

Page 22

Page 58

Page 164

Page 210

Foreground

II~TI August 1980

Volume 5, Number 8

22 A BUILD-IT-YOURSELF MODEM FOR UNDER $50
by Steve Ciarcia
This originate-only modem will allow you to get started in intercomputer communica­
tion with minimal expense .

58 THE HARD-DISK EXPLOSION: HIGH-POWERED MASS
STORAGE FOR YOUR PERSONAL COMPUTER
by Tom Manuel
Thanks to new hard-disk technology, personal computer users can add millions of bytes
of mass storage to their systems at a reasonab le cost.

100 WHAT IS FORTH? A TUTORIAL INTRODUCTION
by John S James
Here is an overview of FORTH that lays the foundation for the other theme articles in
this BYTE .

150 BREAKFORTH INTO FORTH by A Richard Miller
and Jill Miller
If you can't imagine any personal use for FORTH, can you imagine a 96-line program
that plays a fast, animated ga me with sound on the TRS-80?

164 FORTH EXTENSIBILITY: OR HOW TO WRITE A COM­
PILER IN TWENTY -FIVE WORDS OR LESS by Kim Harris
This tutorial explains the capab ility for defining new families of FORTH words.

210 CONSTRUCTION OF A FOURTH-GENERATION VIDEO
TERMINAL, PART 1 by Theron Wierenga
Part 1 of this article presents a new design using the 8275 controller and a dedicated
280 microprocessor.

Background
76 THE EVOLUTION OF FORTH, AN UNUSUAL

LANGUAGE by Charles H Moore
The inventor of the language reca lls its design and how it evolved over a 10-year
period.

198 KHACHIYAN'S ALGORITHM, PART 1: A NEW SOLU­
TION TO LINEAR PROGRAMMING PROBLEMS
by G C Berresford, A M Rockett, and J C Stevenson
Now you ca n study the a lgorithm that promised to revolutionize linear programming.

Nucleus
6 Editorial: Threads of a FORTH

Tapestry
14 Letters
40 Product Review: The Ohio Scien­

tific CA-15 Universal Telephone In­
terface

46 Product Review: The Heath H-89
Computer

72 Programming Quickies: Self­
Reproducing Programs

94
98

196
226
230
234
248
302
303
304

BYTELINES
Selected FORTH Vendors
A FORTH Glossary
Clubs and Newsletters
Event Queue
Ask BYTE
What's New?
Unclassified Ads
BOMB, BOMB Results
Reader Service

August 1980 © BYTE Publications Inc J

Publishers
Virg inia Londoner,
Gordon R Williamson
Associate Publisher
John E Hayes
Assistant
Cheryl A Hurd

Editorial Director
Carl T Helmers Jr

Editor-in-Chief
Christopher P Morgan
Editors
Richard S Shuford, Gregg Williams,
Curtis P Feigel, Harold Nelson
Stan Miastkowski
Consulting Editor
Mark Dahmke
Book Editor
Bruce A Roberts
Chief Copy Editor
David William Hayward
Copy Editors
Faith Hanson, Warren Williamson,
Robin M Moss, Anthony J Lockwood
Assistant to the Editors
Faith Ferry
Assistants
Debe Wheeler, Karen A Cilley
New Products Editor
Clubs, Newsletters
Charles Freiberg
Drafting
Jon Swanson

Production Director
Nancy Est le
Assistant Production Director
Christine Dixon
Production/Advertising Coordinator
Wai Chiu Li
Production Art
Holly Carmen LaBossiere,
Deborah Porter
Typographers
Sherry McCarthy, Debi Fredericks,
Donna Sweeney

Advertising Director
Thomas Harvey
Assistants
Ruth M Walsh , Ms. Marion Gagnon
Barbara J Greene, Janet Ames

Special Projects Coordinator
Jill E Callihan
Marketing Coordinator
Laura A Hanson

Circulation Manager
Gregory Spitzfaden
Assistants
Pamela R H Spitzfaden, Agnes E Perry,
Melanie Bertoni, Barbara Varnum ,
Louise Menegus, Andrew Jackson
Dealer Sales
Thomas Yanni

Controller
Daniel Rodrigues
Assistant
Mary E Fluhr
Accounts Receivable Specialist
Karen Burgess
Accounts Receivable Assistant
Jeanne Cilley

Receptionist
Jacqueline Earnshaw
Traffic Department
Mark Sandagata, Rob Hannings

4 Augus t 1980 © BYTE Publications Inc

Officers of McGraw·Hili Publications Company: Paul F. McPherson, President; Executive Vice Presidents: James
E. Boddorf , Gene W. Simpson; Group Vice President: Daniel A. McMillan; Senior Vice President·Editorial: Ralph R.
Schulz; Vice Presidents: Kemp Anderson, Business Systems Development; Stephen C. Croft , Manufacturing;
Robert B. Doll , Circulation; James E. Hackett , Controller; William H. Hammond, Communications; Eric B. Herr,
Planning and Development; John W. Patten, Sales; Edward E. Schirmer, International.

Officers of the Corporation : Harold W McGraw Jr, Pres ident, Chief Executive Officer and Chairman of the Board;
Robert F Landes, Senior Vice President and Secretary; Ralph J Webb, Treasurer.

BYTE is published monthly by BYTE Publications Inc, 70 Main St, Peterborough NH 03458, a wholly·owned sub·
sidiary of McGraw·Hill, Inc. Address all mall except subscriptions to above address: phone (603) 924·9281. Address
subscriptions, change of address, USPS Form 3579, and fulfillment questions to BYTE Subscriptions, PO Box 590,
Martinsville NJ 08836. Controlled c ircu lation postage paid at Waseca, Minnesota 56093· USPS Publication No.
528890 (ISSN 0360·5280). Canadian second class registration number 9321. Subscriptions are $18 for one year, $32
for two years, and $46 for three years in the USA and its possess ions. In Canada and Mexico, $20 for one year, $36
for two yea rs , $52 for three years. $32 for one year air delivery to Europe. $32 surface delivery elsewhere. Air delivery
to selected areas at additional rates upon request. Single copy price is $2.50 in the USA and its possessions, $2.95
in Canada and Mexico, $4.00 in Europe, and $4.50 elsewhere. Foreign subscriptions and sales should be remitted in
United States funds drawn on a US bank. Printed in United States of America.

Address all editorial correspondence to the editor at the above address. Unacceptable manuscripts will be
returned if accompanied by sufficient first c lass postage. Not responsible for lost manuscripts or photos. Opinions
expressed by the authors are not necessarily those of BYTE. Entire contents copyright © 1980 by BYTE Publica·
tions Inc. All rights reserved. .0

BYTE is available in microform from University Microfilms International , 300 N Zeeb Rd , Dept PR, ~
Ann Arbor MI 48106 USA or 18 Bedford Row, Dept PR, London WC1R 4EJ ENGLAND. :"@:':

Subscription WATS Line: (800) 258-5485 '~<" L .,,0
Office hours: Mon-Thur 8:30 AM . 4:30 PM, Friday 8:30 AM - Noon, Eastern Time

NATIONAL ADVERTISING SALES REPRESENTATIVES:
NORTHEAST (617) 444-3946
Hajar Associates
280 Hillside Ave
Needham Heights MA 02194

EAST & SOUTH (212) 682-5844
Hajar Associates
521 Fifth Ave
New York NY 10017

MIDWEST (312) 864-3467
Hajar Associates
2405 Lawndale
Evanston I L 60201

SOUTHWEST (714) 540-3554
NORTHWEST (415) 964-0706
Hajar Associates
1000 Elwell Ct, Suite 227
Palo Alto CA 94303

Circle 2 on inquiry card. -.

Circle 3 on inquiry card.

If coupon is missing, write
Heath Co., Dept. 334-682
Benton Harbor, MI 49022

Send to: Heath Co., Dept. 334-682,
Benton Harbor, MI 49022.
Send my free Heathkit Catalog now.
I am not currently receiving your
catalog .

Name __________________ __

Address __________________ _

City ___________ State __ _

CL-728 Zip ______ _

6 August 1980 © BYTE Publica tions Inc

Threads of a FORTH Tapestry
Editor's Note: This month's editorial is by BYTE Editor Gregg Williams.
Gregg was responsible for the preparation of this month's special section
devoted to the FORTH language . Carl Helmers returns next month with
an editorial CM

What do a portable heart monitor, the new Craig Language
Translator, a peach-sorting machine, and a movie called Battle

Beyond the Stars have in common? The answer is FORTH, a not-so-new
language as comfortable in industrial machinery as it is in a personal com­
puter. In fact, it was originally used by its inventor, Charles H Moore, to con­
trol the telescope and equipment at the Kitt Peak Observatory.

Although I have known about FORTH for about a year, it was only during
the preparation of this issue that I began to actively keep my ears open for
mention of this unusual language. I have uncovered a lot of information (and
some experience) about FORTH and its variations. The language is so unusual
that no single line of thought could give you a picture of what the language is
like. Instead, the following sections represent several threads from the rich
tapestry called FORTH.

FORTH in the Real World
No language I know of is as comfortable in real-world situations as FORTH.

Here are some examples of the breadth of applications that have been created
using FORTH:

• Elicon Inc of Brea, California, is using FORTH software to drive the
same kind of computer-controlled cameras that were used to film the
sophisticated space-battle scenes in Star Wars . New World Productions of
Venice, California, is using this camera system to film the spaceship sequences
in the motion picture Battle Beyond the Stars. In a related development,
Magicam Inc (which devised a number of the special effects for the recent
movie Star Trek) is in the process of converting control of its master-slave
camera pair from an analog computer to a digital computer running FORTH
software . In the Magicam process, the master camera follows actors on a
special blue stage while the computer guides the slave camera across a detailed
model. Later, the two images are optically combined, producing the effect of
the actors actually being in the landscape depicted on the model.

• Allen Test Products of Kalamazoo, Michigan, has developed an igni­
tion analyzer for use in service stations and automobile repair shops that
analyzes the behavior of automobile ignition systems and displays both
diagnostic and corrective information. Formerly, the voltage waveform from a
spark plug was displayed on an oscilloscope, after which a mech anic would
attempt repairs based on his interpretation of the waveforms.

• Atari Inc is using FORTH in two of its divisions and is rumored to be
contemplating other uses for the language. In its Coin-Operated Division,

which develops and markets the
stand-alone games found in pinball
arcades and restaurants, a 6S02-based
development system employs
FORTH software to debug and test
arcade circuit boards. In addition,
Atari has developed its own custom
version of the language, called game­
FORTH, that is awaiting its first use
to replace machine code as the lan­
guage used to create arcade games .
Someday soon, you may playa coin­
operated game without knowing that
you are actually running a FORTH
program.

In the Consumer Group of Atari, a
version of FORTH that has been ex­
tended to allow manipulation of the
video screen and game peripherals
has been developed for the Atari 800
computer. Although no definite plans
have been made, Atari may market it
as an option for the Atari 800, or, like
the Coin-Operated Division, use it in
a "transparent" mode to implement
games and other programs.

• FORTH is used in a portable
1802-based computer that aids in the
treatment of patients with infrequent
heart flutter. The device, small
enough to be worn comfortably by

the patient during his or her daily ac­
tivities, constantly updates a "snap­
shot" of the patient's heart activity
every 7 seconds. In addition to re­
cording this information in real time,
the device analyzes the data for evi­
dence of a heart murmur. When a
murmur is detected, the device stores
the data containing the evidence and
signals the patient to return with the
device to the doctor's office for
analysis and diagnosis.

• In another medical applica­
tion, FORTH is the sole language
used in a computer at the Cedar-Sinai
Medical Center in Los Angeles, Cali­
fornia . Using FORTH, a Digital
Equipment Corporation PDP-1l/ 60
simultaneously performs, among
others, the following tasks: manages
32 remote terminals; stores patient in­
formation from an optical reader into
a large data base; runs a statistical
package that analyzes the patient
da ta base in search of trends in the
physical makeup, treatment, and
results of similar patients; and
analyzes blood samples and heart
behavior in real time while a patient
is exercising on a treadmill machine .
Spencer SooHoo, in the pulmonary

medicine section, is also developing a
portable 6800-based FORTH system
to be used for monitoring intensive­
care patients.

• A stripped-down version of
FORTH was used to create the hand­
held Craig M100 Language Trans­
lator under time, size, and other
design constraints. This same lan­
guage also runs the software inside
the translator unit. In a related pro­
duct , a hand-held ASCII terminal
manufactured by MSI Data Corpora­
tion of Costa Mesa, California, also
uses FORTH internally.

• In what must be the most in­
teresting FORTH application I have
encountered, a central California
fruit farming cooperative uses an
8080-based machine running FORTH
to adaptively sort and grade peaches.
Infrared sensors send information to
the computer on the coloring and
quality of pitted peach halves that
pass the sensors on a conveyer belt.
After analyzing this data, the FORTH
program causes flippers to knock the
peach halves into appropriately grad­
ed bins-extra fancy , fancy , etc . In
addition, the program keeps track of
the percentage of peaches in each bin

______________________________ --, and changes its selection criteria to
maintain a certain fixed ratio among
the various grades of peaches.

1JJ(])(jJ7]~(j7]Y2
(WOw.' How'r/ All Thot
Stuff get In There?)

A sophisticated, self-indexing filing system­
flexible, infinitely useful and easy to use,

that adapts to your needs.

WHATSIT comes ready to run on your Apple, NorthStar, or
CP/M computer. See your dealer . .. or write or call :

111\UI)111fl'
~Jtwanz

P.O. Box 14815 • San Francisco, CA 94114 • Tel: (415) 621·2106

8 August 1980 © BYTE Publications Inc Circle 4 on inquiry card.

• Last but not least, FORTH is
used in several aerospace applica­
tions. A FORTH-like language called
IPS (running on an 1802-based
system) is orbiting Earth in an
amateur radio satellite called the
OSCAR Phase III. A vco Inc is using
another 1802-based system (again,
for the small size and power com­
sumption of the 1802 microprocessor)
to monitor temperature and take care
of ground-to-satellite and satellite-to­
ground telemetry in a military
satellite.

Who Should Try FORTH?
FORTH is an easy language: a high

school student, Arnold Schaeffer,
wrote an arcade-type game called
BREAKFORTH. (See "Breakforth in­
to FORTH, " by A Richard Miller and
Judy Miller, on page 150.)

FORTH is a difficult language: it
easily beats APL as a "write-only
language"; you can write a program
in the language, but you can' t easily
read what you've written.

Given these two valid extremes,
your initial reaction might be, 'This
doesn't make sense." True, learning

FORTH takes some time; it's some­
what like learning a foreign language.
So far, my experiences with FORTH
remind me of my attempts at learning
a smattering of Russian; both lan­
guages are so different from any I've
seen before-French or Spanish,
BASIC cr FORTRAN-that I have to
mentally shift gears to work in the
new language.

You should give FORTH a try if
you are excited by what you see here .
Especially important in this respect
are the articles, 'What is FORTH? A

Tutorial Introduction," by John
James, and" A FORTH Glossary, "
pages 100 and 186, respectively. Your
best bet is to get to a computer that
can run a version of FORTH; or, bet­
ter yet, get someone who knows the
language to demonstrate it to you .

My first experience with FORTH
was at the Fourth West Coast Com­
puter Faire in May 1979. A member
of the FORTH Interest Group was
demonstrating the language using an
Apple II and an Advent television
screen. First, he defined a word called

5Vat 3A with
Built-in OVP
Power One's B Case models started at
$24.95. Over 100,000 models and five
years later, they're still only $24.95!

• 115/230 VAC Input
• OVP Built-In
• .05% Regulation
• 2-Year Warranty

• 2-Hour Burn-in
• UL. -Recognized
• CSA Certified

Get all the details on our 84
standard open frames

in our new 1978 catalog.

IN-STOCt< NATIONWIDE ... FOR IMMEDIATE DELIVERY
EASTERN REGIONAL SALES OFFICE: Schenectady. N.Y. (518) 399-9200 ALA.: HuntSVille, Rakes Engr. &
Marketing Corp. (205) 883-9260 ARIZ.: Phoenix, PLS Assoc. (602) 279-1531 CAL.: Pasadena, A-F Sis. Engr. (213)
681-5631 ; San 'Diego, A-F Sis. Engr. (714) 226-8424; San Jose, Richards Assoc. (408) 246-5860 COL. : Denver,
PLSAssoc .. (303) 773-1218 CT.: Litchfield , Digital Sis. Assoc. (203) 567-9776 FLA.: Orlando, OEM Marketing Corp.
(305) 299-1000 GA.: Duluth, Rakes Engr. & Marketing Corp . (404) 476-1730 ILL.: Chicago, Coombs Assoc. (312)
298-4830 IND.: Indianapolis, Coombs Assoc. (317) 897-5424 MD.: Wheaton, Brimberg Sis. Assoc. (301) 946-
2670; Baltimore, Brimberg Sis . Assoc. (301) 792-8661 MASS.: Waltham. Digital Sis. Assoc. (61 7) 899-4300
MICH.: Southfield, L.H. Dickelman Co. (313) 353-8210 MINN.: Minneapolis, Engr. Prod. Assoc. (612) 925-1883
N.J.:_Whippany, Livera-Polk Assoc. (201) 377-3220 ; Marmora. Holdsworth (609) 398-4340 N.M.: Albuquerque.
PLS Assoc. (505) 255-2330 N.Y. : Roslyn Hts .• Livera-Polk Assoc. (516) 484-1276; Syracuse. CW. Beach (315)
446-9587 N.C. : Charlotte. Over & Over Inc. (704) 527-3070 OHIO: Cleveland . Marlow Assoc. (216) 991-6500 ;
Dayton. Marlow Assoc. (513) 434-5673 OKLA.: Tulsa. Advance Technical Sis. (918) 743-8517 ORE.: Portland. Jas.
J. Backer (503) 297-3776; Salem. Jas. J. Backer (503) 362-0717 PENN. : Pittsburgh. Marlow Assoc. (412) 831-6113;
Newtown Sq .• Holdsworth & Co. (215) 356-8550 TEX.: Dallas. Advance Technical Sis. (214) 361-85S4; Solid State
Electr. (214) 352-2601 ; Houston. Advance Technical Sis. (713) 469-6668; Sol id State Electr. (713) 772-8483 UTAH:
Salt Lake City. PLS Assoc. (801) 466-8729 WASH. : Seatlle. Jas. J. Backer (206) 285-1300; Radar Elec. Co. (206)
282-2511 WIS.: Milwaukee. Coombs Assoc. (414) 671-1945 EUROPE: Hanex. L.A .• CA (213) 556-3807 CANADA:
Duncan Instr .• Weston. Ontario (416) 742-4448 ; Winnipeg . Manitoba, Cam Gard Supply Ltd. (204) 786-8481

D.C. POWER SUPPLIES

Power One Drive· Camarillo , CA 93010 • Phone: 805/484-2806 · TWX: 910-336-1297

SEE OUR COMPLETE PRODUCT LISTING IN EEM & GOLDBOOK

10 August 1980 © BYTE Publica tions Inc Circ le 5 on inquiry card .

COUNT, like this:

: COUNT o DO I . LOOP;

Then he said { 6 COUNT } (note:
the braces are not part of the expres­
sion; see the accompanying text box),
the computer replied with
{ 0 1 2 3 4 5 OK }. I was instant­
ly hooked on learning more about
FORTH. What he had done closely
paralleled the iota function in APL,
and anything that even resembled
APL was going to get my full atten­
tion.

If you are at all dissatisfied with the
capabilities of your current com­
puter, or if you feel that there should
be more to computers than BASIC
and assembly language, you should
try FORTH. Once you get accus­
tomed to its peculiar syntax, you can
make it do nearly anything you want
it to . In fact, you can even make it
have features it did not previously
have . Assembly language is like this
to some extent, but FORTH is a
higher-level language with the same
abilities-only magnified. FORTH is
what I call a "homebrew" language;
its enthusiasts carry with themselves
the same look-how-this-works en­
thusiasm as do most hardware
hackers who build their own hard­
ware. If we ever have a homebrew
software issue, FORTH will certainly
be included.

FORTH is the ultimate software
hacker's language because, like a bag
of components before a hardware
hacker, you can do anything you
want to with it. It can be argued that
assembly language is the ultimate
programming language; strictly
speaking, this is true, but it takes so
much more time to craft a piece of
software in assembly language that it
is practically ruled out in most cases .

