+
D+

1+
1-
2+
2-

/
MOO
/MOD
*/MOD .,
IJ*
U/MOD
MAX
MIN
ABS
NEGATE
ONEGATE
AND
OR
XOR

MEMORY
@

!
C@
Cl
?
+I
MOVE
CMOVE
Flu.

(n1 n2- sum)
(d1 d2- sum)
(n1 n2 - diff)
(n- n+1)
(n- n-)
(n-n+2)
(n- n-2)
(n1 n2 - prod)
(n1 n2 ... quot)
(n1 n2- rem)
(n1 n2 - rem quot)
(n1 n2 n3- rem quot)
(n1 n2 n3 - quot)
(un1 un2 - ud)
(ud un - urem uquot)
(n1 n2- max)
(n1 n2- min)
(n -lnl)
(n- -n)
(d- -d)
(n1 n2- and)
(n1 n2- or)
(n1 n2 - xor)

(addr-n)
(naddr-)
(addr - byte)
(naddr-)
(addr-)
(naddr-)
(addr1 addr2 n -
(addr1 addr2 n -
(addr n byte -)

CONTROL STRUCTURES
DO ... LOOP
I
J
LEAVE
DO ... +LOOP

IF ... (true) ... THEN
IF ... (true) ... ELSE
... (false) ... THEN

BEGIN ... UNTIL
BEGIN ... WHILE

... REPEAT
EXIT
EXECUTE

do: (end+1 start-)
(-index)
(-index)
(-)
do: (limit start -
+loop: (n-)
lf:(flag-)
lf:(flag-)

until: (flag -)
while: (flag -

(-)
(addr-)

Duplicate top of stack.
Discard top of stack.
Exchange top two stack Items.
Make copy of second item on top.
Rotate third item to top. "rote"
Copy n1-th item to top. (Thus 1 PICK = DUP , 2 PICK = OVER)
Rotate n·th item to top. (Thus 2 ROU. = SWAP , 3 ROLL= ROT)
Duplicate only if non-zero. "query·dup"
Move top item to "return stack" for temporary storage (use caution). "to-r"
Retrieve item from return stack. "r·from"
Copy top of return stack onto stack. "r·fetch"
Count number of items on stack.

True if n1 less than n2. "less-than"
True if top two numbers are equal. "equals"
True if n1 greater than n2. "greater-than"
True if top number negative. "zero-less"
True if top numbEir zero. (Equivalent to NOT) "zero-equals"
True if top number greater than zero. "zero-greater''
True if d1 less than d2. "d-less·than"
Compare top two items as unsigned integers. "u-less·than"
Reverse truth value. (Equivalent to 0=)

Add. "plus"
Add double-precision numbers. "d·plus"
Subtract (n1-n2). "minus"
Add 1 to top number. "one-plus"
Subtract 1 from top number. "one-minus"
Add 2 to top number. "two-plus"
Subtract 2 from top number. "two-minus"
Multiply. "times"
Divide (n1/n2). (Quotient rounded toward zero) "divide"
Modulo (i.e., remainder from division n1/n2). Remainder has same sign as n1. "mc»d"
Divide, giving remainder and quotient. "divide-mod"
Multiply, then divide (n1*n2/n3), with double-precision intermediate. "times-divide-mod"
Uke */MOD, but give quotient only, rounded toward zero. "times-divide"
Multiply unsigned numbers, leaving unsigned double-precision result. "u•times"
Divide double number by single, giving remainder and quotient, all unsigned. "u·divide-mod"
Leave greater of two numbers. "max"
Leave lesser of two numbers. "min"
Absolute value. "absolute"
Leave two's complement.
Leave two's complement of double-precision number. "d-negate"
Bitwise logical AND.
Bitwise logical OR.
Bitwise logical exclusive-OR. "x-or"

Replace address by number at address. "fetch"
Store n at addr. "store"
Fetch least significant byte only. "c·fetch"
Store least signficant byte only. "'c-store"
Display number at address. "question-mark"
Add n to number at addr. "plus-store"
Move n numbers starting at addr1 to memory starting at addr2, if n>O.
Move n bytes starting at addr1 to memory starting at acldr2, if n>O. "c-move"
Fill n bytes In memory with byte beginning at acldr, if n>O.

Set up loop, given index range.
Place current loop index on data stack.
Return index of next outer loop in same definition.
Terminate loop at next LOOP or +LOOP , by setting limit equal to Index.
Uke DO ... LOOP , but adds stack value (instead of always 1) to Index. Loop terminates when
index is greater than or equal to limit (n>O), or when index Is IEIS!il than limit (n<O). "plus·loop"
H top of stack true, execute.
Same, but if false, execute ELSE clausa.

Loop back to BEGIN until true at UNTIL .
Loop while true at WHILE; REPEAT loops unconditionally to BEGIN . When false, continue after
REPEAT.
Terminate execution of colon definition. (May not be used within DO ... LOOP)
Execute dictionary entry at compilation address on stack (e.g., address returned by AND).