However, this total freedom carries
with it complete responsibility . Since,
for example, the FORTH program
you write is free to use an array
subscript that is out of bounds, you
must be responsible enough to either
(a) put in error-checking routines
(you can take them out later), or (b)
build your program up from small
tested modules to assure that your
program will never execute an im­
proper subscript. If you would rather
have the language system do this kind
of work for you, stick to BASlC or
whatever you're running now.

Text continued on page 128

Circle 6 on inquiry card. ~

The Evolution of FORTH,
an Unusual Language

Introduction
When I invented FORTH about 10

years ago, my goal was simply to
make myself a more productive pro­
grammer. When I first worked with
computers at MIT and Stanford in the
early 1960s, I figured that in 40 years
a very good programmer could write
forty programs. And I wanted to
write more programs than that. There
were things out in the world to be
done, and I wanted a tool to help me
do them . As I worked on programs
that ranged from satellite orbits to
chromatography to business systems,
I developed FORTH in line with my
overall goal. For several years now, I
have been able to work at ten times
my original rate .

As I began thinking of rather
drastic improvements to programs, I
think I was arrogant. I wanted to do
things my way . I was not convinced
that I should not be permitted to , and
I was a bit hard to get along with. The .
arrogance was necessary because I
felt insecure . I was promoting ideas
tha t everyone said were wrong and
that I thought were right. But, if I
were right , that meant that all the

About the Author
Charles H M oore is Chairman of the Board of
FOR TH In c. a firm created in 1973 to provide
application programming services and pack­
aged FORTH systems. This article is adapted
from a speech delivered at the FORTH Con­
ven tion held in San Francisco in October 1979.

76 August 1980 © BYfE Publica tions Inc

Charles H Moore
FORTH Inc

2309 Pacific Coast Hwy
Hermosa Beach CA 90254

other people would have been wrong,
and there were many more of them
than me. And it took a lot of
arrogance to persist in the face of
massive disinterest.

FORTH is a polarizing concept.
There are people who love it and peo­
ple who hate it. It 's just like religion
and politics. If you want to start an
argument, say, "Boy, FORTH's really
a great language ."

This is partly because FORTH is an
amplifier . A good programmer can
do a fantastic job with FORTH; a bad
programmer can do a disastrous job.
I have seen very bad FORTH code
and have been unable to explain to
the author exactly why it was bad.
There are some visible characteristics
of good FORTH, such as very short
definitions (many of ' them) . Bad
FORTH often takes the form of one
definition per block-big, long, and
dense. It is quite apparent , but dif­
ficult to explain, why or how a
FORTH program is bad .

BASIC and FORTRAN are less sen­
sitive to the quality of the program­
mer. I was a good FORTRAN pro­
grammer; I thought that I was doing
the best job possible with FORTRAN,
but it was not much better than what
everybody else was doing . In this
sense, FORTH is an elitist language.

On the other hand, I think that
FORTH is a language that a grade
school child can learn to use quite
effectively, if it is presented in bite-

size pieces with the proper motiva­
tion.

FORTH is the first language that
has come up from the grass roots. It is
the first language that has been honed
against the rock of experience before
being standardized . I hesitate to say it
is perfect; I will say that if you take
anything away from FORTH, it is not
FORTH any longer-the basic com­
ponents are all essential to the viabil­
ity of the language .

History
Wha t migh t be called the

prehistory of the FORTH language
goes back much further than 10
years. The first element of FORTH to
exist was the text interpreter, shown
in listing 1. This early version, pro­
grammed in ALGOL at the Stanford
Linear Accelerator Center in the early
1960s, was part of a program called
TRANSPORT, which designed
electron-beam transport systems .
Besides the text interpreter, this print­
out also shows an early version of the
dictionary . The influence of LISP is
evident in the indivisible entity
(which in FORTH is called a word)
named ATOM. As the interpreter
reads a word from a punched card, it
executes the associated routine , as for
DRIFT in this example . The style
resembles that of modern FORTH :
there is no limit on the length of a
word, as you can see by the length of
the word SOLENOID, but only the

first characters are significant and
words are separated by spaces . '

Other very early concepts have
either changed in form or have
evolved dramatically. In listing 2, the
word that has become { : } (colon) in
modern FORTH is called DEFINE ,
while END has become { }

(semicolon) . This listing also shows
stack operators being defined . As an
example of a concept that has
evolved, consider the dictionary
being sealed by the word SEAL and
broken by the word BREAK . Such
sealing and breaking has since been
replaced by the idea of vocabularies.

Listing 1: An early version of the FORTH text interpreter (written in ALGOL).

IF A TOM = "DRIFT" THEN DRIFT
ELSE IF ATOM = "QUAD" THEN QUAD
ELSE IF ATOM = " BEND" THEN BEND
ELSE IF ATOM = " F ACE" THEN F ACE(- I)
ELSE IF A TOM = "ROTATE" THEN ROTATE
ELSE IF ATOM = "SOLENO" THEN SOLENOID
ELSE IF ATOM = "SEX" THEN SEX
ELSE IF ATOM = "ACC" THEN ACC

ELSE IF ATOM = "MATRIX" THEN BEGIN IF NOT FITTING THEN BEGIN
REAL A;
WRITE1(3,0,0,CORE[SJ); LlNE(- (8 + 42 x (ORDER -I)));
FOR J - I STEP I UNTIL 6 DO BEG IN

FOR K-I STEP I UNTIL 6 DO WRITEI(2,8,RI [L K] x UNIT[K)lUNIT[J],2);
LINE(O) END;

IF ORDER = 2 THEN FOR C- I STEP I UNTIL 6 DO BEGIN

Listing 2: An early version of th e FORTH words { : } (ca lled DEFINE here) and { ; }
(ca lled END here).

" - "OPEN DEFINE MINUS + END
SEAL "< "OPEN DEFINE - < END BREAK
"NOT "OPEN DEFINE MINUS I + END
" > "OPEN DEFINE • < END
"AND "OPEN DEFINE x END
"OR "OPEN DEFINE NOT ·NOT AND NOT END

"T I I "REAL DECLARE
"OPEN DEFINE T-; DUP T< • T> OR NOT END

",* "OPEN DEFINE NOT END
"s "OPEN DEFINE > NOT END
"2: "OPEN DEFINE < NOT END
"DUMP "OPEN DEFINE NAME 10 "ALPHA WRITE; 3 10 "REAL WRITE 0 LINE END

Listing 3: Another prototype of the FORTH text editor. again in ALGOL. In this listing,
the wo rd ATOM (the predecesso r of the basic unit in FORTH, the word) has been
replaced by the word W .

120 CYCLE; FILL OUTPUT WITH BUFFER[I], BUFFER[2];
I WHILE WORD NEQ "END "DO
2 IF W=GMI THEN REPLY("OK ")
3 ELSE IF NUMERIC THEN L: = MIN(W - I,$OF)
4 ELSE IF W = " + " THEN L: = MIN(L+WORD,EOF)
5 ELSE IF W = " - " THEN L : =MAX(L-WORD,O)
6 ELSE IF W = "T " THEN BEGIN
7 IF WORD=GMI THEN W : =I; W : =MIN(L + W-l,EOF);
8 FOR L : = L STEP 1 UNTIL W DO BEGIN
9 POSITION; TYPE END; L: =L -I END

130 ELSE IF W = "R " THEN BEGIN
I POSITION; REPLACE END
2 ELSE IF W = "A " THEN BEGIN
3 L: = EOF : = EOF + I ; REPLACE END
4 ELSE IF W= " I " OR W= "D " THEN BEGIN
5 IF NOT RECOPY THEN BEGIN
6 RECOPY: =TRUE; REWIND(CARD) END;
7 POSITION; IF W="I " THEN BEGIN
8 PLACE; REPLACE END
9 ELSE BEGIN 'EMPTY: = TRUE; IF WORD NEQ GM I THEN BEGIN

140 L: = MIN(L + W-I,EOF); SPACE(CARD,L-LO + I); LO: = L + I
1 END END END

78 A ugust 1980 © BYTE Publications Inc

Listing 3 shows another prototype
in ALGOL, this time of a FORTH text
editor. Here ATOM has become W
and I am looking up plus, minus, and
the commands T , R, A , and I, to edit
a deck program.

Another method of implementing a
dictionary is shown in listing 4. I am
looking up the words in a conditional
statement and setting NEXT, the key
routine of modern FORTH's address
interpreter, to the index .

Listing 5 shows an early implemen­
tation of a stack. Since it is written in
BALGOL, which allows assignment
statements inside other statements, I
could replace STACK[Jl with [J + 1]
in order to push items onto the stack.
I did this so that I could manipulate
parameters that were interpreted
from the card deck as arguments to
the routines. When I wanted, for
instance, to convert angular measure
from one unit to another, this added
the ability to use arithmetic
operators .

From Stanford I moved to the East
Coast, where I programmed on a
free-lance basis for several years.
Some of you probably remember
that , in the 1960s, a programmer at a
typical computer center needed to
learn about nineteen languages in
order to function adequately : JCL
(Job Control Language); languages to
control utilities and facilities , such as
the linking loader; assembly language
and the assembler's control language;
plus several high-level languages and
the methods for controlling their
compilers.

Listing 6 shows two of these
languages, a PLiI program and the
JCL necessary to run it. Note the
obvious difference in syntaxes .
FORTH developed in response to
such conditions . In terms of modern
FORTH, the importance of this exam­
ple lies in the use of NEXT as a pro­
cedure that goes off to get the next
word and do something with it.

Listing 7 shows a version of
FORTH coded for the IBM
System / 360 with the routines PUSH
and POP, which executed in about
15 JJ-S. They include stack limit
checking, which doubled the cost and
was one of the things that led me to
believe that execution-time stack
checking is not desirable . This was
coded in a macroassembler that did
not have stack operations, which led
to the deck full of statements like L19

Circle 53 on inquiry card .

HANDLER
CONCESSIONAIRES
DISTRIBUIDORES

O.E.M.
AUSGEZEICHNETE GROSS
HANDELSPREISE stellen nur einen
Aspekt unseres Handlerprogrammes
dar. Treten Sie noch heute mit uns
in Verbindung. (Wir sprech en
Deutsch)

UN EXCELLENT PRIX DE GROS
ne represente qu'un seu l aspect de
notre programme de distribution in­
ternationale. Mettez-vous en contact
avec nous aujourd 'hui pour recevoir
plus de renseignements. (On parle
franc;:a is!)

EL EXCELENTE PRECIO AL
MA YOREO que ofrecemos repre­
senta solo un aspecLO de nuestro
programa de distribucion inter­
nacional. Pongase en contacLO con
nosotros pa ra informacion mas
deta llada. (Se habla espanol!)

A.D.D.S.
ANADEX
APPLE
CENTRONICS
CROMEMCO
HAZELTINE

IND. MICRO
OKIDATA
SOROC
SUPERBRAIN
TELEVIDEO
TEXAS INSTR.

MICRO-COMPUTER BROKERS
INTERNA TlONA L

6819·P. Norlh 2 1 sl Avenue
Phoenix, Arizona 85015 U. S. A.

Telephone: (602) 242· 9961
Telex: (0) 668382

Listing 4: An early version of the FORTH dictionary.

8 PROCEDURE RELEVANCE; BEGIN REAL T,KO;
9 J: =0; I : = -1; WHILE WORD NEQ "END " DO

180 IF W="= "THEN NEXT: =3
1 ELSE IF W = "GT " THEN NEXT: =4
2 ELSE IF W = "LT " THEN NEXT: = 5
3 ELSE IF W= "NOT " THEN NEXT: =6
4 ELSE IF W = "AND " THEN NEXT: = 7
5 ELSE IF W = "OR " THEN NEXT: = 8
6 ELSE IF W = "+ "THEN NEXT: =9
7 ELSE IF W = " - " THEN NEXT: = 10
8 ELSE IF W= "· " THEN NEXT:=ll
9 ELSE IF W = "/ " THEN NEXT: = 12

190 ELSE IF KO:= SEARCHl(W) GEQ 0 THEN BEGIN
1 NEXT: = 1; NEXT: =K: =KO END
2 ELSE BEGIN
3 NEXT: = 2;
4 IF BASE[KI = " " THEN NEXT: = WORDS[OI
5 ELSE NEXT: = WEND;
6 NEXT: =0 END;

Listing 5: An early implementation of the FORTH stack, written in BALGOL.

7 BOOLEAN PROCEDURE RELEVANT; BEGIN
8 I: =J: = -I; STACK[OI: = 1; DO CASE NEXT OF BEGIN
9 J: =-I ;

210 STACK[J:=J+ll:=CONTENT;
1 STACK[J: =J + II: =NEXT;
2 STACK [J : =J -11: =REAL(STACK[JI = STACK[J + 1]);
3 STACK [J: =J -11: =REAL(STACK[JI GTR STACK[J + 1]);
4 STACK[J: = J -II: =REAL(STACK[J] LSS STACK[J + 1]);
5 STACK[J]: =REAL(NOT BOOLEAN(STACK[J]));
6 STACK[J: =J -11: =REAL(BOOLEAN(STACK[J]) AND BOOLEAN(STACK[J + 11));
7 STACK[J: =J -11: =REAL(BOOLEAN(STACK[J]) OR BOOLEAN(STACK[J + 11)) ;
8 STACK[J: =J -11: =STACK[JI+STACK [J + 1];
9 STACK[J: =J -1 1: =STACK[J] - STACK[J + IJ;

220 STACK[J: =J -11 : =STACK[J] xSTACK[J + 1];
1 STACK[J: =J -1 1: =STACK[J]lSTACK[J + I];
2 END UNTIL J LSS 0;
3 RELEVANT: = BOOLEAN(STACK[O]) END;

DC AL2(*-L18), which gave me a link
from L19 to the previous label. It
worked but it was not pleasant.

Listing 8 shows a similar routine,
this time coded in COBOL. I am set­
ting up a table of identified words
that will be interpreted from an input
stream. Since COBOL does not allow
parameters for subroutines, it is
awkward to do anything meaningful.

New Concepts
About this time, I began to think of

defining a word that would define
other words; and at that time, this
idea was staggering. For example,
{ ;CODE } was a very esoteric word.
I explained it to people, but I could
not express the potential I thought it
had.

It took time to find out exactly
what { ;CODE } should do (it
specified the code to be executed for a
previously defined word). I do not
have the records, but I think the ini­
tial code for { ;CODE } was three or
four lines long; to simplify that code

was one of the driving forces behind
the address interpreter-to make it
possible to code { ;CODE } cleanly.
This had implications as to what
registers should be available.

The fact that W should be saved in
a register for defining words led to
indirect, rather than direct, threaded
code. That was the most complicated
concept I had coded in this evolving
program-probably deserving of a
patent in its own right.

A little bit later, it seemed that
there ought to be an analog of
{;CODE } that specified the code to
be interpreted when you executed a
word. It seemed the natural balance,
but when the idea first arose, I did not
have the foggiest notion of what to do
or what the implementation should
be. The first definition of this analog,
called { ;: } (semicolon-colon) ,
required three or four lines of code. It
had to do what { ;CODE } did, and
then more.

Out of that came the distinction
between compile-time action and

execute-time action . It was conve­
nient for words to be coded to act this
way, but it was expensive. It required
not only the address of the code to be
executed, but the address of the code
to be interpreted, as well as the
parameter to be supplied to the code
being interpreted so you could do
something useful.

late in the 1960s I went to work for
Mohasco Industries, where I put
something strongly resembling
FORTH on a Burroughs 5500, cross­
compiled to the 5500 from an IBM
1130. (There is no assembler on the
5500; there is a dialect of ALGOL
called SBOl that Burroughs used to
compile operating systems, not

available to users.) Listing 9 shows
the code definitions of stack opera­
tions on the 5500, which was a stack­
oriented processor at a time when
stack machines were not popular.
The names of some FORTH stack
operators stem from that machine's
operations; see, for example, our .
The symbol ¢ stands for CODE and
distinguishes the assembler's OR from
the FORTH OR . (Vocabularies were
not yet available .)

Listing 10 gives an example of
FIND (a dictionary search routine)
coded for the 5500. Notice the word
SCRAMBLE, a colon definition mak­
ing a hashed search. Apparently I had
eight threads to the dictionary here, a

Listing 6: The NEXT procedure in PLiI and its associated lCL (Job Control Language)
statements (lines 1 thru 8).

I IIUTILITY JOB SYSTEM ,OVERHEAD
2 II EXEC PGM = IEBUPDTE,PARM = NEW
3 IISYSPRINT DO SYSOUT = A
411SYSUT2 DO DSNAME=OUTLIB,UNIT=2314,DISP =(NEW,KEEP),
5 II VOLUME=SER=MOORE,SPACE=(TRK,(lOO"IO))'
6 II DCB = (RECFM = F,LRECL =80,BLKSIZE = 80)
7 IISYSIN DO DATA
8 .I ADD NAME=WORD,LEVEL=OO,SOURCE =O,LIST =ALL
9 DECLARE KEYBOARD STREAM INPUT,PRINTER STREAM OUTPUT PRINT;

10 NEXT: PROCEDURE CHARACTER(4);
I DECLARE (l TEXT CHARACTER(81) INITIAL((81)" "),
2 2 C(81) CHARACTER(l)' I INITIAL(81) ,W CHARACTER(4),
3 WORD CHARACTER(32) VARYING BASED(P),P,NUMERIC BIT(l)) EXTERNAL;
4 DO WHILE C(l)=" "; 1=1+1;
5 IF I =82 THEN BEGIN; I = I;
6 READ FILE(KEYBOARD) INTO(TEXT); END; END;
7 P = ADDR(C(l));
8 IF C(l) = " - " OR C(l) = "." OR "0" LE C(l) THEN BEGIN; NUMERIC="I"B;
9 IF C(l) NOT = "." THEN DO I = I + I BY I WHILE "0" LE C(I); END;

20 IF C(l) = "." THEN DO 1=1+1 BY I WHILE "0" LE C(I); END; END;
I ELSE DO; NUMERIC = "O"B;
2 IF "A" LE C(l) THEN DO I = I + I BY I WHILE "A" LE C(I) OR C(l) = " - ";
3 END; ELSE 1=1+1; END;
4 W = WORD; RETURN(W);

Listing 7: The FORTH words PUSH and POP written in IBM 360 assembly language .

0056

03445550
00

400004
5ACO 6014
5040 COOO
19CB
0729
47FO 667C
OOIA
0444D2CF50400008
41CO C004
5840 C004
41CO C004
59CO 602C
07C9
47FO 667C

00014
00000

0067C

00004
00004
00004
0002C

0067C

830 L18 DC AL2(* -LI7)
831 NAME 3,X'445550',0 DUP
832 + DC ALI (3),X'445550'
833 + DC X'O'
834+ ORG * - 2- VO
835+ OS OH
836 + ORG * + VO+ I
837 + DC AL 1(0*X'40' + X'40'),AL2(4)
838 PUSH A SP ,MFOUR COSTS 15 US

839 ST T,O(,SP)
840 CR SP,DP

841 BCR 2,NEXT BHR
842 B ABORT

843 L19 DC AL2(* -L18)
844 DC ALI(4)X44D2CF50'X40',AL2(8) DROP
845 LA SP,4('SP)

846 POP L T,4(,SP) COSTS 21 US
847 LA SP,4(,SP)
848 C Sp, SPOO

849 BCR 12,NEXT BNHR
850 B ABORT

82 August 1980 © BYTE Publications Inc

concept we added back to FORTH
when we developed polyFORTH last
year.

FORTH and the IBM 1130
At Mohasco I also worked directly

on an IBM 1130 interfaced with an
IBM 2250 graphics display . The 1130
was a very important computer; it
had the first cartridge disk, as well as
a card reader, a card punch (as
backup for the disk) , and a console
typewriter. The 1130 let the program­
mer, for the first time, totally control
the computer interactively.

FORTH first appeared as an entity
on that 1130. It was called
F-O-R-T -H, a five-letter abbreviation
of FOURTH, standing for fourth­
generation computer language. That
was the day, you may remember, of
third,-generation computers and I was
going to leapfrog. But because
FORTH ran on the 1130 (which per­
mi tted only five-character
identifiers), the name was shortened.

What came out of the 1130 was a
cross-assembler that assembled the
instructions, which were then to be
executed by the 2250. I think the 2250
had its own memory, and these things
had to be programmed carefully.
What I accomplished was that the
1130 in FORTRAN in 32 K bytes
could draw pictures on the 2250, fair­
ly slowly; and FORTH, in 8 K bytes,
could draw three-dimensional mov­
ing pictures on the 2250-but it could
do that only if every cycle was
accounted for and if the utmost was
squeezed out. That is why
FORTRAN had to go-I required an
assembler and could not do an
impressive enough job with FOR­
TRAN.

But high-level or colon definitions
were not yet compiled-the compiler
came much later. The text was stored
in the body of the definition, and the
text interpreter reinterpreted the text
in order to discover what it was to
do. This contradicts the efficiency of
the language, but I had big words that
put up pictures and I did not have to
interpret too much. The cleverness
was limited to squeezing out
extraneous blanks as a compression
medium. I am told that this is the way
that BASIC acts today in many
instances .

This machine had a disk drive, and
I am almost certain that the word
BLOCK existed in order to access

Circle 54 on inquiry card. --+

records off the disk. I do remember
that I had to use the FORTRAN 110
(input/output) package and that it
would not put the blocks where I
wanted them; it put the blocks where
it wanted them, and I had to pick
them up and move them into my buf­
fers .

At Mohasco I also implemented
FORTH on a Univac 1,108, interfacing
it with their COBOL compiler.
Listing 11 displays a set of record
descriptions in a Dun and Bradstreet
reference file (for looking up bad
debts). The layout shows named
fields followed by the number of
bytes allocated.

The Mohasco programs mark the
transition point between something
that could be called FORTH and
something that could not. All the
essential features except the compiler
were present by 1968.

The First Modern FORTHs
The first modern FORTH was

coded in FORTRAN. Shortly
thereafter it was recoded in
assembler. Much later it was coded in
FORTH. It took a long time before I
thought that FORTH was complete
enough to code itself. The first thing
to be added to what had already
existed was the return stack. That
was an important development; the
recognition that there had to be exact­
ly two stacks, no more, no less.

The next thing to be added was
even more important-the full­
fledged dictionary, that is, the dic­
tionary in the form of a linked list. Up
until then, flags had been set or com­
puted GO TOs had been executed to
provide some mechanism for asso­
ciating a subroutine with a word. The
replacement of all that by a code file
containing the address of the routine
made an incredibly fast way of
implementing a word once it was
iden tified.

The first use of modern FORTH
occurred when it was written for a
Honeywell H316 at the NRAO (Na­
tional Radio Astronomy Observ­
atory). In 1971 I was hired by George
Conant to write a radio-telescope
data-acquisition program: that led to
the next step, the compiler. This
meant the recognition that, rather
than reinterpret a string of text,
words could be compiled and an
average of 5 characters per word
could be replaced by 2 bytes per
word . This gave a compression factor

84 August 1980 © BYTE Publications Inc

Listing 8: A structured table routine, in COBOL.

I
2
3
4
5
6
7
8
9

MOVE "CONFIG URATION" TO IDENTIFY(4);
MOVE "DATA" TO IDENTIFY(5);
MOVE "FILE" TO IDENTIFY(6);
MOVE "FD" TO IDENTIFY(7);
MOVE "MD" TO IDENTIFY(8);
MOVE "SD" TO IDENTIFY(9);
MOVE "WORKING -STORAGE" TO IDENTIFY(lO);
MOVE "CONSTANT" TO IDENTIFY(lI);
MOVE "PROCEDURE" TO IDENTIFY(l 2);

70 MOVE " INPUT-OUTPUT" TO IDENTIFY(l3);

Listing 9: Code definitions of FORTH stack operations on the Burroughs 5500, written
in SBOL.

LIST
0001 ('PRIMITIVES' 26 LAST 30 SIZE =)
0002 ¢ = _S RETURN
0003 ¢ @ < SD RETURN
0004 ¢ + V 24 1, RETURN
0005
0006 ¢ OR ¢OR RETURN
0007 ¢ AND ¢AND RETURN
0008 ¢ NOT 115, RETURN
0009 ¢ DUP ¢DUP RETURN
OOOA ¢ SWAP ¢SWAP RETURN
OOOB ¢ DROP ¢DROP RETURN
OOOC ¢ + + I RETURN
OOOD ¢ - - I RETURN
OOOE ¢ MINUS ¢MINUS RETURN
OOOF ¢' • I RETURN
0010 ¢ I II RETURN
001 I ¢ MOD ¢MOD RETURN

Listing 10: A dictionary search routine , FIND, written for the Burroughs 5500,

00 13 ¢SM ¢FIND SCRAMBLE < SD ¢DUP
0014 41 >A 41 >B ¢BEGIN V <U 1771, ¢IF
0015 ¢BEGIN VO < U 1771, Q:IF
0016 I <L RESULT
0017 ¢THEN _ADDR Q:DUP I < L < S
0018 OS WORD < U Q:EQUAL ¢IF
0019 VI _ U OS RESULT
OOIA ¢THEN ¢DUP < SO ¢BACK
OO IB ¢THEN GET ¢BACK
001C FIND TOP ¢FIND ¢IF UR < UD ¢B ¢:THEN;

Listing 11: Prototype of a file layout, running under FORTH on a Univac 1108, This
version of FORTH was written in COBOL.

3 OBI DBIIMOORE 33 33
4 DUNS 8 NAME 24 STREET 19 CITY 15 STATE 4 ZIP 5
5 PHONE 10 BORN 3 PRODUCT 19 OFFICER 24 SIC 4 SICI 4 SIC2 4
6 SIC3 4 SIC4 4 SIC5 4 TOTAL 5.0 EMPL 5.0 WORTH 9.0 SALES 9.0 MFG
7 SUBS I HDQ I HEAD 8 PARENT 8 MAIL 19 CITYl 15 STATE 1 4
8 NAMEI 19
9 END

of 2 or 3, not drastic but appreciable.
But execution speed would be much
faster. Again I asked myself , as I had
done when I first began modifying
programs: if it was that easy, why
hadn 't anyone else done it? It took me
a long time to convince myself that
you could compile anything and
everything.

Interrupts came around this time. It

was important to utilize the interrupt
capability of the computer, but it had
not been done by me before that-I
did not know anything about inter­
rupts . 110, however, was not yet
interrupt-driven. Interrupts were
available for the application if it
wanted them-FORTH did not
bother.

The multi programmer came along

a couple of years later when we
developed an improved version of the
system for NRAO's telescope at Kitt
Peak . This computer was a PDP-ll;
the multiprogrammer had four tasks.
Input was still not interrupt-driven,
which was unfortunate.

The Second FORTH Programmer
Ten years ago there was one

FORTH programmer, me. The se­
cond FORTH programmer, Elizabeth
Rather, came along in 1971. That is
quite a quantum jump, from one to
two; the next step was four (the next
two came out of Kitt Peak National
Observatory); the growth can be
traced from there to the several thou­
sand today .

The first FORTH user was Ned

Conklin, head of the NRAO station
at Kitt Peak, Arizona . NRAO runs a
millimeter-wave radio telescope that
is in great demand by observers, in
part because it is responsible over the
last 10 years for discovering half of
the interstellar molecules tha tare
known to exist. FORTH is still run­
ning on that telescope at Kitt Peak
and on a lot of other telescopes.

Given interest from other
astronomers, a few believers split off
from NRAO in 1973 and formed
FORTH Inc . We were deluged by
requests for FORTH systems from
astronomers and went into business
to try to exploit that market. It would
still be our principal line of business
today except that there are so few
new telescopes in the world that you

Listing 12: Field and record layouts for a recent FORTH Inc data-base management
system .

64 LIST

cannot support a company on that
market.

We developed miniFORTH™
(FORTH on minicomputers) with the
idea of having a programming tool.
An important implementation of the
tool came when we put an LSI-ll and
FORTH into a suitcase. I think I
became the first computer-aided
programmer-computer-aided in that
I had my computer and took it
around with me. I talked to my com­
puter, my computer talked to your
computer, and we could com­
municate much more efficiently than
I could communicate directly with
your computer before it could run
FORTH. Using this tool, we have put
FORTH on many computers.

We added the feature of interrupt­
driven I/O when FORTH Inc pro-
duced its first multiterminal system.
It did not speed things up particularly
from the user 's point of view, but it
did prevent any loss of characters
when several people were typing at

o (GLOSSARY FILE) the same time. You did not have to
1 2 (LINK) 12 BYTES WORD 12 BYTES VOC look quickly to get the character
2 NUMBER SOURCE NUMBER STACKS 70 BYTES PHRASE before the next one came along. They
3 210 FILLER (4 LINES) 32 FILLER (340 BIR , 3/BLOCK) DROP were all buffered and waiting for you,
4 2 24 BYTES WORD + VOC DROP ______________________________ --, which is an important distinction for

Hard Disk
Made Easy
Now you can move up to hard disk

trouble free. Just select the XCOMP XIS
series controller for your disk drive: SMD,

Cartridge drive, 8 inch disk bus or Shugart®
SA 1000. Our complete package, including first

class support software, will get you up and run-
ning fast. And the cost will be less than you would

expect. We specialize in getting OEM's into hard disk
systems. Our customers include the most successful
companies in the microcomputer world .

Move up to hard disk the easy way. Call XCOMP­
we'll get you going with hard disk right now.

XCOMP
INCORPORATED

9915A Businesspark Avenue,
San Diego, CA 92131

(714) 271-8730

86 August 1980 © BYTE Publ icat ions Inc Circle 56 on inqu iry card.

multiprogrammed systems .
Data-base management came along

at this time. It has been extensively
changed, just as FORTH has . But fun­
damentally, nothing has changed.
The concept of files, records, fields,
and relational pointers that
polyFORTH™ offers dates back from
1974 or so-years and years ago .
Listing 12 shows a recent application
of the FORTH Inc data-base manage­
ment system.

With microFORTH™ in 1976 came
the first version of our current target
compilers . They are very complex
things, much more so than I expected
them to be. At about the same time,
we worked out the current implemen­
tation of DOES> .

This new form of { ;: } does not
require the address of the code to be
interpreted. Since that is supplied by
a different mechanism, the parameter
can occupy the parameter field as it is
supposed to. You can "tick" it and
change its value, which is nice. [The
FORTH word { , } (called "tick"
above) places the address of the word
that follows it onto the stack GWJ
But we save 2 bytes for every
DOES> word, 2 bytes for very com­
mon words-and for 3 years, we did

Circle 57 on inquiry card. -.

not realize that we had missed the
optimum by so much.

I know no way of speeding this
process from initial thought to
development, except to let a certain
amount of time pass. We could sit,
we did sit and debate this thing
endlessly, and we missed the obvious.

I think that completes the
capabilities that I think of as FORTH
today. You see how they dribbled
in-at no point did I sit down to
design a programming language. I
solved the problems as they arose .
When demands for improved perfor­
mance came along, I would sit and
worry and come up with a way of
providing improved performance.

polyFORTH is a condensation of
everything that we at FORTH Inc
have learned in the last 10 years of
developing FORTH. I think it is a
very good package. '1 foresee no fun­
damental changes in the design of the
language except for accommodation
to FORTH standards, which are
becoming increasingly important.

Implementations of FORTH
I would like to review the

implementations of FORTH of which
I am aware. It is actually a tour
through the history of computers and
it is fascinating that this could all
have happened in 10 years.

FORTH has been programmed in
FORTRAN, ALGOL, PUI, COBOL,
assembler, and FORTH; and I am
sure some of you can come up with
other languages with the same
history. My list is strictly personal.

FORTH has been implemented on
the Burroughs 5500; the IBM 1130;
the Univac 1108; the Honeywell 316;
the IBM 360; the Data General Nova;
the HP 2100 (not by me but by Paul
Scott at Kitt Peak); the PDP-I0 and
PDP-l1 (by Marty Ewing at the
California Institute of Technology) ;
the PDP-l1 (by FORTH Inc); the
Varian 620; the Mod-Comp II ; the
GA SPC-16; the CDC-6400 (by Kitt
Peak); the PDP-8; the IV-Phase; the
Computer Automation LSI-4; the
RCA 1802; the Honeywell Level 6;
the IBM Series 1; the Interdata; the
6800; the 8080; the 8086; the TI-9900;
and soon the 68000, the Z8000, the
6809, and a Child Inc computer.
Some independent groups have
6502s, ILLIAC, and others running
FORTH. I raise the question-is it the
case that FORTH has been put on

88 A ugust 1980 © BYTE Publications Inc

every computer that exists?
Some people think FORTH ought

to be machine independent, but that
premise is wrong. The equivalence is
FORTH-each machine requires
meticulous attention to its individual
characteristics . You must use all the
hardware capabilities of each
machine and must then work to force
it into the mold specified by FORTH's
virtual machine .

For example, we put a subset of
FORTH on an SMS-300 microcom­
puter. It had only eight instructions.
The internal characteristics of every

At no point did I sit
down to design a pro­
gramming language. I
solved the problems as
they arose.

machine can and must be exploited .
You do not need any particular
number of registers or stacks or
anything. All can be simulated, but if
you neglect the abilities of the
machine, you can end up a factor of 2
down in performance from where
you might otherwise be.

FORTH-in-Hardware Computers
The first FORTH computer I know

of was built at Jodrell Bank in
England around 1973. It is a redesign
of an English Ferranti computer that
went out of production. The obser­
vatory at Jodrell Bank was going to
build their own bit-slice version; they
discovered FORTH about the same
time, modified the instruction set to
accommodate FORTH, and built
what I am told is a very fast FORTH
computer. I have never seen it , but
have talked to its competent designer,
John Davies, who is one of the early
FORTH enthusiasts .

In 1973, before Dean Sanderson
came to FORTH Inc to develop
microFORTH, he had a FORTH com­
puter at a company called General
Logic. It qualifies as a FORTH com­
puter because it has a FORTH
instruction. And there is a story
there. Dean showed me his instruc­
tion set, and there was this funny
instruction that I could not see any
reason for-I figured it was some
kind of no-op or catchall or

something; it had the weirdest pro ­
perties, and it could not possibly be
useful. I t was NEXT. I t was a one­
instruction NEXT which was
beautiful. And it was a very simple
modification (this was a bit-slice com­
puter) to the instruction set-a few
wires here and there-and that is the
first time I saw a FORTH computer, if
you will. I call it a FORTH computer
because it had the ability to change
itself from an ordinary computer into
a FORTH computer.

I think that hardware today is in
the same shape as software was 20
years ago. No offense, but it is time
that the hardware people learned
something about software . There is
an order or two of magnitude
improvement in performance possible
with existing technology. We do not
need picosecond computers to make
really substantial improvements in
execution speed . Faced with that
realization, there is no point in trying
to optimize the software any further
until we have taken the first crack at
the hardware. The hardware redesign
has to be as complete as the software
redesign was. The standard micro­
processors did not have FORTH in
mind . Those minicomputers that can
be microprogrammed cannot be
microprogrammed well enough to
even be worth doing . The improve­
ments available are much greater
than you can achieve by these half
measures.

I have built a small FORTH com­
puter. The design changes as fast as
the chips can be plugged into the
board. But it is not difficult to do.
Here are the characteristics of a
FORTH computer:

• It does not need a lot of memory
(16 K bytes is about right-half
programmable read-only memory,
half user programmable memory,
maybe) .

• It does not need a lot of 110 ports;
in fact, it does not need any 110
ports except for the application
requirements .

• A serial line and interface to a disk
drive are useful but not required.

We have put FORTH on an
8080-based machine with a virtual
disk in memory , enough memory to
hold eight blocks . The system is quite
viable and has no particular problem
with system crashes. Bubbl e

Circle 58 on inquiry card. ~

memories are corning. A FORTH
computer does not need much mass
storage; 100 K bytes are adequate,
and 250 K bytes are plenty. The fact
that FORTH can exist quite happily
on a machine that is very small by
contemporary standards should be
exploited.

Organizations
Finally, I would like to run through

the history of the organizations that
have been involved with FORTH.
They have formed another thread of
the tapestry. It began with Mohasco,
of course, followed by NRAO and

No typing skills required
Irs easier and more accurate to enter alphanumeric
data with a BIT PAD than a keyboard . Now anyone
can ..
• Enter whole lines of characters with a sing le stroke.
• Enter data directly from business forms by simply

checking a box.
• Enter variable alphanumeric data from a menu key·

board .
Take a printed form-price list, order form , loan or

insurance application, laboratory request- lay it on the
BIT PAD tablet and touch the pertinent items with the
pen. The information is entered directly into your data
processing system .

Plus, the BIT PAD does even more.

Kitt Peak National Observatory: then
carne FORTH Inc.

The next step was probably
DEC US (Digital Equipment Com­
puter Users' Group). Marty Ewing
gave his PDP-ll FORTH system to
DECUS. FORTH Inc was not sure
whether free FORTHs floating
around was a good idea at the time.
But it turned out that a lot of people
were exposed to FORTH who other­
wise would not have been .

Cybek carne along and provided an
entry into the business-sys tems
market. Art Gravina , the president of
Cybek, is the person who designed

Try to describe a fluctuating business trend to your
computer through a keyboard . With BIT PAD you simply
trace the trend wi th the pen. Special keyboard menus
can be created by the user to enter high level lan­
guages, foreign languages or special symbols.

Before you order any kind of data entry equipment.
ask Summagraphics to give you the full story on the BIT
PAD ONE.

Summagraphics Corporation, 35 Brentwood Ave­
nue, Fairfield , Connecticut 06430 : or call Marketing De­
partment, Peripheral Products (203) 384-1344.
_-" : i '~'
t ., _.: ~ . .

TheBITPADM
alternative to
keyboard
dataentty

---,,-----

90 August 1980 © BYTE Publica tions Inc Circ le 59 on inquiry card .

our data-base management system.
He provided us the opportunity to do
commercial systems and the ability to
handle ten times as many terminals as
he could with the BASIC program
that preceded it.

In about 1976, a committee of the
International Astronomical Union
met and adopted FORTH as a stan­
dard language. That was a boost in
the world of astronomy, although the
world of astronomy was no longer
the major driving force in the
popularity of FORTH.

I think EFUG (the European
FORTH Users' Group) came along
about that time (1976). It turned out
to our surprise that Europe was a
hotbed of FORTH activity that we
were largely unaware of (and perhaps
still are, in that we are not involved in
that world and do not appreciate the
level of interest). An international
FORTH Standards Team probably
grew from their first meetings. A cou­
ple of years later, the FORTH Interest
Group started . Now we have
FORML-FORTH Modification
La bora tory , an idea-genera tin g
organization.

Conclusion
The tendency seems to be for peo­

ple to organize themselves in groups.
Some of these groups are companies,
others are associations. It looks like
FORTH is going to be a communal
activity in that sense-that it will
grow from the work of unstructured
clusterings of like-minded people.
The suggestion is that this whole
world of FORTH is going to be quite
d isorganized , uncentralized , and
uncontrollable. It's not bad, perhaps
it 's good.

My view of the future is more
unsettled today than it has been for
years: promising, confusing, perplex­
ing. The implications are perhaps as
staggering now as they were 20 years
ago. The promise of realiza tion is
much higher. My original goal was to
write more than forty programs in
my life. I think I have increased my
throughput by a factor of 10. I do not
think that that throughput is
program-language limited a ny
longer. So I have accomplished what
I set out to do: I have a tool tha t is
very effective in my hands . It seems it
is very effective in others' hands as
well. I am happy and proud that this
is true .

Circle 60 on inquiry card. ---+

Components of FORTH
FORTH is characterized by five major elements: dic­

tionary, stack, interpreters, assembler, and virtual
memory. Although not one of these is unique to
FORTH, their interaction in FORTH produces a
synergistic effect that creates a programming system of
unexpected power and flexibility.

• Dictionary: The resident FORTH system is
organized into a dictionary that occupies almost
all of program memory. The dictionary is a
threaded list of variable-length items, each of
which defines a word of the vocabulary . The
actual content of each definition depends on the
type of word: noun , verb, etc. The dictionary is
extensible, growing toward high memory. In a
multiterminal system, terminal tasks may have
private dictionaries that are connected in a
hierarchical tree structure.

• Stack: Two push-down stacks (last-in, first-out ,
or LIFO, lists) are maintained for each
multiprogrammed task in the system . These pro­
vide the primary communication between
routines as well as an efficient mechanism for
controlling logical flow. A stack normally con­
tains items one computer word long, which may
be addresses, numbers, or other objects. Stacks,
which are of indefinite size, grow toward low
memory.

• Interpreters: FORTH is fundamentally an inter­
pretive system, meaning that program execution
is controlled by data items rather than by
machine code. It is a common assumption that
interpreters are severely wasteful of processor
·time; this is avoided in FORTH by maintaining
two levels of interpretation .