Opetand key. d, d1, ... 32-blt signed numbers addr, acldr1, . . . addresses char 7·blt ascii character value
n, n1, ... 16-blt signed numbers u unsigned byte 8·blt byte flag boolean flag

TERMINAL INPUT-OUTPUT
CR (-)
EMIT (char -)
SPACE (-)
SPACES (n-)
TYPE (addr n -)
COUNT (addr- addr+1 n)
-TRAILING (addr n1 - addr n2)
KEY (-char)
EXPECT (addr n -)
QUERY (-)
WORD (char - addr)

NUMERIC CONVERSION
BASE
DECIMAL

(- addr)
(-)
(n-)
(un-)

Do a carriage return and line feed. "c-r"
Type ascii value from stack.
Type one space.
Type n spaces, if n>O.
Type string of n characters beginning at addr, if n>O.
Change address of string (prefixed by length byte at addr) to TYPE form.
Reduce character count of string at addr to omit trailing blanks. "dash-trailing"
Read key and leave ascii value on stack.
Read n characters (or until carriage return) from terminal to address, with null(s) at end.
Read line of up to 80 characters from terminal to input buffer.
Read next word from input stream using char as delimiter, or until null. Leave addrof length byte.

System variable containing radix for numeric conversion.
Set decimal number base.
Print number with one trailing blank and sign if negative. "dot"
Print top of stack as unsigned number with one trailing blank. "u-dot" u.

CONVERT
<#

(d1 addr1
(-)

- d2 addr2) Convert string at addr1 +1 to double number. Add to d1 leaving sum d2 and addr2 of first non-digit.

#S
HOLD
SIGN
#>

(ud1 - ud2)
(ud-00)
(char-)
(n-)
(d-addrn)

MASS STORAGE INPUT /OUTPUT
LIST
LOAD
SCR
BLOCK
UPDATE
BUFFER
SAVE-BUFFERS .
EMPTY-BUFFERS

(n-)
(n-)
(- addr)
(n-addr)
(-)
(n-addr)
(-)
(-)

DEFINING WORDS
:XXX

VARIABLE XXX

CONSTANT xxx

(-)
(-)
(-)
xxx: (- addr)
(n-)
xxx:(-n)

VOCABULARY xxx (-)
CREATE ... DOES> does: (- addr)

VOCABULARIES
CONTEXT
CURRENT
FORTH
DEFINITIONS
'XXX
FIND
FORGETxxx

COMPILER

ALLOT

IMMEDIATE
LITERAL
STATE
I
I
COMPILE
[COMPILE]

(- addr)
(- addr)
(-)
(-)
(- addr)
(- addr)
(-)

(n-)
(n-)
(-)
(-)
(n-)
(- addr)
()
()
()
()

MISCELLANEOUS
(()
HERE (- addr)
PAD (- addr)
>IN (- addr)
BLK (- addr)
ABORT ()
QUIT ()
79-STANDARD (-)

Start numeric output string conversion. "less-sharp"
Convert next digit of unsigned double number and add character to output string. "sharp"
Convert all significant digits of unsigned double number to output string. "sharp-s"
Add ascii char to output string.
Add minus sign to output string if n<O.
Drop d and terminate numeric output string, leaving addr and count for TYPE . "sharp-greater"

Ust screen n and set SCR to contain n.
Interpret screen n, then resume interpretation of the current input stream.
System variable containing screen number most recently listed.
Leave memory address of block, reading from mass storage if necessary.
Mark last block referenced as modified.
Leave addrof a free buffer, assigned to block n; write previous contents to mass storage if UPDATEd.
Write all UPDATEd blocks to mass storage.
Mark all block buffers as empty, without writing UPDATEd blocks to mass storage.

Begin colon definition of xxx . "colon"
End colon definition. "semi-colon"
Create a two-byte variable named xxx ; returns address when executed.

Create a constant named xxx with value n; returns value when executed.

Create a vocabulary named xxx ; becomes CONtEXT vocabulary when executed.
Used to create a new defining word, with execution-time routine in high-level FORTH. "does"

System variable pointing to vocabulary where word names are searched for.
System variable pointing to vocabulary where new definitions are put.
Main vocabulary, contained in all other vocabularies. Execution of FORTH sets context vocabulary.
Sets CURRENT vocabulary to CONTEXT.
Rnd address of xxx in dictionary; if used in definition, compile address. "tick"
Leave compilation address of next word in input stream. If not found in CONTEXT or FORTH,IeaveO.
Forget all definitions back to and including xxx • which must be in CURRENT or FORTH.

Compile a number into the dictionary. "comma"
Add two bytes to the parameter field of the most recently-defined word.
Print message (terminated by "). If used in definition, print when executed. "dot-quote"
Mark last-defined word to be executed when encountered in a definition, rather than compiled.
If compiling, save n in dictionary, to be returned to stack when definition is executed.
System variable whose value is non-zero when compilation is occurring.
Stop compiling input text and begin executing. "left-bracket"
Stop executing input text and begin compiling. "right-bracket"
Compile the address of the next non-IMMEDIATE word into the dictionary.
Compile the following word, even if IMMEDIATE. "bracket-compile"

Begin comment, terminated by) on same line or screen; space after (. "paren", "clos!M)aren"
Leave address of next available dictionary location.
leave address of a scratch area of at least 64 bytes.
System variable containing character offset into input buffer; used, e.g., by WORD. "to-in"
System variable containing block number currently being interpreted, orO if from terminal. "b-1-k"
Clear data and return stacks, set execution mode, return control to terminal.
Uke ABORT • except does not clear data stack or print any message.
Verity that system conforms to FORTH-79 Standard.

FORTH INTEREST GROUP, P.O. Box 1105, San Carlos, CA 94070, USA