The first of these is the text interpreter, also known
as the outer interpreter. It works in a conventional
manner, parsing text strings that come from terminals
or mass storage and looking up each word in the dic­
tionary. When a word is found in the dictionary, it is
executed (un less the task is in compile mode) by invok­
ing the address interpreter.

The address interpreter (also known as the inner
interpreter) interprets strings of absolute memory
addresses by executing the definition pointed to by
each. Most dictionary definitions contain addresses of
previously defined words that are to be executed by
this interpreter. This level of interpretation requires no
dictionary search since these words have already been
compiled by the text interpreter, which generated the
absolute addresses.

The address interpreter has several important pro­
perties. First, it is fast. Indeed, on some computers it
executes only one instruction for each word, in addi­
tion to the code implied by the word itself. Second, it
interprets compact definitions. Each word referenced
in a definition compiles a single memory location .
Finally, the definitions are machine independent
because the definition of one word in terms of others
does not depend upon the computer that interprets the
definitions.

92 A ugust 1980 © BYTE Publica tions Inc

• Assembler: FORTH includes a resident
assembler, which allows the programmer to
define words that will cause specified machine
instructions to be executed. This type of defini­
tion is necessary to perform device-dependent
input and output operations, to implement
elementary operations, and to do highly time­
critical processing .

• Virtual memory: The final key element of
FORTH is its blocks: fixed-length segments of
disk space that may contain program text or
data. A number of buffers are provided in
memory; blocks are read into them automatical­
ly when referenced. If a block is modified in
memory, it is automatically replaced on disk . Ex­
plicit read and write operations, therefore, are
not required; programmers may presume that
program text or data is in memory whenever it is
referenced.

[The above paragraphs present a concise overview
of FORTH as a language; the following paragraphs
describe features of a FORTH Inc product,
polyFORTH ... GW]

The standard polyFORTH system utilities include
the following:

Text editor: Facilitates editing program source
text, both by line and by
character.

Source listings: Prints program source listings and
indexes.

Disk copy: Provides for disk-to-disk copying
of data file and program source
files for backup purposes .

Disk diagnostic: Produces a simple, read-only disk
diagnostic that may be run at any
time without disturbing other
users. (More extensive hardware
diagnostics are optional.)

Each polyFORTH system also contains a Target
CompilerTM capability; this allows the user to develop,
for run-time applications only, a computer system that
does not require the entire operating system. Since
FORTH is an interpretive language, an interpreter
must always be present; but the target compilation
process creates the minimum dictionary necessary,
thus allowing a program to be run with a minimum of
memory overhead. Typically, this overhead is less
than 1000 bytes.

Full data-base management support is available in
an optional Extended File Management package. In­
cluded within its structure are the essential features of
the CODASYL standard along with the characteristic
speed, compactness, and flexibility of the FORTH
language. Facilities include commands for file defini­
tion and formatting and for field and record descrip­
tions, as well as several file-accessing techniques ,
operators for accessing individual fields by name and
fields within specified files, and such utility functions
as a report generator and an optional key-sort
routine .•

Circle 61 on inquiry card. --+

What Is FORTH?
A Tutorial Introduction

FORTH IS a programming
language with a small but fast­
growing and enthusiastic user com­
munity. Though easy to learn at a ter­
minal, it is difficult to explain
abstractly because it is so different
from other languages. Even
advocates do not agree why it is good
or how it should be used.

FORTH was developed for control
applications (using a computer to run
other machinery), data bases, and
general business. It is least useful for
big number-crunching jobs (eg :
writing a matrix inversion routine),
although it can link to subroutine
packages written in other languages
to incorporate such functions. Unlike
Pascal, FORTH gives the user com­
plete access to the machine and does
not try to guard the programmer
against mistakes. But its modularity
and other forms of error control
allow production of remarkably bug­
free application programs-perhaps

Acknowledgments and Availability
Listings 1 thru 7 were run on a FORTH

system for the Apple II provided by Cap 'n
Software, POS 575, San Francisco CA 94101.
Th e PDP-11 examples were run on a system
written and distributed by the author. The
8080 example was provided by John Cassady
of the Forth Interes t Group, POS 1105, San
Carlos CA 94070; a similar 8080 FORTH
system is available from Forthright Enterprises,
POS 50911. Palo Alto CA 94303. O ther
members of the Forth Interest Group con­
tributed helpful suggestions. And of course we
are inde~ted to the inventor of FORTH,
Charles Moore of FORTH In c, 2309 Pacific
Coast Hwy, Hermosa Beach CA 90254 , who
started it all.

100 Augu, t 1980 © BYfE Publications Inc

John S James
POB 348

Berkeley CA 94701

more than any other language in
common use. The compiler uses
much less memory than Pascal does,
and its programs run about equally
fast. FORTH is much more interac­
tive than most conventional
implementations of Pascal. FORTH is
available on most common personal
computers (eg: Apple, TRS-80) and
all major microprocessors (eg: 8080,
6800,6809,6502, PACE, LSI-H, and
9900). An international FORTH Stan­
dards Team exists, and standard
systems are virtually identical among
all different machines,

This article will describe what it is
like to program in FORTH. A group
of annota ted terminal sessions,
shown in listings 1 thru 10, will pro­
vide more details on the language
itself.

The Philosophy of FORTH
FORTH reduces the cost of a

subroutine to very little, and the
whole language is built on functions
that are like subroutine calls. The
programmer keeps defining new
words (new functions) from old ones
until, finally , one of them is the
whole job. Most programmers keep
each definition short, usually one to
three lines not counting comments,
The definitions are compiled . as
entered and are immediately ready to
run.

Because FORTH definitions are
short, all possible execution paths of
the definition can be tested easily.
Since most functions work exactly the
same when executed as commands
from the terminal or when used as
components in further definitions,

they can be tested immediately from
the terminal. And the functions are so
general that there is no sharp distinc­
tion between program and data.

Since programmers define their
own operations, special application
libraries of FORTH words can be
developed. The new routines are
integrally part of the language, so
they do not need any special calling
sequences, and they are immediately
ready to run. Even the original words
supplied with the system (there are
about one hundred of them) , can be
redefined if desired, adapting the
language for special circumstances,
Also, programmers can create their
own data types or operation types
(eg: their own kinds of arrays or
other data structures, or new classes
of operations) , This flexibility allows
unprecedented "customization" of a
language to the requirements of a par­
ticular installation or application .
The finished programs are easily
modifiable when requirements
change because they are composed of
pretested building blocks specially
designed for that kind of program.

Stack and Postfix Notation
A smaller convenience of FORTH

is that you do not have to do much
coding when you start a new pro­
gram. As soon as the system comes
up, all your previous work is ready to
go, just as if it were originally part of
the language.

A feature that some people do not
like is FORTH's use of a stack
(explained below) and its postfix
notation (also called reverse Polish

Most FORTH operations
communicate only
through a stack.

notation or RPN}. In postfix notation
(a system used on most Hewlett­
Packard calculators), arithmetic for­
mulas are written with the operations
after their arguments, not between
them. For example, "2+3" becomes
{ 2 3 + } in FORTH or other
postfix sys tems; "(4 + 5) * (6 + 7)"
becomes { 4 5 + 6 7 + * }. (See
explanation below.) No parentheses
are needed in postfix.

Some programmers do not like
postfix, and they ask, "Why doesn't
someone write an algebraic-to-postfix
translator for FORTH? That would
be easy to do." The reason is that
postfix has benefits far more impor­
tant than the compiler-writer's conve­
nience. It greatly simplifies linkage to
subroutines. With postfix, you do not
need any CALL statement or argu­
ment list, or any formal parameters in
the subroutine. While arithmetic­
formula operations (add, subtract,
etc) must take either one or two
arguments and return exactly one
result, postfix functions can have any
number of arguments or results.

In FORTH, most operations com­
municate only through a stack. The
stack, perhaps the most important
data structure in programming, is
used in almost all languages, but most
languages hide it from the user. In
FORTH, the user controls the stack
directly.

A stack is a pile of numbers where
the last ones put in are the first ones
taken out; that is, you can only
remove the number that is on top of
the stack. It is like a stack of trays in a
restaurant; trays are conveniently
added and removed only at the top.
(U nfortuna tely, compu ter-science
texts do not agree on terminology,
and a few call the top of the stack "the
bottom. ")

To see how a stack works in com­
putation, consider the expression
{ 2 3 + } above. In FORTH,
numbers are compiled as operations
which place their values onto the
stack. So when the 2 is executed,
it is placed on top of the stack, which
then looks as follows:

102 August 1980 © BYTE Publications Inc

STACK

OPERATION
JUST
PERFORMED

-
-

(BEGIN)

4
-
-

4

5
4 9
- -
- -

5 +

7
6 6 13
9 9 9 117 117
- - - - -
- - - - -

6 7 + * (END)

Figure 1: Evaluation of the postfix-notation expression, { 4 5 + 6 7 + * }.
Numbers are pushed onto the stack at the top. Operators (here, + and *) pop the top
two entries off the stack and push the result of that operation back on the stack . For ex­
ample, the first plus sign (column 4) replaces the 4 and 5 on the stack with 9, the result
of the addition operation.

2

where the dashes represent whatever
data may have been on the stack
before. Then after the 3 has been en­
countered, the stack becomes:

3
2

Then the + IS executed . The
I-character word + takes two
arguments from the stack (destroying
them), performs the addition, and
leaves the result on the stack. So the
stack finally is :

5

The reader can verify that when the
formula {4 5 + 6 7 + * } is
executed, the stack goes through the
sequence shown in figure 1.

Now we can see why FORTH is not
the best language for big number­
crunching jobs. Numbers to be
operated on must be moved to the
stack in addition to whatever opera­
tions are to be carried out, and this
extra movement slows FORTH down
for this kind of computation. Once
on the stack, however, arithmetic is
fast (for example, single instruction
execution for addition on some I6-bit
machines, more for 8-bit machines).
Also, FORTH can link the useful in­
structions of one routine and those of
another in as little as one or two in­
struction executions (depending on
machine architecture). This makes
FORTH programs much faster than
BASIC, usually ten times faster or
more (assuming an interactive
BASIC, that is-FORTH is always in­
teractive). But a good FORTRAN

compiler's code may do number­
crunching several times faster still.

Characteristics of FORTH Code
FORTH is a structured language (as

is Pascal) in that it has no GOTO or
statement labels in the language .
Discussion of structured program­
ming is outside the scope of this arti­
cle, but its importance for program
correctness and maintainability is
recognized.

FORTH object code (ie: a compiled
program) is extremely compact, even
more so than machine language. The
reason is that no matter how much
work an operation performs, each
invocation of it takes the same space
in the object program-two bytes.
The bigger the program, the greater
the memory advantage, since the
hierarchical structure of programs
allows increasingly powerful and
application-targeted operations to be
built up. But FORTH has a relatively
large run-time memory overhead, so
small programs can take less total
space in other languages.

{The reason that a FORTH call can
be shorter than a normal machine­
language subroutine call (usually
three bytes) is that a FORTH program
is interpreted by a FORTH interpreter
(also part of the FORTH language) in
much the same way that a BASIC
program is interpreted by a BASIC
interpreter. The "relatively large run­
time memory overhead" mentioned
above is the FORTH interpreter plus
a core of FORTH words defined in
machine language. When a FORTH
program is very large, it saves enough
memory in FORTH calls to make up
for run-time memory overhead
GWj

The complete FORTH system
(itself largely written in FORTH)
takes about 7 K bytes, and this whole
sys tem including the compiler is com-

Circle 65 on inquiry card. -+

monly left in memory as a run-time
package. Therefore, 16 K bytes and a
floppy disk for storing source pro­
grams are sufficient hardware for an
excellent FORTH system (compare
this with the memory requirements of
Pascal, 48 K bytes or more). When
compactness is especially important,
as when programs are burned into
read-only memory and embedded in
machinery, FORTH's compiler, ter­
minal handler, and operation
names-anything not needed to
run-can be stripped out of the
application program, leaving a run­
time package of about 800 bytes,

We know you hardcore bit hack­
ers will recognize the computing
power derived from combining the
FORTH language with the 6809,
today's most advanced 8 bit
microprocessor.

And we know you'll understand
this machine's 16 bit math, indirect
addressing and two stacks are
ideally suited for implementing
FORTH.

But ... should anyone need further
convincing that FORTH provides a
new dimension in power, speed
and ease of operation, consider
the following:
• It's a modem, modular, structured­

programming high-level com­
piled language.

• It's a combined interpreter,
compiler, and operating system.

• It permits assembler code level
control of machine, runs near
speed of assembler code, and
uses less memory space than
assembler code.

• It increases programmer produc­
tivity and reduces memory hard­
ware requirements.

Call or write today.

instead of the usual 7 K bytes.
FORTH programming is reentrant;

this means that different users can
share the same copy of a program in
memory while running at the same
time. FORTH easily handles
multitasking, including multiple ter­
minals used for program develop­
ment. (At present, however, most of
the low-cost systems on the market
are still single-user.) FORTH is recur­
sive, meaning that routines can
invoke themselves.

Suppose you want to link your
high-level-language program to a
machine-language subroutine (eg:

• It replaces subroutines by
individual words and related
groups of words called
Vocabularies. These are quickly
modified and tested by editing
1024-character text blocks, called
screens, using built-in editor.

tFORTH is a basic system imple­
mented for 55-50 buss 6809 systems
with the T5C FLEX 9.0 disk oper­
ating system. It is available on 5%"
or 8" single density soft-sectored
floppy disks. $100.00

tFORTH + consists of tFORTH plus a
complement of the following
FORTH source code vocabularies:
full assembler, cursor controlled
screen editor, case statements,
extended data types, general I/O
drivers. $250.00

firm FORTH is an applications pack­
age for use with tFORTH. It provides
for recompllation of the tFORTH
nucleus, deletion of superfluous
code and production of fully
rommable code. $350.00

KENYON
'===MICROSYSTEMS
3350 Walnut Bend, Houston, Texas 77042 • (713) 978-6933

104 August 1980 © BYTE Publications Inc Circle 66 on inquiry card.

you may be controlling a high-speed
device and need the full speed of the
computer to keep up). Many
languages make this linkage difficult
or impossible. In FORTH, however,
it is very convenient. You can type in
or load from disk a machine-language
routine, using a FORTH assembler,
and the new routine can be executed
immediately, Listing 9 shows
examples for PDP-ll and for 8080.

The word CODE invokes the
FORTH assembler and begins the
definition of a machine-language
routine. Mnemonic instructions and
address-mode symbols are
understood by this assembler, and the
whole power of FORTH is available
for address arithmetic at assembly
time. FORTH assemblers use postfix
notation, so op codes come after their
addresses, not before as in conven­
tional assemblers.

The machine-language code is
generated as the definition 'is being
entered. The completed operation
works just like any other FORTH
word, so the user does not need to use
any special calling sequence, or even
need to know which operations are
defined in code and which are not. (In
fact, about fifty FORTH words are
written in machine language-all
other words in FORTH are ultimately
defined in terms of these fifty words.)

The FORTH assembler allows
structured conditionals and loops at
the machine-code level; it can also
assemble unstructured code if
desired. Users can define their own
macro-instructions, use custom-made
data types, etc.

In other words, the FORTH
assembler allows structured program­
ming even in machine code, and it
links the resulting machine-language
subroutines into the system
immediately. No separate assembly
and linking-loader passes are needed,
and the associated file management
overhead is avoided.

Some More Advantages
FORTH programs are highly

transportable between different com­
puters. Any assembly-language
routines used by the program must be
rewritten, but most applications do
not need any assembly, and very few
need more than a handful of short,
critical routines. When FORTH
systems have been designed for com­
patibility, large applications can be
moved among very different

machines, with little or no change.
For example, it can be practical to
down-load program development
from a PDP-ll to a TRS-80 or an
Apple II. It is even possible to write
the software for a product before a
hardware commitment is final.

Another advantage is that FORTH
is a self-contained operating system.
The 7 K bytes include terminal and
disk handlers and a rudimentary file
system. No other software is needed
anywhere in the computer. Yet, if a
monitor in read-only memory is
available, FORTH can use it; and
FORTH can run as a task under some
other operating system (eg: CP 1M)
when that is wanted. FORTH can link
together otherwise incompa tible
pieces of systems: software in read­
only memory, operating systems,
subroutine packages, and hardware.
It provides a user interface that
enables subroutine packages normal­
ly used by batch (ie: noninteractive)
programs, mostly on older, larger
computers, to be used interactively.

FORTH puts you in charge of your
compu ter. You can understand
everything happening in your soft-

ware or in any desired parts of it, and
you can change it. This means no
more "black box" systems that only
the manufacturer's specialists can
understand, no more dependence on
someone else for upgrades, fixes, or
documentation, and no more ques­
tion of who is responsible if software
does not work. The whole system is
written in FORTH, right down to the
bits-your application programs, the
compiler, the operating system, the
I/O drivers, etc. You do not have to
learn some other language or be a
systems specialist to modify it.

Disadvantages
Few FORTH systems used today

have floating-point arithmetic. This is
not a fault of the language; rather, it
reflects its history in microcomputer
control applications, where integer
arithmetic is often needed for speed.
Now there is more pressure for
floating point, and it is becoming
available.

A more fundamental limitation of
FORTH is that it is not a typed
language (unlike Pascal). For exam­
ple, if an integer operation is per-

RCA VP-600 series ASCII keyboards are available in two formats.
You can choose either a 58-key typewriter format. Or a 74-key version
which includes an additional 16-key calculator-type keypad. Both can
be ordered with parallel or serial output.

These keyboards feature modern flexible membrane key
switches with contact life rated at greater than 5 million operations. Plus
two key rollover circuitry A finger positioning overlay combined with light
positive activation key pressure gives good operator "feel," and an on­
board tone generator gives aural key press feedback .

The unitized keyboard surface is spillproof and dustproof. This plus
high noise immunity CMOS circuitry makes these boards particularly
suited for use in hostile environments.

Parallel output keyboards have 7 -bit buHered, TTL compatible
output. Serial output keyboards have RS 232C compatible, 20 mA
current loop and TTL compatible asynchronous outputs with 6
selectable baud rates. All operate from 5 V DC, excluding
implementation of RS 232G.

For more information contact RCA Customer C
Service, New Holland Avenue, Lancaster, PA 17604. R II
Or call our toll-free number: 800-233-0094.
·Optlonal user price for VP-60 1 Dealer and OEM pric ing available.

106 August 19BO © BYTE Publications Inc Circle 68 on inquiry card.

formed on a floating-point quantity,
no message is printed either at com­
pile time or at run time to warn of this
error. (However, the user can add
type checking and other error­
preventing operations into any
FORTH word.)

It may seem that unreliable code
would result from the untyped nature
of FORTH, but, in fact, FORTH code
is remarkably solid and bug-free. The
modularity and excellent testing
environment aid error control; and
type mismatches are less dangerous
than most other mistakes because
they are easy to detect.

Another criticism of FORTH is its
lack of a directory file structure.
Again, this is historical and is not a
characteristic of the language, which
can be developed to use any kind of
files .

The traditional FORTH file system
is primitive, but in practice it has
worked very well. The entire disk (or
disks) is a single virtual array of
blocks numbered from 1, with the
block size standardized at 1024 bytes
regardless of physical disk sector size.
The blocks (called screens because
they can be displayed as sixteen
64-character lines on a terminal) are
automatically buffered so that they
are physically read and written only
when necessary. A LOAD command
will read a given screen and treat the
information exactly as if it had been
typed in a terminal session, thereby
compiling source code or executing
commands (depending on the con­
tents of the screen). The LOAD
instruction can be executed within a
screen; in this way, a single LOAD
command can control the compila­
tion of large source programs.

This disk-based file system allows
any part of the disk to be read or
written with a single access . Load
screens or data areas can be saved by
name, and portions of the disk can be
protected by redefining the names of
a few input and output operations so
that they check before writing andl or
reading.

The disadvantage of this system is
that there is no directory; when a new
disk is inserted, the user or the pro­
gram must know the block numbers
for load screens and data files . Also,
FORTH source programs are tradi­
tionally stored without tabs or trun­
cation of blank lines, making white­
space (ie: unused area on a line) and

S::?uS/':;~· 1
o ACCOUNTS PAYABLE - Tracks current and aged
(9 payables and incorporates a check writ ing feature .
t Mainlains a complete vendor lil e with information on

purchase orders and discount terms as well as active
account stEitus. Produces reports as follows: Open
Voucher Report, Accounts Payable Aging Reporl and
Cash Requirements. Provides input to PEACHTREE
General Ledger. Supplied in source code for Micro­
sort BASIC .. $990/$30

o ACCO UNTS RECEI VABLE - Generates InvoIce legis­
@ ter and complete monthly statements. Tracks current
t and aged receivables. Maintains customer file includ-

ing credil inlormation and account status. The cur­
rent status of any customer account is instanlly avail­
able. Produces reports as foll ·Jws: Aged Accounts
Receivable, Invoice Reg ister, Payment and Ad just­
ment Register and Customer Account Status Report.
Provides input to PEACHTREE General Ledger. Sup­
plied in source code for Microsoft BASIC .. $990/$30

D PAYROLL - Prepares payroll for hourly. salaried and
(9 commissioned employeos. Generates monthly. quar­
t terly and annual returns. Prepares employee W-2's.

Includes tables for federal withholding and FICA as
well as withholding for aJi 50 states plus up to 20
cities from pre-computed or user generated tables.
Will pr int checks, Payroll Register. Monthly Summary
and Unemployment Tax Report. Provides input to
PEACHTREE General l edger. Supplied in source
code for Microsoft BASIC. . .$990/$30

o INVENTORY - Maintains detailed Information on
@ each inventory itom including part number. descr lp­
t tion, unit of moasure, vendor and reorder data, Item

activity and complete information on cu rrent Item
costs, pricing and sales. Produces report s as follows:
Physical Inventory Worksheet, Inventory Price List,
Dopartmental Summary Report, Inventory Status Re­
port, The Reo rder Report and the Pe riod-to-Date and
Year-to-Date reports. Supplied in source code for
Microsoft BASIC . . .$11 90/$30

GRAHAM -DORIAN SOFTWARE SYSTEMS

o Comprehensive accounting software wr i tte n in
CD CBASIC-2 and supp lied In source code . Each soft­
@ ware package can be used as a stand-alone system
t or inlegrated with the General Ledger for automatic

posti ng to ledger accounts. Requires CBASIC-2.

GENERAL LEDGER.. . . .$995/$ 35
ACCOUNTS PAyABLE $995/$35
ACCOUNTS RECEIVABLE . . .$995/$35
INVENTORY SYSTEM $5901$35
JOB COSTtNG $9951$35
APAR TMENT MANAGEMENT .$590/$35
CASH REGISTER .$590/$35

o ~OSTM~STER - A comprehe nsive package for mail
@ list mamtenance that is comp letely menu driven.

Features include keyed record extraction and label
, I ... \ .1 production. A form leller program is included which
f'JiP3£P": ~ provides neat letters on single sheet or continu­/#/ ou s form s. Compatible with NAD files. Requires
'\~ CBASIC-2 $150/$15

STRUCTURED SYSTEMS GROUP

o GENERAL l ED GER - Interactive and lIexlble syslem
t providing proof and report outputs. Customizat ion of

COA created interactive ly. Multiple branch account­
ing centers. Extensive checking performed at data
entry for proof, COA cormctness, etc. Journa l entries
may be batched prior to posting . Closing procedure
automatically backs up input flies . Now inc ludes
Statement of Changes in Financial Position. Requires
CBASIC-2 ... $1250/$25

o ACCOUNTS RECEIVABLE - Open item system wllh
t output for internal aged reports and customer-ori­

en ted statement and billing purposes. On-line En­
quiry permits information for Customer Service and
Credit departments. Interface to General Ledger pro­
vided if bolh systems used. Requires CBASIC-2.

.. $1250/525

o ACCOUNTS PAYABLE - Provides aged statements
t of accounts by vendor wilh check writing for solected

invoices. Can be used alone or with General l edger
and/or with NAD. Req uires CBASIC-2 $1250/$25

o PAYROll - Flexible payro!1 system hand les weekly.
t bi-weekly, semi-monthly and monthly payroll periods.

Tips. bonuses, re lmbursemonts, advances, sick pay,
vaca tion pay, and compensation lime are all par t of
the payroll records. Prints government required per i­
odic reporls and will post to multip le SSG Genera l
Lodger accounts. Requires CBASIC-2 and 54K of
memory $1250/$25

o INVENTORY CONTROL SYSTEM - Performs control
t functions of adding and dep leti ng stock items, add­

ing new items and de leting old items. Tracks quantity
of items on hand, on order and back-ordered. Op­
tional hard copy audit trail is available. Reports In­
clude Master Item List, Stock Ac tivity, Stock Va lua­
tion and Re-order list. Requires CBASIC-2 $1250/$25

o ANALYST - Customized data entry and reporting sys­
t tem. User specifies up to 75 data Items per reco rd.

Intoractive data entry. retrieval, and update facility
makes information management easy. SophIsticated
report genc ralor provides customized reports using
selected records with mulliple level break-paints for
summarizat ion . Requires a disk sort utility such as
aSORT, SUPER-SORT or VSORT and CBASIC-2.

... $250/ $15

o LETTERIGHT - Program to create, edit and type let­
ters or other documents . Has facilities to enter, dis­
play, delete and move text, with good video screen
prosentetion . Designed to Integrate with NAD for
form leiter mailings. Requires CBASIC-2 . $200/$2 5

o NAO Name and Add ress selection system - Inte rac·
tive mail list cfeation and maintenance program with
output as full reports with reference data or restricted
information for mail labels. Transfer system for ex·
traction and transfer of selected records to creale
new files . Requi res CBAStC-2 . . $100/$20

o a SORT - Fasl sort/ merge program for files with fixed
record length, veriable fie lr! length Information. Up to
five ascending or descending keys. Full back-up of
inpu t files crealed $100/$20

,.'~~.,;,~~ •..... ~

NEW! NEW! NEW! "" '­
NEWSLETTER
FROM LIFEBOAT
• Latest Version

Numbers LIst " 01 Sottware

• Update on ~ ~
CPIM Users Group

• The Gr. a' ZOSO Speaks
Out (rom Behind the Scenes

$18 ppd. lor 12 issues (U.S. , Canada,
Mexico). Elsewhere $40.
Send Check to "Lifelines," 1651 Th ird Avenue,
New York, N.Y. 10028 or use your VISA or
Masfercharge-call (212) 722· 1700

Copyright e 1980 Lifeboat Associates. No
portion of this advertisement may be repro­
duced without prior permission.

** ** ** ** CONDIMENTS
o HEAD CLEANING DISKETTE -Cleans the drive Read/

Write head in 30 seconds. Diskette absorbs loose
ox ide part ic les, f inge/p rlnts, and other fore ign pa rl i­
cles that might hinder the performance of the drive
head. Lasts at least 3 ·months wllh dally use. Specify
5" or 8".
Sing le sided . . . $20 each/$55 for 3
Double sided . $25 each/,55 lor 3

o FlIPPY DISK KIT - Temptate and Inst rucllons to
mod ify single sided 5V4 1/ dIskettes for use of second
side in single sided drives ... $12 .50

o FLOPPY SAVER - Protection for center holes of 5"
and 8" floppy dIsks . Only 1 needed pe r diskette. Kit
contai ns centeri ng post, pressure 1001 and tough
7 mil mylar reinlorcing rings for 25 diskettes.
5", Kit , . . $14.95
5", Rings on ly. $1.95
8", Kit $16.95
8", Rings on ly $e,95

o PASCAL USER MANUAL AND REPORT - By Jensen
and Wirth. The standard textbook on the language.
Recommended for use by Pasca l/Z, Pascal/M and
Pasca l/MT use rs . . $12

o THE C PROGRAMMING LANGUAGE - By Ke rnighan
and Ritchie . The standard tex tbook on the language.
Recommended for use by BOS C, ti ny C, end Whlte­
smiths C users . . $12

o STRUCTURED MICROPROCESSOR PROGRAMMING
- By the authors of SMAl/80. Covers structured pro­
gramming, the 8080/8085 instruction set and the
SMAl/80 language .. $20

o ACCOUNTS PAYABLE & ACCOUNTS RECEIVABlE-
CBASIC - By Osborne/McGraw-Hili . . . $20

o GENERAllEDGER-CBASIC -By Osborne/McGraw-
HIli. $20

o LIFEBOAT DISK COPYING SERVICE - Transfer data
or programs from one media form at to another at s
mode rats cost from $25

** ** **** Hearty Appetite.
' CP/M and MP/M are trademarks of Dlglla l Research.
l80 is a trademark of lllog, Inc.
UNIX is a trademark of Bell Laboratories.
WHATSIT? is a trademark of Computer Headwaro.
Electric Pencil Is a trademark of MIchae l Shrayer
Softwa re.
TRS-80 is a trademark of Tandy Corp.
PascallM is a trademark 01 Sorc im.

tRecommended system configurallon consIsts of 48K
CP/M, 2 lull size disk drives, 24 x 80 CRT and 132
co lumn pr inter.

® Modified version available for use wllh CP/M as im­
plemented on Heath and TRS-80 Mode l I computers.

@User license agreement for this product must be
signed and returned to Li feboat Associa tes be fore
sh ipment may be made.

Ci>@ This product Includes/eXcludes the language manual
recommended in Condiments.

@Serla l number of CP/M system must be supplied wll h
orders.

® Requ ires Z80 CPU.

Ordering Information
MEDIA FORMAT ORDERING CODES
When ordering , please specify lonnal code.

LIFEBOAT ASSOCIATES MEDIA FORMATS LIST
Diskette, cart ridge disk and cartridge tape format codes to ba specif ied
when orderin g so ftwa re for listed computer or dIsk systems. All software
products have specif ic requiremen ts in terms 01 hardware or software
support, such a MPU type, memory size, support operating system or
language.

Compu" r IYl t. m Form. ' Cod.
AII~lr 8800 Olsk See MITS 3200
Alios AI ·
Apple + Mlc rololl SoltCard RG
BASF System 7100 RD
Bl ackh~wk Slngl~ Oenslty 03
Bleckhawk Mlcropolis Mod II 02
CDS Versam, 3B 01
CDS Versallle" 02
COMPAl·eO 02
Cromemco System 3 " t·
Cromemco Z20 Re
CSSN BACKUP (Iepo) TI #
Oell AI·
Ollll-log Mlcrole rm II RO
Digita l Mlcrolyslems .. A' ·
Discus Sec Morrow Discus
OuranllO F_e5 Rl
Dynabylo DB8/2 RI
Dynabyle 086/4 A,.
E_ldy Sorcerer + lIIebolll CP/M • .. 02
Exldy Sorcerer + E_ldy CP/M. : .. 04
Hea lh H6 + HI7IH27 P4
Hlul1h 69 + li feboat CP/M P4
Hoath a9 + Magnolia CP/M P7
HellOS 11 See Procossor TecMology
Horizon SeeNorlh Slar
ICOM 24\1 Mlclo Floppy R3
ICOM 37'2. AI
ICOM 36 12 A' ·
ICOM 4511 SHO Car1/ldg, CP/ M ' .4 01.;:­
ICOM 4511 SHO Carll ldllo CP/M 2.2 02#
IMS SODa. R"
IMS BODO ",.
IMSAI VOP-40 R ...
IMSAI VOP.42 R ...
IMSA I VOP_H RS··
IMSAI VOP-BO Al ..
In locolor See ISC Inlecolor
Intel MoS Single Donslly Al
Inlellec SuperBrsln DOS 0.' R7
Inlertec SuperBraln ODS 0.S·2.X . . . RJ
Inferlec Supe rBraln DOS 3.X RK
ISC Inlocolor a0G3fSJBO/B9G3 A'

~~~I~O~:,:,~I~~~ . ... ... : .... : : .... ~ ~ : .. .... . ::: 
Mlc romallon (Excepl TRS-80 be low) . AI · 
Mlcropolls Mod I .... . .... . 01 
Mlc ropolis Mod II . . . . . 02 
MITS 3200/3202 .. . ...... .. ... ... 8 1 
Morrow Discus . . ............ A' · 
Moslek ..... .. .. .. .. A1 
MSo SY.o" ... .... .. .... .. . .4lC 
Norlh Slar Slnllle Density . ...... . P I 
Norln Slar Double/Oued . . . .. PZ 
NyJac Singia oenslly ...... ... ... . 03 
N~Jac Mlclopolll Mod. II .......... 02 
Ohio Sclenlilic C3 . . . ... . A3 
On~~ CSOOI . . ... . . . .. 12# 
Pertne PCC:rooo . ......... . ... . . . A' · 
Processor Technology HellO. II .. B2 
RAIR Single Denslly . .......... . .. R9 

Prices F.O.B. New Yo rk. 
Sh ipping, handl ing and C.O.D. 
charges extra. 
Manual cost applicable against 
price of subsequent software 
pu rchase. 
The sale of each proprietary 
softwa re package conveys a 
license for use on one 
system only. 

~1iI 

Compllt.r 1, lt.m Formll c odl 
RAIR Double Oen.lly .. . . . RE 
Re.earch M.chln .. a" . . ... ..... . A1 
Rel8l1rch Mechlnn SI4" .RH 
REX ... . .... .. . ...... .... .... ... Q3 
so Syltems a" . .. . . .... . Al · 
so Syslems o5¥.t" .R3 
Sorce rer ......... Sel E. ldy SorCI/er 
Splcaby" ........•.............. A' 
Sup.rBraln ......... . . .. ... Sl8 lntlltlc 
Tllblll .... . . . AI· 
TE l 514" . .. 10 
TEl a" ...... .. A" 
Thlnkel1oy. . 511 Norrow Olscu, 
TRS-80 Modtl l SI4" ..... ... ...... R2 
TRS-80 Model I + FEe Frlldom ... RN 
TRS-eO Model r + Mlcromallon .. . . A' · 
TRS·eO Modell + Oml~lon 5V." . . RM 
TRS·SO Model I + Omlkron a" .... A' 
TRS-SO Model l + Shullleboe,d a" .AI 
TRS·SO Modll 11 ....... ... ....... . A' · 
VDP_40/421U/eO ... . ..... . .. Sle IMSA I 
Vector MZ . .. .. . .. ... . ..... . . Q2 
V. ru1l1e .. ..... . .... S.e COS V. ru1lle 
VI.,. veo 0514" Singi. Den,lly .... . PS 
VI.t. nOD 5V. " ooubl, Oan.l ly .... PO 
Z. nlth Zeg + lIteboet CP/M . .... . P4 
Zanlth leS + M.gnoU . CPIM ... . . P7 

' Slng le-Slde Slngl.·Den,tty dl'~. "' 
.upplled lot 11111 with Oou!lle·Oenlll~ 
and Oouble-Slde e" loll ."Ior lormel 
sy.lema. 

"IMSAI lormata ara ,Ingle d,na lly with 
dltlctoryolf •• t o l zero. 

#A modlalutchetlle ot S25lor ordarlon 
tlpe 10rm.11 TI .nd T2 and 01 S'OO 
101 ordell on dls~ 10rm.11 01 and 0 2 
will ba addad. 
The lIat 01 eyollebta lormet. II lubJlct 
to ch.nglwlthout nolici . In cua of un­
cert llnly. c l ilio confirm th. IOlmel codo 
for any p,rllcul ll r uqulpmenl. 

• 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

space for comments costly in disk 
space and load time, discouraging 
good program layout. For these 
reasons, there is increasing interest in 
changing to a directory file system. 
Perhaps it will be written on top of 
the screen system currently in use . 

The most important criticism of 
FORTH is that its source programs 
are difficult to read. Some of this 
impression results from unfamiliarity 
with a language different from others 
in common use. However r much of it 
results from its historical develop­
ment in systems work and in read­
only-memory-based machine control, 
where very tight programming that 
sacrifices clarity for memory 
economy can be justified. Today's 
trend is strongly toward adequate 
commenting and design for readabili­
ty. 

FORTH benefits most from a new, 
different programming style; tech­
niques blindly carried over from 
other environments can produce 
cumbersome results . Most FORTH 
programmers seldom use named 
variables; they use the stack instead 
so that the implicit commenting nor­
mally available through choice of 
variable names is only provided 
through comments and user-defined 
operation names. Single definitions 
that would have more than about 
three unrelated numbers on the stack 
at anyone time are best split into two 
or more operations; most program­
mers learn to keep their definitions 
short. 

FORTH enforces ex treme 
modularity, so the decomposition of 
each task into component parts is 
critical. Top-down design is especial­
ly important. Large jobs should be 
written as application-oriented 
libraries of operations to make team­
work and maintenance easier. A 
much larger fraction of the total pro­
gramming effort is spent on design, 
with less on coding and debugging. 
For these and other reasons, FORTH 
creates its own issues of style, which 
are only beginning to be explored. 

A Taste of FORTH 
FORTH is an interactive language 

best explained by example. Because 
of this, a series of listings (listings 1 
thru 10) with fairly detailed explana­
tions make up the rest of this article. 
In the listings that follow, underlining 
denotes user keyboard input. 

August 1980 © BYfE Publica tions Inc 10~ 



FORTH uses punctuation in some of its 
words, which makes representing them in 
text a difficult problem. For example, one 
FORTH word is n, which could be taken 
to mean one of several character combina­
tions. (For your information, the word has 
three characters and is made from a left 
parenthesis followed by a double quote 
mark and a right parenthesis.) 

phrase of FORTH words (eg: { 26 
LOAD } or { 3 5 + }) 

• . with the FORTH words { . } (period), 
{ , } (comma), { : } (colon), { ; } 
(semicolon), { ? } (question 
mark), { ! } (exclamation 
point), { , } (single quote mark), 
and { " } (double quote mark) 

• with any word using the above punctua­
tion marks (eg: { $. } or { ." } ). To decrease the chance of confusion 

while trying not to clutter text unnecessari­
ly , we will sparingly use braces, { }: to 
isolate the character string within as a 
FORTH word or phrase. (For example, the 
above word would be written { n } .) 
Braces will be used only under the follow­
ing situations: 

All other FORTH words will be set apart 
by a space on either side of the word. So, in 
this and other FORTH articles in this issue, 
braces will always signal a FORTH word or 
phrase. The braces are not part of the word 
or phrase, and FORTH words will never 
use braces within the body of a figure or 
listing .... GW • when the material being quoted is a 

64KB RAM MEMORIES 
LSI-ll - $750.00 • SBe 80/10 - $750.00 

S-100 - $750.00 • 6800 - $750.00 • 6800-2 - $995.00 

CI-680o-2 64K X 9 

CI-S100 64K X 8 

CI-1103 32K X 16 

CI-6800 64K X 8 

CI-8080 64K X 8 

CI-6800-2 - 16KB to 64KB. Plugs 
directly into Motorola's EXORciser lor 
II. Hidden refresh up to 1.5 Mhz . Cycle 
stealing at 2 Mhz. Addressable in 4K 
increments with respect to VXA or 
VUA. Optional on Board Parity. 64K x 9 
$995.00. 

CI-S100 -16KB to 64KB. Transparent 
hidden refresh. No wait states at 4 Mhz. 
Compatible with Alpha Micro and all 
Major 8080,8085 and Z80 Based S100 
Systems. Expandable to 512 K bytes 
thru Bank Selecting . 64K x 8 $750.00. 

CI-1103 - 16KB to 64KB on a single 
dual height board. On board hidden 
refresh. Plugs directly into LSI 11/2, 
H11 or LSI 11/23. Addressable in 2K 
word increments up to 256 K Bytes. 8K 
x 16 $390.00. 32K x 16 $750.00. 

CI-6800 - 16KB to 64KB on a single 
board. On board hidden refresh. Plugs 
directly into EXORciser I and compati­
ble with Rockwell's System 65 . 
Addressable in 4K increments up to 
64K. 16K x 8 $390.00. 64K x 8 $750.00. 

CI-8080 - 16KB to 64KB on a single 
board. Plugs directly into MDS 800 and 
SBC 80/10 . Addressable in 4K 
increments up to 64K. 16 KB $390.00. 
64K $750.00. 

Test and burned-in. Full year warranty. 

Chrislin Industries, Inc. 
. Computer Products Division 

31352 Via Colinas • Westlake Village, CA 91361 .213-991-2254 

110 August 1980 © BYTE Publications Inc Circle 70 on inquiry card. 

On the Necessity of Using 
Camera-Ready Copy 

Examination of listings 1 thru 10 will 
reveal a variety of typefaces used. This 
variety is present because each listing 
was created by the printer of the 
system producing the listing. Such 
listings are called camera-ready copy, 
which means that we can reproduce 
them in BYTE without inadvertently 
adding the errors that creep in with the 
retyping of a listing. Contributors to 
BYTE and onComputing are strongly 
encouraged to submit camera-ready 
listings made with a fresh ribbon, since 
this helps us to improve the accuracy 
of the article. 

Listing 1: FORTH as a calculator. FORTH 
is easy to approach because it can be used 
as a calculator. Here , the programmer has 
not defined any new operation but has 
used addition, multiplication, and print 
(the dot means print) . These are three of 
about one hundred operations that are 
available when FORTH first comes up. 
Programming consists of defining new 
operations which can be custom designed 
for a particular task or ' a particular 
industry. 

FORTH uses postfiX (also called RPN or 
reverse Polish notation) arithmetic, which 
is best known from its use in Hewlett­
Packard calculators. In postfix notation, 
the operations are written after their 
arguments, not between them. The text of 
this article shows how postfix notation 
works, using a data structure called the 
stack, and it explains the formulas in this 
example. \ 

Postfix notation, which does not use 
parentheses, is more general than 
ordinary arithmetic notation . Its biggest 
advantage is that it greatly simplifies the 
writing and calling of subroutines. 

In these examples, underlining indicates 
what the user has typed on the terminal. 
FORTH does not process the line until 
you type a carriage return. The OK 
prompt means that the system has com­
pleted its work and is ready for new input 
from the user. 

2 3 + . 5 OK 
~ 7 + * 117 OK 

Listing 2: Changing number bases. 
FORTH can work in different number 
bases and can change any time, so it 
serves as an octal/hexadecimal / 
binary/ decimal calculator within the 
limits of 16-bit numbers (or 32 bits for 
double precision). The FORTH word HEX 
converts FORTH into a hexadecimal 
machine, and all numbers are printed in 

Listing 2 continued on page 112 



Circle 72 on inquiry card. 

ELCOMP 
.Books 

Core .nd Feedinl of the Commodore PET 
Eight chapters elploring PET hardware . Includes repair and mterfacing in· 
lormation. Programming tr icks and schematics , 
Order No. I~O $11.00 
8K Microsoft BASIC Reference Manual 
AuthOrita tive refe rence manual lor the origina l Microso ft 4K and 8K BASIC 
deve loped 101 Altair and laler compulers including PET. TRS·80. and OSI. 
OSI owners pl ease take note! 
Order No. I~I S 9.9~ 
E.p.nsion H.ndbook for &~02 .nd &802 
(S·44 Card Manual ) Describes all 01 the 4.5.6.54 4 pin S· 44 cards Inct. 
RAM . ROM . dig. 110. MUX/A to D. EPROM Prog. elc. Wilh schemalics alld 
luncl. destrlptions. A must lor ellery KIM . SYM and AIM owne /. 
Order No. 1~2 S 9.9~ 

Microcomputer Application Hotes 
Replln! ollotels ' most important application noles . including 2708. 8085. 
8255. 8251 chips. Ve ry necessary lor the hardware buN. 
Order No. 1~3 S 9 .9~ 

Comple. Sound Generation 
New. reV ised appl icat ions manual lor the Texas Instruments SN 76477 
Complex Sound Generator. CirCUit board available ($8,95) 
Order No. 1~4 S 6 . 9~ 

Small Business Programs 
Complete programs lor the bUSiness user. Mailing l iSt. Inventory. InVOice 
Writing and much more. Introduchon Into BUSiness Appllcallons. Many 
IIslmgs 
Order No. 1~6 $14.90 

The First Book of Ohio Scientific, Vol. I 
Contains an introduction to personal computers and desCflbes the OhIO 
SCient ifiC line. Conta in s explanatory diagrams: block. hook-up. expan 
sian. tricks . hints and many Interesting li st in gs. Hardware and soitware In · 

lormatlOn not preVious ly available In one compact sou rce . 192 pages 
Order No. 1~7 S 7 . 9~ 

The First Book of Ohio Scientilic, Vol. 1\ 
Vol \I contains very val uable mlormation about OhiO SClenllfic mlCfocom 
puter systems. Int/oductlon to OS·650 and OS65·U. networking and diS 
tflbuted processing. systems specl flcallons. bUSiness applications. hard 
and soltwafe hints and tipS . 
Order No. 1~8 S 7.9~ 
Mailing list Program lor Challenger CIlt2 8t( 
Order No. 2004 . Personal Version 
Order No. 2005 . Business Version 

Ohio Scientific Expansion Information 

S 9 . 9~ 

S 9 . 9~ 

Conversion of CIP (Cassette) to 52x26 display Detailed slep by slep 10 

sl ruchons fOf doublmg Ihe CIP speed and display slle' 
Order No. 110~ S12.00 
Importanl Software lor C8M 16K/32K 
Mos t powerlul Editor /Assembler lor Commodore CB M 16f32K on casse tte. 
Very last~ Edllor diVides sc reen 1010 3 parts . Scrolling tex t Window. 24 
direct commands. 19 seftal commands. sla tus and error messages. As 
sembler can be started directly hom the editor or fr om the lIM ·monltor 
Translates 10 three passes If an error IS encoun tered. automahc return to 
Ihe ed ilor . Cassette With DEMO 
Order No . 3276 S69.OO 
AnElfTlON APPLE USERS 
Same as above lor Apple lJ or Appte II plus. 
Order No. 3~00 S89.00 
MONJANA/ I makes Machine language Programming easy! 
In every Commodore CBM there IS a spare ROM socket waiting 101 11 5 

MONJANAIi The new MONJANAII Machine language Momtor m ROM 
offers more user gUidance and debuggmg aids than any other moMor 
avaIlable today It I ~ mdlspensable for anyone mtendmg 10 take full ad 
vantage at the compu tefs features I race . Imk. disassemble. dump . relo 
cale. Ime assemble and much more [vel Y command function has de 
mand prmtout option Prrce mctudes extenSive manual 
Order No. 2001 S98.00 
JANA-Monilor on cassette for the PET 
Similar to MONJANAII very powerlul 
Order No . 2002 m.oo 

ELCOMP PUBLISHING Inc. 
3873-L Schaefer Ave .. Chino CA 91710 (714) 591.3130 

Pt etlse send me the books software mdlcated below 

o 1 enclose S _________ ._ sen d pos tpa,d 

o Send COO IS\ "'ral 

o Charg. my 0 VISA 0 Mastercharge 
Accl No ___ . __ _ _ ________ ~_ 

['PI; dale _ ___ Srgnalule 

BOOk No Book No Soltware No 

o 1 Year SubsCllpllOn to (l COMP Newsl~tter $9 !So 
Phone 

State 

CA ddd 6<1" sales tal We dt ~o accept f ur o\che c ~ All order ~ Ouh rd f' USA 
rnu ~ 1 add 15"0 shlprrng 

112 August 1980 © BYTE Publicat ions Inc 

Listing 2 continued: 
hexadecimal until some other operation 
changes the base again. FORTH always 
begins a session in decimal radix. 

The operations DECIMAL and HEX are 
built into the system; OCTAL, 
BINARY, and TRINARY (base 3) are 
not. So when OCTAL was first used, the 
error message { OCTAL ?} indicated 
an undefined word; that is, the system did 
not recognize the word OCTAL . In the 
next line, the user defined OCTAL (line 
6). This example illustrates FORTH's 
extensibility; users can extend the 
language to include new operators . 

Incidentally , the second error message 
{ 12885 ?} in line 12 resulted because 
the system was in binary (from the line 
above) , and, in binary, numbers must 
contain only the digits 0 and 1 , so 12885 
was not recognized as a number. It was 
treated as a word, and, because there was 
no operation named 12885 , the error 
message was generated. 

OCTAL and the other number-base 
operations work by giving a new value to 
BASE, a variable used by the system. 
Defining new operations is more fully 
explained in listing 3. The { ! } operation 
(store) is explained later. 

Number bases only affect input and 
output. All internal computation is in 
binary, so there is no speed penalty for 
using nondecimal numeric bases . 

HEX OK 
~8 C8 + 3C60 OK 
25 2F * 6CB OK 
DEC IMAL 1348 HE X 544 OK 
DECIMAL 1348 OCTAL. OCTAL 
: OCTAL 8 BASE ! . OK 
DEC IMAL 1348 ocTAL 2504 OK 
DEC IMAL OK 
: BINARY 2 BASE OK 
: TRINARY 3 BASE! ; OK 
12885 BINARY. 11001001010101 OK 
12885 BINARY. 12885 ? 
DECIMAL 12885 8INARY . 11001001010101 OK 
DEC IMAL 12885 OCTAL. 31125 OK 
DECIMAL 12885 HEX. 3255 OK ' 

' DECIMAL 12885 TRINARY . 122200020 OK 
DECIMAL -1 2885 TRINARY . -1 22200020 OK 
DEC IMAL OK 

NUMBER N TRUE BRIINCH: 
ON TOP f-IS TEST;(D EXECUTED IF 
OF STACK HERE N* 0 

l ,.----- ----, 
N IF ABC I 

---+-FALSE BRANCH: 
ELS E DEI EXECUTED IF 

I I N= 0 
I THEN I L _______ ---1 

(a) 

r-------, 
I . I N IS ASSUMED I 

Q) .... I--------il TO BE ON TOP I 
I OF STACK I L _______ .J 

FALSE(=O) 

(b) 

Figure 2: An exp lanation of the 
IF . . . ELSE ... THEN construct . (See 
listing 4.) As shown in figure 2a, the por­
tion of code executed depends on the 
value of the number on top of the stack 
when the word IF is encountered. If we 
call this number N and say that the 
number has a boolean value of true if its 
numeric value is nonzero and false if 0, 
then figure 2b gives the equivalent con­
struct to figure 2a in conventional 
flowchart notation . Here and in figures 3 
thru 5, the dotted box indicates the boun­
daries of the construct (as opposed to 
values assumed to be on the stack). 

Listing 3: Defining new operations. Here , a new operation CUBE is created. CUBE 
replaces whatever number is on top of the stack with the cube of that number. The 
statements within the parentheses are comments. 

Th e colon , { : L begins a FORTH word definition ; the word following it is the name 
being defined. Semicolon, { ; }, ends the definition. 

The new word CUBE will first execu te DUP, which duplicates the number on top of 
the stack, making a second copy. The second DUP leaves three copies. The first * causes 
the top two copies to be replaced by the square of the number; the next * computes the 
cube, and then all three copies of the original number are gone, leaving the cube of the 
number on top of the stack. 

This colon definition shows one of several ways to create new words in FORTH. 
Most words that appear inside the definition are compiled and not executed immediate­
ly . 

All words and numbers in FORTH are separated by one or more blanks (and/ or car­
riage returns). FORTH operation names can be up to thirty-one characters long and can 
consist of letters, numbers, or any other characters. For example, an operation name 
could be a number, or it cou ld be nonprinting characters only. In practice such names 
are rarely used, but they illustrate the flexibility that is available. 

Listing 3 continued on page 114 



Circle 73 on inquiry card. 

CHOOSE ... 
Choose an Apple Desk 

A compact bi·level desk ideal for an Apple 
computer system. This 42"x 31W' desk comes 
with a shelf to hold two Apple disk drives. The 
top shelf for your TV or monitor and manuals 
can also have an optional paper slot to accom· 
odate a printer. 

Choose a Micro Desk 

Get your micro computer off the desk top and 
into the micro shelf under our Designer Series 
desks. Suitable for the North Star, Dynabyte, 
Vector Graphics, and Altos computers. The 
desks come in a variety of sizes and colors. 

Choose a Mini Rack 

Mini racks and mini micro racks have standard 
venting, cable cut outs and adjustable RETMA 
rails. Choose a stand alone bay or a 48", 60", 
or 72" desk model in a variety of colors and 
wood tones. A custom rack is available for the 
Cromemco. 

Choose a Printer Stand 

The Universal printer stand fits the: 

Centronics 700's Diablo 1600's & 2300's 
DecLA34 T.1.810&820 
NEC Spinwriter Okidata Slim line 
Lear Siegler 300's Anadex 9500'5 

Delivery in days on over 200 styles and colors 
in stock. Dealer inquiries invited. 

ELEC:TRONIC: S':ISTEMS 
FURNITURE 

C:OMPAN':I 

17129 S. Kingsview Avenue 
Carson, California 90746 
Telephone: (213)538·9601 

114 August 1980 © BYTE Publications Inc 

Listing 3 continued: 
This listing shows CUBE being executed from the terminal . It can also be used as a 

component in further definitions . A fundamental property of FORTH is that operations 
defined by users are indistinguishable from those which were originally part of the 
system. 

: CUBE ~ N -> N. CUBE A NUMBER~ 
ouP DO (NOW THERE ARE THRE COPIES) 
* * ( GET THE CUBE) 
. OK 

5 cUBE 125 OK 
- 28 CUBE - 21952 OK 
HEX 17 CUBE BINARY DECIMAL 10111110000111 OK 

Listing 4: Conditional branching. The IF .. . THEN is for conditional execution. IF takes 
one argument off of the stack; this argument is interpreted as a boolean or truth value, 
w ith 0 meaning fals e and any nonzero value meaning true . If true , any statements be­
tween the IF and THEN are executed. In either case, execution continues after the 
THEN , which terminates the conditional. There is also an optional ELSE clause that is 
executed only if the argument is false. (See figure 2.) 
. Here, th e true-clause contains only one word, MINUS , but it could contain alm ost 

any FORTH statements, including other conditionals and loops nested to any practical 
depth. These statements run fast because they are compiled into a form of object pro­
gram called threaded code. 

Incidentally , the FORTH word 0< returns a boolean value indicating whether its 
argument (the number on top of the stack) is less than zero. The DUP is necessary 
because 0 < follows the FORTH convention that operations should destroy their 
arguments on the stack. MINUS reverses the sign of its argument (the top stack 
number). 

Items in parentheses are comments. The comment "N - > N " in the first line is to 
show that this operation takes one number off of the stack and returns one nJmber to it. 
Perhaps the most important information to put in the comments accompanying each 
new operation is what arguments it takes off of the stack and what results it returns to 
the stack. 

ABSOLUTE-VALUE N -> N. ABSOL UTE VALUE 
OUP 0< GET BOOLEAN TRUE IF NEGATIVE 
IF MINUS THEN ( NEGATE THE NUMBER IF TRUE) 

.i... OK 
10 ABSOLUTE-VALUE 
-5 ABSOLUTE-VALU E 

10 OK 
. 5 OK 

Listing 5: The DO . .. LOOP, a s tructu red loop with a counting index. DO takes two 
arguments from the stack, the initial value of the index (on top) and the final value plus 
1. (See figure 3.) These indices are written in reverse order from most other languages, 
making the loop terminating value (wh ich is more often passed as an argument) more 
accessible on the stack. 

CR simply performs a carriage return. In this example, the index values are literals (10 
and 0) , but they can also corne from va riables or from computations of any complexity; 
anything that gets the indices onto the stack is legitimate. 

This listing also shows a timing benchmark; the word TIME- TEST does 30,000 empty 
loops. On an Apple II running FORTH, TIME-TEST executes in less than 4 seconds. In 
Apple Integer BASIC (which is a fast BASIC), 30,000 empty loops take 40 seconds. 

l~CUBES o 0 ( 
DO ( 

CR I 
LOOP 
. OK 

lOC-ITBES 
-0-0--
1 1 
2 8 
3 27 
4 64 
5 125 
6 216 
7 343 
8 512 
9 729 OK 

\ ->. PRINT A TABLE OF CUBES OF 0-9) 
NOlCE S OF LOOP) 

START LOOP) 
I CUBE . PRINT A NUMBER AND ITS CUBE 

END OF LOOP 

: TIME-T EST 30000 0 DO LOOP OK 
TIME- TEST OK 



Circle 74 on inquiry card. 

SA VE MORE THAN 20070 
NORTH STAR-INTERTUBE-MICROTEK 

ZENITH-HEATH-ITHACA 
THINKER TOYS-GODBOUT -SOFfW ARE 

The smartest computers at the smartest price 

FACTORY ASSEMBLED & TESTED LIST ONLY 
HORllON·I·16K·DOUBlE DEN KIT SPECIAL $1269 
HORllON·I ·32K·OOUBlE DEN KIT $1999 1575 
HORllON·2·32K·DOUBlE DEN KIT 2399 1879 
HORllON·I ·32K·OOUBlE DEN 2695 2129 
HORIZON·2·32K·DOUBlE DEN 3095 2435 
HORllON·2·32K·QUAD OENSITY 3595 2839 
HORIZON·2·64K·QUAD+HARO DISK 9329 7229 
HORIZON MEMORY 16K 389 32K 579 
NORTH STAR HARD DISK 18 Mb 4999 3949 
PASCAL FOR NORTH STAR ON DISK 199 190 
Powerful NORTH STAR 8ASIC •. The Best. . . . . ... . .. . FREE 
2 NORTH STAR SOFTWARE DISKS w/HORIZON .. .. .. . FREE 
NORTH STAR BUSINESS PROGRAMS & NORTHWORD,PHONE 
COLOR! RAINBOW·2000 & CAT· I 00 PHONE 
ITHACA FRONT PANEL COMPUTER 64K 2885 2449 
Z-BOOO CPU CARD 16·bit ITHACA S·I 00 PHONE 
ITHACA MEMORY 8/16·bit PHONE 
8086 CPU 16 bit 10xiaster SEATTLE COMPUTER 
SEATTLE COMPUTER MEMORY PHONE 
SSM Z·80 CPU, VIDEO BOARD, MEMORY PHONE 
MEASUREMENT MEMORY 64K A & T 4mHz 650 
JAWS MEMORY 64K A & T 4mHz PHONE 
GOOBOUT MEMORY - Static, Super Selection & Price 
THINKER TOYS DlSCUS/2D A & T 1199 975 
THINKER TOYS HARD OISK 26 Mb 4995 4149 
DISCUS/2 + 2 1.2 Mbytes A & T 1545 1285 
THINKER TOYS SUPERRAM PHONE 
DELTA COMPUTER & DISK DRIVES PHONE 
TARBELL COMPUTERS & DISK DRIVES PHONE 
INTERTUBE II SMART TERMINAL 995 725 
ZENITH·HEATH SMART TERMINAL Z·19 A & T 795 

ZENITH COMPUTER·TERMINAl·DlSK Z·89 
CAT NOVATION MODEM 
MICROTEK PRINTER 
AXIOM PRINTER 
ANADEX PRINTER 
NEC PRINTER Fast Typewriter Quality 
SECRETARY WORD PROCESSOR The Best! 

2595 2195 
179 169 
795 725 
795 695 
995 865 

2915 2799 
85 77 

TEXTWRITER III Book Writing Program 125 112 
GOFAST NORTH STAR BASIC Speeder Upper 79 71 
PDS Super Z·BO ASSEMBLER & More 99 89 
COMPilER FOR NORTH STAR $150 w/PDS & HDS 90 
EZ·BO MACHINE lANGUAGE TUTORIAL $25 HDS 40 
EZ·CODER Translates English to BASIC 79 71 
ECOSOFT FUll ACCOUNTING PKG 350 315 
DATABASE, THE SOURCE 90, CROSS ASSEMBLERS-CALL 
BOX OF DISKETTES 29 IN PLASTIC CASE 30 
Which Computers are BEST? BROCHURE .. . . ... . .. .. FREE 
North Star Documentation refundable w/HRZ 20 
ORDER 2 or more COMPUTERS .... BIGGER DISCOUNTS 

FACTORY ASSE.MBLED & FACTORY WARRANTY 

AMERICAN 
SQUARE COMPUTERS 

KIVETT DR • JAMESTOWN NC 27282 
(919)-889-4577 

116 Augu, t 1980 © BYTE Publicat ions Inc 

Listing 6: The BEGIN ... UNTIL loop. This loop takes one argument, a truth value, 
usually computed within the loop, at the end. If it is false (0), control branches back to 
the corresponding BEGIN ; if the v alue is true (nonzero), the loop ends, and control 
transfers to the next word in the program. (See figure 4.) 

Note that the test of the value on top of the stack occurs at the end of the body of the 
loop; this guarantees that the body of the loop will be executed at least once. 

The word = removes the top two numbers from the stack and returns a truth value 
of 1 if they are equal, 0 otherwise. In this example, the index stays on the stack and is 
duplicated before each use. The DROP at the end throws away the top stack value: this 
prevents the used index from cluttering the stack. 

The warning message "l OCUBES ISN'T UNIQUE" notifies us that the same name has 
already been defined. The on ly penalty for reusing a name is that the former definition 
becomes inaccessible for the rest of the program. Therefore, you do not have to 
remember a list of reserved words in FORTH; if you do not know about a name or have 
forgotten about it, you probably were not planning to use it anyway. But, in case of a 
mistake, the bad definition can be deleted with a FORGET operation, or the source code 
can be changed on disk. 

(Some versions of FORTH use BEGIN .. . END instead of 
BEGIN .. . UNTIL .... GW] 

10CUBES 
o 

1 + 
DUP 

UNTIL 
DROP 
. OK 

lOdrnES 
-0-0--
1 1 
2 8 
3 27 
4 64 
5 125 
6 216 
7 343 
8 512 
9 729 OK 

ITS CUBE) 

Listing 7: Th e BEGIN ... WHILE ... REPEAT loop. This looping structure tests the 
value on top of the stack at the beginning of the loop; because of this, this loop can ex­
ecute 0 times. REPEA T causes an unconditional branch back to BEGIN , and WHILE 
branches out of the loop (just beyond REPEA T ) if the truth-value which it finds on top 
of the stack is false (ie: 0); see figure 5. 

All of these looping and conditional branching structures can be nested within each 
other to any practical depth. Any mismatching can be detected at compile time. Most 
FORTH systems allow these structures only inside colon definitions; they cannot be 
executed directly from the terminal. 

(Some versions of FORTH use : BEGIN . .. IF .. . WHILE or 
WHILE ... PERFORM ... PEND instead of BEGIN ... WHILE .. . REPEAT .... GW] 

lOCUBES 
o 

(-) . SAME, USING 'WHILE' LOOP) 10CUBES ISN'T UNIQUE 
( INITI AL VALUE OF INDEX) 

BEGIN ---our 10 < ( LOOP TEST) 
WHILE 

--C-R DUP . DUP CUBE. PRINT A # AND ITS CUBE 
1 + INCREMEN 

REPEAT 
~ TH ROW AWAY USED INDEX) 
. OK 

lOCUBES 
o 0 
1 1 
2 8 
3 27 
4 64 
5 125 
6 216 
7 343 
8 51 2 
9 729 OK 



1 + ENDING VALUE BEGINNING VALUE 
OF LOOP VA;I~~~~/ OF LOOP VARIABLE 

1 /r---------, 
L B : DO /: 

I ABC I 
I I 
I LOOP i 

r-- -----:-
L
-_ ... • _______ ...J 

LOOP VARIABLE, I, IS INCREMENTED ; 
IF I <L, CONTROL TRANSFERS TO "DO"; 
IF I ~ L, CONTROL TRANSFERS TO FIRST 
WORD AFTER "LOOP" 

(0 ) 

BODY OF LOOP ; WITHIN 
LOOP, FORTH WORD" I" 
HAS VALUE OF LOOP 

,---------------, 
I BEGINNING VALUE OF LOOP IS I cb"' .......... -----i, ON TOP OF STACK; 1 + ENDING 1 I VALUE OF LOOP IS NEXT -TO-TOP I 
L~-.:~~ _________ ..J ,----, 

I I 
I I I I , _________ -, 
I I WITHIN BODY OF LOOP, I 

I FORTH WORD "I" = B B+1 
I ~ "I I ~B+2 ·-· L-1 I I L_~ ________ ~ 

I I 
I I 
I I 
I I 
I I 
L ____ ~ 

TRUE 

(b) 

Figure 3: An exp lanation of the DO ... LOOP construct . As shown in figure 3a, the top 
number on the stack is taken to be the lower limit of the loop variable, I, and the next­
to-top number on the stack is the upper limit of the loop variable + 1. Th e body of the 
loop is shaded, and the loop variable is incremented and tested after the body of the 
loop is executed. Figure 3b gives the equivalent construct in conventional flowchart 
notation. 

CORPORATION 
Suite 14 Ft. Worth , Texas 76133 (817) 294-2510 

CI' M , ~ a '!~II'S 'er cd lf illltm~ rk 01 Dlq,lal Resea rCh Corp 
IRS·80 IS a Icgls lc re d tra demark or R~!lID Shac k. 

118 August '1980 © BYTE Publica tions Inc 

BODY OF LOOP; AT END, 

FLEAVES TRUTH ;VALUE,N, 
ON TOP OF STACK 

r-------~ 
I 

I BEGIN I 

! ABC i 
! UNTIL i 

LN ~;~~~~;-__ J 

IF N=O , CONTROL TRANSFERS TO "BEGIN"; 

IF N#O, CONTROL TRANSFERS TO FIRST WORD 
AFTER "UNTIL" 

FALSE (=0) 

(0) 

r;;-;:-H~-;~~~-l 
r I~ THE TRUTH VALUE, I 
~ N,IS ON TOP OF I 

I STACK I L _______ ...J 

TRUE(#O) 

(b) 

Figure 4: An exp lanation of the 
BEGIN ... UNTIL construct. As shown in 
figure 4a, the body of the loop (shaded) is 
repeated only if the value on top of the 
stack when the word UNTIL is reached is 
false. Figure 4b gives the equivalent con­
struct in conventional flowchart notation. 

Circle 76 on inquiry card. 



APPLEHOR 
APPLEHPLUS 

Shipped direct to you! 

589900 
(Plus Shipping) 

We have orchard fresh Apple 
products ready to ship. Immedi­
ate delivery. Send cash or 
cashiers check for quick ship­
ment. Orders with personal 
checks shipped after bank 
clearance. 

16K UNITS . ..... $899 
32K UNITS . ..... $999 
48K UNITS ..... $1099 
Apple Disk Drive $550 
Pascal Language Card 

$450 
Above plus $20 shipping charge. 
IMPORTANT -No shipments made with­
in the state of Illinois. 

Enclosed $ _________ _ 

For _________ Via U.P.s. 

Ship to: __________ _ 

Name ___________ _ 

Add ress-:-:--=-=c-:=-----::----c-:-:-_.".....,.~ 
(No P.O. Boxes-Street Address Only) 

City ____________ _ 

I 
I 
I 
I 
I 
I 

L.:ta_te Zip -. ----_ ... 
120 August 1980 © BYTE Publications Inc 

Listing 8: An example of FORTH looping. A practical use of FORTH's structured loop­
ing is this terminal output handler. This example is for a PDP-ll; an example for other 
computers would be similar. Address 177564 (octal) is the output status register of the 
console terminal; bit 7 of this address is set when the device is ready to receive a 
character. The ASCII code for the output character can then be placed in address 
177566 (the data buffer register). 

The FORTH word @ (pronounced fetch) does the work of PEEK in BASIC; it treats 
the number on top of the stack as an address and replaces it with the contents of that ad­
dress word. AND does a "bitwise" boolean AND operation . So 
{ 177564 @ 200 AND} indicates true (nonzero) only if bit 7 of the status register is 
set. Until then , the BEGIN ... UNTIL loop does a waiting loop ending on the above 
condition . When the device is ready, the argument that was given to TERMINAL-OUT 
(the ASCII character to be written) is still on top of the stack. { ! } (pronounced store) 
stores the word that is second on the stack into the address that is on top of the stack; 
so { 177566 !} transmits the character to the terminal data buffer register, from 
which it will be written onto the terminal by the hardware of the PDP-ll system. 

The FORTH word ASCII-TEST was written to test the TERMINAL-OUT word. It 
transmits ASCII values for all of the printable character set. 

Listing 9 shows the same device handler, only written in machine-language code with 
a FORTH assembler. 

OK 
nnRL OK 

TERMINRL-OUT (CHRR -). TERHINRl OUTPUT HANDLER I PDP-ill 
BEGIN 177564 @ 200 RND UNTil (WAIT TILL PORT READY) 
177566 i TRR~SHIT TH E CHARACTER) 

OK 
RSCII-TEST (-). TEST HRNDLER - PRINT CHARRCTER SET) 

177 40 ( TRRNSHIT RSCII BLRNK THROUGH '.f) 
DO I TER~INAl-OUT LOOP (OUTPUT THE CHARACTERS) 

OK 
]ECIMRL OK 
RSCII -TEST l'i'%&'().+I-./Oi23456789:;(=)?@RBCnEFGHIJKLM~OP9RSTUUWXYZ[\]A_!RFCD 

EFGHIJKLHNOFeRSTUVWXYZ{:} - OK 

Listing 9: FORTH words defined by machine-language subroutines, for PDP-ll and for 
8080 processors. The operation TERMINAL-OUT-2 behaves exactly the same as 
TERMINAL-OUT defined in listing 8, but it is written in assembly language. FORTH 
assemblers use postfix notation, so address-mode symbols and operation codes (instruc­
tion mnemonics) follow their operands, unlike conventional assemblers. In the PDP-ll 
example (listing 9a), { 177564 200 # BIT, } in line 2 assembles a "bit test" instruction 
that does a logical AND between address 177564 and the literal 200 (# indicates literal), 
setting condition codes. { UNTIL, } assembles a conditional branch back to the cor­
responding { BEGIN, }. The commas are part of the operation names, not punctua­
tion. The word NE tells the { UNTIL, } what kind of conditional bral1ch to assemble. 
There are also { IF, } ... { THEN, } and { IF, } ... { ELSE, } ... { THEN, } operations; 
all these code-level structures can be nested. 

In the 8080 example (listing 9b), the machine-language subroutine sets up a call to the 
character-output routine in the North Star disk operating system. In contrast, the 
PDP-ll example outputs directly to the hardware without using any software outside of 
FORTH. Either approach could be used on either machine, of course, and each has its 
own advantages . 

The word CODE, like { : } (colon, introduced in listing 3) , creates a new definition 
in FORTH's dictionary for the word following it. CODE also sets the number base (to 
octal for PDP-ll and to hexadecimal for 8080), saving the original number base, which 
is later restored by { C; }. CODE also changes the vocabulary, which allows the same 
names to have different meanings in the assembler and in the rest of FORTH without 
confusion. Users can create their own vocabularies and subvocabularies to keep dif­
ferent application libraries separate . 

Many FORTH programmers never need to write machine-language subroutines, so 
they do not need to use an assembler. FORTH assemblers have an unfamiliar postfix 
notation, but they have the advantage of giving immediate feedback. You know right 
away whether an operatiol1 works, with no wait for assembly passes, linking passes , 
and file handling. This interactive assembly greatly speeds program development and 
allows more thorough testing. 

Listing 9 continued on page 122 



Circle 79 on inquiry card. 

CP/M® 
SOFTWARE 

8080 Emulator 
RAID is a software-based system rivaling 
hardware emulators costing thousands .of 
dollars. RAID is absolutely the most ad­
vanced and sophisticated debugging sys­
tem ever developed for a computer. Fully 
symbolic, including labels, operands and 
op-code mnemonics, RAID combines 
real-time and emulation modes in a single 
package. Tracing by prime path, indi­
vidual instructions, subroutines and 
breakpoints is supported. Special feature 
allows emulation and real-time modes to 
function together for high speed emula­
tions. Other features include memory 
search facilities, disk access by track and 
sector, single-step, multi-step, block 
move, user-selectable radix, etc. Over 70 
commands in all. Requires 24K min. 
CP/M®2 system. 

Raid .......... ... . 
Manual only . 

ISISI Conversion 

... . $195 

.. .. $ 25 

ISIS' to CP/M ® conversion utilities permit 
CP/M® users to read or write files to or 
'from an ISIS' diskette. The package con­
sists of three utility programs that read, 
write and display the ISIS' directory. 

ISIS' - CP/M" Utilities . 
Manual only . 

. .......... $160 
. ... $ 5 

Floating Point Package 
'FPP' is a set of 8080 assembly language 
subroutines thaL provide 12 digit BCD 
arithmetic functions for add, subtract, 
multiply, and divide. BCD arithmetic 
means no conversion errors and minimal 
conversion time. Source code is supplied 
on standard 8" diskette. 

FPP on CP/M'" diskette 
FPP on ISIS' diskette ..... . . . . . . 
Manual only 

.'1515 is a trademark of Intel Corporation. 

.... $200 
. .$200 

.... $ 10 

'CP/M'" is a registered trademark of Digital Re­
search. 

@ SOUTHERN 
• COMPUTER 

SYSTEMS, 
Inc. 

586 Shades Crest Road 
Birmingham, AI. 

Send check or money order to: 
P.O. Box 3373 A 
Birmingham, AI. 35205 
Phone: 205933-1659 

122 August 1980 © BYTE Publications Inc 

Listing 9 continued: 

Collectively , { : } and CODE are called defining words because they are used to 
create new FORTH words. There are several other such functions in FORTH, and users 
can also define their own types of defining words, creating new data types or operation 
types; see listing 10. 

CODE TERMINRL-OUT-2 (~HA~ TERMINAL OUTPUT HANDLER, PDP-iil OK 
BEGIN, 171564 20D i BIT! NE UNTIL, (WRIT TilL PORT RERDV) U~ 
S It 177566 nov, (POP FORTH STACK INTO DATA REGISTER) OK 
NEXT, (R 2-!NSTRUCTION MRCRO TO CONTINUE FORTH EXECUTION) OK 
C; (GET OUT OF THE FORTH RSSEMBLER) OK 

OCTAL OK 
ASCI!-TEST-2 (-). PRINT ASCII CHARRCTER SET) 
177 40 (RSCII BLRNK THROUGH '0~) 

DO ! TERMINRL-OUT-2 LOOP (OUTPUT THE CHRRACTERS ) 
---L OK 

]ECIMAL OK 
liSC I I -TEST -2 ; 'H%~' () Of, -, i ih 23456789: ; < = >:'@ABCDEFiJMI ,m NNOPQ~'STU!J~:,YZl j Rt 

(DEFGHIJKLMHOPIR5TUY~XYZ{:} ~ OK 
RSCII-TEST i'tS%&'( )' .,- . ,0123456789:;(=)?@RBCDEFGHIJKL"HOPQRSfUUWXYZ[ \ ]A 'AICD 
EFGHIJKLHNOP~R5TUUW XT Z{:} ~ OK 

n CONSTANT DEV ( DEVICE NO FOR NORT HSTAR DOS I OK 
2000 CONSTANT COUT ( NORTHSTAR DOS CHAR OUT JUM P POINT) OK 
CODE TERMTNAL- OUT- 2 ( CHAR- ) . 8080 WITH NORTH STAR DOS) OK 

H POP ( CHARACTER IS ON STACK , POP TO HL ) OK 
B PUSH ( BC IS INSTRUCTION POINTER , SAVE IT ) OK 
L B MOV ( DOS EXPECTS CHA R IN B REGISTER) OK 
DEV A MV I ( AND DEVICE NUMBER IN ACCUMULATOR ) OK 
COUT CAL L 8 POP NEXT J MP C ; ( DO IT AND CO NTINUE) OK 

Listing 10: User-defined data types. Because this example is longer, it was not typed in 
directly like the others, but was stored on disk with an editor (the editor session is not 
shown here). This example is contained in two disk screens, each of which is a virtual 
block of 1024 bytes (see text). Th e colllll1ands { 58 LIST } and { 59 LIST } print these 
screens. Ti, e lin e 1I 1.lInbers (0 thru 15) are no t part of th e JJrograll7 and are used only by 
the editor. 

This example creates table-lookup sine and cosine routines for integer-degree 
argum ents. The results are accurate enough for most graphics applications, making this 
situation an example of the v ersatility of FORTH, even without floating-point routines. 

The definition of TABLE creates a new data type. When TABLE is executed, it creates 
a new table of numbers taken from the stack; the number on top of the stack tells how 
many items there are in the table. In this case, { 91 TABLE SINT ABLE } creates a 
table called SINT ABLE with ninety-one entries; these entries are the values of the sine of 
0 0 tlml 90 0

, multiplied by 10,000 so that they can be expressed as integers. SINTABLE 
gives the sine (scaled by 10,000) of 0 0 thru 90 0 degrees; SIN does the same, except that 
its argument can be any number of degrees (from -32,768 to 32,767). 

In cidentally, few FORTH programs use as much depth of stack as this one. The 
system used for listings 1 thru 7 limits the stack depth in order to use "page 0" memory 
for speed, so this example wou ld have to be modified to run on it. 

The < BUILDS .. . DOES> construct, which creates the new data type, is one of the 
most advanced concepts of FORTH. Briefly, the < BUILDS part is executed when 
SINTABLE is defined; that is, it creates the table. The DOES> part defines what hap­
pens when SINT ABLE is executed. Once TABLE has been defined, any number of 
tables of varying length can be declared using the word. Similar definitions can create 
special-purpose arrays such as word, byte, or bit arrays, user-defined record structures 
or other data objects, or user-defined classes of operations. {An excellent explanation of 
the words < BUILDS and DOES> is given in Kim Harris' article "FORTH 
Extensibility, " also in this issue .... GW! 

RIG lOOKUP ROUTINES 
ABLE (". N - > • 
(BUILDS 0 DO LOOP 
DOES} SWAP 2 * + ~ 

- WITH SINE *10000 1~~lt ) 
CREATE ' TABLE' DATR TYPE,) 

( COMPILE N ELEMEHTS) 
EXECUTE TABLE LOOKUP) 

Listing 10 continued on page 124 



A War ner Communlca llons 

Compan vCl 

PERSONAL 
COMPUTER 
SYSTEMS 

ATARI® 800™ 
List $1080 

ONLY $849 

'" oJ. a.::; '=' _ e'!\ 

~O" ""IL~~.I&..LR.~~ II!r.I.~ 

- '" .. Q, , Q.. 'I ~ .J<. '-- ~ ..... , .. gO 

- "" I:' V At. A Wi ~ 7 f .... -

AT AR I® 400TM, List $630 

OUR PRICE ONLY $499 
820 PRINTER, List $599.95 . . . ... .... $499 
810 DISK DRIVE, List $699.95 .. . . . .. $589 

--------

• Extended BAS!C Language Call for Price 
• Advance Graphics 
• CRT Built-In Display 
• Magnetic Tape Cartridge for Storage 

CALCULATORS BY 

HEWLETT' PACKARD 

HP-41C Calculator, "A System" . . . $289.95 
HP-32E Scientific w/Statistics .. . $ 53.95 
HP-33C Scientific Programmable ... 99.95 
HP-34C Advanced Scientific 
Programmable .... .. ... .. ...... 123.95 

HP-37E Business Calculator ... ... . 58.95 
HP-67 Handheld Fully Advanced 
Programmable Scientific for 
Business & Engineering .. . ...... 298.95 

HP-97 Desktop wi Built-in Printer .. 579.95 

APPLE II, 16K, List $1195 ....... .. .. $ 989 
32K, List $1395 ....... . . ... ... . .... $1169 
48K . . . . ... . .. .. . . . .. . .. ... .. . . .. . . 1259 

COMMODORE PET . . ... .. Call for Prices 

Prices do not include shipping by UPS. All 
prices and offers are subject to change without 
notice. 

ftvrsonal 
r~Computvr 

Systems 

609 Butternut Street 
Syracuse, N.Y. 13208 

(315) 478-6800 

Circle 81 on inquiry card. 

Listing 10 continued 

5 10800 9998 9994 9996 9976 9962 9945 9925 9903 9877 
6 9848 9816 9781 9744 9703 9659 9613 9563 9511 9455 
7 9397 9336 9272 9205 9135 9063 8988 8910 8829 8746 
8 8660 8572 8480 8387 8290 8192 8090 7986 7888 7771 
9 7660 7547 7431 7314 7193 7071 6947 6820 6691 6561 

10 1428 6293 6157 6018 5878 5736 5592 5446 5299 5151 
11 5000 4848 4695 4540 4384 4226 4067 3907 3746 3584 
12 3420 3256 3090 2924 2756 2588 2419 2250 2079 1908 
13 1736 1564 1392 1219 1045 0872 0698 0523 0349 0175 
14 0000 ( 91 ELEMENTS OF TABLE PLACED ON STACK) 
15 91 TABLE SINTABLE (RETURNS SINE, 0-90 DEGREES ONLY) 
OK 

SCR II 59 
o ( SINE AND COSINE TABLE-LOOPUP ROUTINES) 
i : S180 ( fl -> N. RETURNS SINE, 0-180 DEGREES) 
2 DUP 90 > (IF GREATER THAN 90 DEGREES,) 
:3 IF ,BO SWAP - ENDIF (SUBTRACT FROM 180 ) 

SINTABLE (THEN TAKE SINE) 

6 : SIN ( N -) SINE. RETURN SINE OF ANY NUMBER OF DEGREES) 
7 360 MOD (BRING WITHIN + OR - 360) 
8 DUP O{ IF 360 + ENDIF (IF NEGATIVE, Ann 360) 
9 DUP 180 > (TEST IF GREATER THAN 180) 

iO IF 180 - S180 ~ItWS ( IF SO, SUBTRACT 180, NEGATE SINE) 
11 ELSE S180 ENDIF (OTHERWISE, STRAIGHTFORWARD) 
12 
1:3 : COS ( N - > COS HIE. ) 
14 360 "DB (PREUENT DVERFLOW NERR 32,767) 
i5 90 + SIN; (COSINE IS SINE WITH 90 DEGREES PHASE SHIFT) 
OK 

OK 
58 LORD 59 LOAD OK 
! SUI • 0 OK 
I COS. 10100 OK 
90 SIN. 10000 OK 
45 SIN. 7071 OK 
i SIN. 175 OK 
:361 Slfl • 175 OK 
:[000 SIN. -98if. OK 
HOOO SIN. -9848 OK 
10000 COS. 1736 OK 
-25281 COS. 1564 OK 
32767 SIN. 1219 OK 
32767 COS. 9925 OK 
-1 SIN. -175 OK 
: SINSCALE (N DEGREES -) N. SCALE BY SINE ) 

SIN 10000 *1 (~ULT!PLY, THEN DIVIDE; 32 BITS IN TER"EBIRTEI 
i OK 

100 45 SINSCRLE . 70 OK 
iOOOO 45 SINSCALE • 71)71 OK 
30000 -5 SINSCALE . -2616 OK 



SERIES OF STATEMENTS 
THAT LEAVE A TRUTH 

~~~~O~~~O~:;Z_---, 
I BEGIN A B i
I I
I WHILE D E F I

L~~E~T __ r ____ L_J
N IS TESTED HERE; LBODY OF LOOP,
IF N =0, JUMP TO FIRST EXECUTED IF AND ONLY
WORD AFTER "REPEAT" IF N#-O

(0)

Figure 5: An explanation of the
BEGIN ... WHILE ... REPEA T construct.
As shown in figure 5a, the FORTH words
between BEGIN and WHILE perform
operations that leave a truth value, N, on
top of the stack. The value of N deter­
mines whether the body of the loop (the
words between WHILE and REPEA T) is
performed or not. The loop repeats until
N evaluates to false (N=O). Figure 5b
gives the equivalent construct in conven­
tional flowchart notation.

iB-;;;~~;O~~-'
CO >-----il THE TRUTH VALUE, II

I
N, IS ON TOP OF
STACK I L _______ ...J

FALSE (=0)

(b)

SELECTED BIBLIOGRAPHY

I. Bartoldi , P, "Stepwise Development and
Debugging Using a Small Well-Structured In­
teractive Language for Data Acquisition and
Instrument Control," Proceedings of the In­
ternational Symposium and Course on Mini­
and Microcomputers and their Applications,

Acta Press, Anaheim CA, 1976, pp 117-122.
2. Ewing, M S, The Caltech FORTH Manual,
California Institute of Technology , Pasadena
CA, 1978.
3. Forsley , L, URTH Tutorial, University of
Rochester , Rochester NY.

4_ Hicks, S M, "FORTH's Forte is Tighter
Programming ," Electronics , March 15, 1979,
pages 114 thru 118.
5. James, J S, "FORTH for Micro
computers," Dr Dobb's Journal of Computer
Calisthenics & Orthodontia, May 1978;
reprinted in SIGPLAN Notices (Special In­
terest Group on Programming Languages of
the Association for Computing Machinery),
October 1978.
6. Meinzer, K, " IPS, an Unorthodox High­
Level Language, " BYTE, January 1979,
pages 146 thru 159.
7. Moore, C H, " FORTH : a New Way to Pro­
gram a Computer," Astronomy and
Astrophysics Supplement, 1974, number 15,
pages 497 thru 511.
8. Moore, C H, and E D Rather, " The FORTH
Program for Spectral Line Observing," Pro­
ceedings of the IEEE, September 1973,
pages 1346 thru 1349.
9. Rather , E D, and L Brody, Using FORTH
(2nd rev ed) FORTH Inc, Hermosa Beach CA,
1980.
10. Rather, E D, and C H Moore, " The
FORTH Approach to Operating Systems."
ACM 1976 Proceedings, Association for Com­
puting Machinery, 1976.
11. Sachs, J, An Introduction to STOIC,
Technical Report BMEC TR001, Harvard-MIT
Program in Health Sciences and Technology,
Cambridge MA, June 1976.
12. Stein , P, " The FORTH Dimension: Mini
Language Has Many Faces," Computer Deci­
sions, November 1975, page 1 O.
13. Stevens, W R, A FORTH Primer, Kitt Peak
National Observatory, Tucson AZ, 1979.
14. Taylor, A, " FORTH Becoming Hothouse
for Developing Languages," Computerworld,
July 30, 1979.
15. Taylor, A, "FORTH Setting Coding
Trend?," Computerworld, August 13, 1979.
16. Taylor, A, "Trade Language Families Can
Sprout from FORTH, " Computerworld,
August 27, 1979.
17. Wells , D C, " Interactive Image Analysis
for Astronomers," Computer. August 1977,
pages 30 thru 34.

r 8-100 USERS: GIVE YOUR COMPUTER THE GIFT OF SIGHT!

The DS-80 Digisector"l is a random
access video digitizer_ It works in
conjunction with a TV camera (either
interlaced or non·interlaced video) and
any S-100 computer conforming to the
IEEE standards. Use it for:

• Precision Security Systems

• Moving Target Indicators

• Computer Portraiture

• Fast To Slow Scan Conversion

• Robotics

• Reading UPC Codes, schematics,
paper tape, musical scores

• IMAGE PROCESSED BY OS-80 •

CHECK THESE FEATURES:

D High resolution - a 256 x 256 pic­
ture element scan

D Precision - 64 levels of grey scale

D Speed - Conversion time of 14
microseconds per pixel

D Versatility - scanning sequences
user programmable

D Economy - a professional tool
priced for the hobbyist; comes fully
assembled, tested and burned in,
with fully commented portrait print­
ing software.

Price: $349.95 tIIas\erCharge and Visa

THE~O©~

LW@~ P.O. BOX 1110, DEL MAR, CA 92014 714-756-268.zJ

126 August 1980 © BYTE Publications Inc Circle 84 on inquiry card.

Text continued from page 10:

You should also look at FORTH if
you have limited computer or finan­
cial resources . FORTH is a big
language in a small package, and you
can buy a version of FORTH for as
little as $20.(See "Selected FORTH
Vendors," on page 98.) Unlike most
new languages that gobble .I,lp more
and more of the 64 K bytes allotted to
an 8-bit microcomputer (some won't
comfortably fit in 64 K bytes), there is
plenty of room for very large FORTH
programs even in a 16 K machine.
FORTH takes up only about 8 K
bytes, and this can be pared down; in
an industrial application that will run
only one program, the FORTH inter­
preter can be made as small as 800
bytes. Also, FORTH can be run on
cassette-based systems due to its
small size; although this is still more
inconvenient than running FORTH
on a disk system, most languages that
use a disk are impractical or impos­
sible on cassette-only systems.

Finally, you may want to consider
FORTH for applications where speed
is of the utmost importance. Since
portions (or all) of a FORTH program
can be written in the assembly lan-

guage of the host computer, FORTH
programs can be written that com­
pare favorably in speed with
machine-language programs . And,
again, productivity is higher using
FORTH than it is with machine
language.

What Is a Threaded Language?
Imagine a language that starts with

a few fundamental subroutines writ­
ten in the machine language of the
host computer; eg: routines to put a
character to the display device, to get
a character from the keyboard, to
multipy two fixed-point numbers.
Then imagine that the only way to
combine these subroutines is to string
them together (with embedded data
bytes) as a series of subroutine calls;
eg: a routine to get a signed multidigit
number from the keyboard is written
as a controlled series of calls to the
subroutine that gets a character. Then
these routines are called by other
routines that perform even bigger
tasks. For example, a routine to sum a
series of signed numbers entered from
the keyboard is written as series of
subroutine calls that includes the one
mentioned just above . The final pro-

Computer Hardware Professionals
OUT clients, highly successful manufacturers and OEMs of Computer Syate,ms. Electronic Systems, and
Peripherals, have immediate openings for Hardware Development Professionals to work on FUTURE
SYSTEMS PROJECTS. Such projects include COMPUTER ARCHITECTURE. DATA COMMUNIC~·
TIONS. PERIPHERAL DEVELOPMENT. and POWER SUPPLY DESIGN. Specific openings currently
exist at Senior and Intermediate levels for:
COMPUTER ARCHITECTS - Definition and development of Micro· Mini-computer systems.

POWER SUPPLY DESIGN ENGINEERS - Switching regulators for Off·Line Power supplies.
Experience in High Frequency P.W.M. techniques and AC Power Distribution would be desirable.

MICROPROCESSOR DESIGN ENGINEERS - DesignlDevelopment of state-of·the·art Microprocessor
based systems and interfaces. Experience on any Microprocessor acceptable.

LSI DESIGN DEVELOPMENT - Numerous positions with local systems oriented firms in LSI technology
development. .
CPU DESIGN ENGINEERS - BSEEIBSCS andlor experience in the design of Digital Computers or
Microprocessor systems. Requires an understanding of Software. i.e. ASSEMBLY, FORTRAN. or PL-l.

DIGITAL LOGIC AND CIRCUIT DESIGN ENGINEERS - Logic and Circuit design plus a familiarity
with TTL. CMOS. LSINLSI. etc.

ANALOG DESIGNERS - 30 to 40 megahertz Phase Lock loop experience. Experience with 80 megahertz
power drivers and DC motors.

PCB DESIGNERS - With CAD experience.

COMMUNICATIONS SYSTEMS DEVELOPERS - Experience with store and forward message swit·
ching. Network Data Link Control. andlor PBX and EPX Systems.

Com\,ensation on all positions ranges from low 20's to.low 40's. bosed up~n experience. Clienl companies are
equa opportunity/affirmative action employers. prOVide excellent beneflls, and assume all fees.

Qualified applicants will receive IMMEDIATE RESPONSE and a:e invi ted .to contact: Don Bat~mn.n .. in
strict confidence, at (617) 861·1020. Or submit current resume to him for review. For those who find It m·
convenient to call during working hours. our office will be open until 7:30 p.m.

Contact: Don Bateman

Rt. Robert Kleven and (0., Inc.
INDUSTRIAL RELATIONS MANAGEMENT CONSULTANTS

Thrt"t' Flt"lrher Av('nut' . Lt"xington. M8,.tiarhust'lt", 02J7:I
Tt"l t' phonf' (617) H61 · I020

~fmb.t-r

;A, "'. ~~ . .. hu~'II" "'. o',"";on.' 'm'nL t · .. n~ull.nl~
...... Itun • • (' u mputrr A."ori.I'~ ,

LOff;(',~ ~ .t ;u n ... ;d.L
tbp'fht'n t;nlj Equ.' OpporlUn il.\ Emplo.n, .. :'II r

128 Augusl 1980 © BYTE Publicalions Inc Circle 86 on inquiry card .

Special Notation Used in
This Issue

Because FORTH is such an
unusual language (it uses punctua­
tion marks by themselves and
within words) , a pair of braces,

{ } , is sometimes used to set
apart FORTH words from the rest
of the text. Braces are used under
the following conditions:

• When the material being
quoted is a series of FORTH
words; eg: { 26 LOAD } ;

• When the FORTH word is or
contains any of the following
punctuation marks: period,
comma, colon, question
mark, exclamation point,
single quote mark, or double
quote mark. Two examples
are { . } and { (") } .

In addition, spaces are always
used to separate FORTH words
from other 'words or punctua­
tion-even when this means doing
something like " ... the words
BEGIN , WHILE , and REPEA T
are all . .. " (spaces between FORTH
words and the commas that follow
them). There are two reasons for
doing this: first, for clarity; and se­
cond, to emphasize thai the
FORTH word in question does not
include the punctuation that
follows. Some FORTH words do
contain punctuation (eg: { IF, }),
but such words will always be
enclosed in braces (except within
program listings).

gram in such a threaded language is a
series of calls to lower and lower
subroutines, dipping repeatedly into
machine-language routines under the
control of higher-level routines. The
addresses in each subroutine that
point to the subroutine or machine
language under it make up a "thread"
of control that runs through the entire
program.

FORTH has so far been im­
plemented as a threaded language.
Threadedness is a language im­
plementation technique, not an in­
herent quality of any language;
SNOBOL and FORTRAN compilers
have been written using threaded
code.

FORTH: Pro and Con
Pros: I have already mentioned

most of the advantages of FORTH.
The language is:

• Compact;
• Fast, although this is due to its

implementation in threaded
code, not its inherent qualities;

• Structured : it has the major
constructs of structured pro­
gramming and, in fact, does
not have any kind of goto
statement, thus forcing it to be
structured;

• Extensible;
• Highly portable.

These last two features deserve fur­
ther description. The extensibility of
FORTH is probably its most impor­
tant feature . Never before in a high­
level language has it been so easy to
add new features, new data types,
and new operators to a language .
Unlike other languages, these new
words (everything in FORTH is called
a word) have the same priority and
receive the same treatment as words
defined in the standard FORTH
vocabulary . For example, you can

define a word 10+ that will add ten
to any number it is given; or, in fact,
you can even redefine the addition
operator + . You can also define en­
tirely new families of words in
FORTH. This advanced topic is ably
discussed in what I believe is the only
written treatment of the subject
anywhere in FORTH literature by
Kim Harris in his article, "FORTH
Extensibility, " on page 164.

Most FORTH programs can be
transferred from, say, a mainframe
computer to a microcomputer
without modification ; therefore,
FORTH is highly portable. Most of
the FORTH words supplied in a given
system have been defined to do the
same operation regardless of the com­
puter used. Although the vocabulary
of words varies from supplier to sup­
plier, most FORTH programs will run
with minor or no modifications. A
standard set of words, called
FORTH-79, collectively developed by
many of the major suppliers and users
of FORTH, will help in this situation.

Cons: Here are some of the disad­
vantages of FORTH:

• FORTH code is hard to read .

This is probably the most common
complaint against the language . As a
new user, I can say that you slowly
get used to the odd syntax of the
language. The stack architecture (see
below) of the language contributes to
the novice's initial disorientation, but
this feeling is usually blamed on the
unreadability of the language. In ad­
dition, the stack architecture en­
courages the storage of working
values on the stack rather than in
variables with names. Variable
names, if chosen properly, give vital
clues to the workings of a p rogram;
this scarcity of variable names makes
most FORTH programs less readable.
Adequate indentation and comments
can help a FORTH program, but pro­
grammers of FORTH, like program­
mers of all other languages, often
omit these aids to comprehension .

• The stack architecture of
FORTH offers disadvantages as well
as advantages. Remember the odd
feeling you got the first time you used
a Hewlett-Packard calculator and had
to punch in " 5 ENTER 3 + " instead
of the more understandable " 5 + 3
= " 7 FORTH uses the same reverse
Polish notation (abbreviated RPN),

--------------------------------, where the objects being entered come

1125 N. Golden State Blvd.1 Suite G
Turlock, CA 95380 (A)
(209) 667-2888 I 634-8888 Californi a reSidents add 6% tax

We are experiencing telephone difficulties, please keep trying.

130 August 1980 © BYTE Publica tions Inc Circfe 88 on inquiry card.

before the operators that work on
them.

Not only does this take some get­
ting used to (it takes even longer
before you can fluently "think in
FORTH"), it also encourages a scar­
city of named variables, as mentioned
above. In addition, stack-manipu­
lating words like SWAP, OUP (for
duplicating the top entry on the
stack), ROT (for rotating the top
three items on the stack), and others
muddle the FORTH program and ·
make it hard to tell just what variable
is being operated on . This uncertainty
is particularly evident during debug­
ging; most of your time is spent find­
ing out why what you thought was
on the stack isn't there .

• FORTH encourages program­
ming "tricks" in place of plain, easier
to read programming. Although the
examples to support this statement
have already been mentioned, I think
the statement as a generality is true .
We must remember that, especially
since lack of memory is usually not a
problem in FORTH, FORTH pro­
grammers should name appropriate
variables and, in general, worry less
about fitting a program on one screen
{a basic unit of FORTH program-

ming) and more about making it
readable.

However, drawing a comparison to
APL, any language that compresses a
lot of program into a small number of
lines suffers from readability prob­
lems. Broad, powerful algorithms
often represent complex processes;
when they are described in a terse
notation, they look like programming
tricks . In this case, the only remedy is
to use a lot of comments. The lack of
such comments is solely the fault of
the programmer, not of the computer
language.

• FORTH lacks many of the
programming constructs we are used
to-strings, arrays, floating-point
numbers-but that's not the whole
story. Many applications, for exam­
ple, can get by without floating-point
numbers : look at the number of pro­
grams written in Integer BASIC for
the Apple II. With a maximum ab­
solute numeric value of 32,767, nor­
mal FORTH can handle many prob­
lems by simply assuming a decimal
point. In addition, all versions of
FORTH can add all these features and
more, simply by defining new words.
For example, MMSFORTH, a version

of FORTH for the TRS-80 by Miller
Microcomputer Services, has over ten
screens (each screen is 16 lines of
source code) that implement their
version of words for double-precision
math, arrays, strings, random
numbers, and TRS-80 graphics. You
compile a series of screens, thus add­
ing to the size of your resident
FORTH interpreter, only if you need
these features. So you can have all
these programming constructs and
tools, but only if you write them
yourself or get somebody else to write
them for you.

Friends of FORTH
Almost everyone who is working

in FORTH professionally is doing
good work, but a few people or
groups of people deserve special men­
tion. Foremost in this group is
Charles H Moore and, through him,
the company FORTH Inc. Moore
developed the language over a long
period of time (see his article 'The
Evolution of FORTH, an Unusual
Language, " on page 76) and pro­
moted it through his company
FORTH Inc. Elizabeth Rather, who
contributed significantly to the

C/PM® ARTIFICIAL
INTELLIGENCE

For Your or

S-100 SYSTEM
"SHIVA®" is a highlY'sophisticated VIRTUAL-PERSONALITY® multi-level multi­
user multi-tasking executive (operating system) for S-100 based systems. It provides
your microcomputer system immediately with power comparable to that of large­
frame maxi-computers for a remarkably small price, yet SHIV A® requires
surprisingly little R.A.M. area, and is conversational!!! SHIVA's® English-like
input/output is interactive, dynamic, and m ay be reconfigured or expanded by the
user. And SHIV A® gives you the freedom to expand indefinitely ... with tremendous
hardware and software choice: SHIVA® supports hard disks and floppies . .. R.A.M.
addressing beyond 64 kilobytes ... time-sharing . . . multi-level user-reconfigurable
password protection ... and features shell-commands similar to UNIX® in structure!!
SHIV A® is compatible with C/PM® and C/DOS® for easy implementation and near
universal software support!!! SHIVA® is available for 8080, 8085, MC6800, 6502, and
Z80E-based systems.
Versions are in development for ZILOG Z8000® 16-BIT, INTEL 8086® and INTEL
88002<!1 32-BIT PROCESSORS ...
And Omega Research® is dedicated to non-obsolescence and system superiority in
software choice SHIVA® supports BASIC, FORTRAN, COBOL, a MACRO­
ASSEMBLER, DATA BASE MANAGEMENT, ALGOL-60, PASCAL interfaces
in development for UNIX®, C, LISP, PLlI, APL, and RT-ll l"l .
And needless to say, SHIVAIJ!) is very fast
SHIV kRJ $350 --- Available on 8" LB.M. Soft-Sectored Disks and 5" C/DOS®

(Cromemco) Diskettes. Includes complete Documentation ...
M.C. & Visa orders accepted

"SHIVA ' :' "VIRTUAL-PERSONALITY':' and "OMEGA RESEARC H"" a re trademarks of OMEGA RESEARCH.
"RT· ll · " is a trademark of DIGITAL EQUIPMENT CORPORATION.
"UNIX '" is a trademark of BELL LABORATORIES
"CP/ M " " is a trademark of DIGITAL RESEARCH OF CALIFORNIA
"C/ DOS ' " is a trademark of C ROMEMCO. Inc.
';Z-80~" and "Z-8000" arc trademarks of ZILOG, Inc.
"INTEL" " is a trademark of INTEL CORPORATION

No ,hipm,n', p,io, '" ,,'u= of ,ign,d 'Oft~.IEIE •• 1
license agreement. For detailed information on ~
"SHIVA®," send $1.00 postage and handling to: 2: P.O. Box 479 I I Linden, Ca. 95236 rAIIiIiil WS4 (209) 334-6666

-~- 9am to 5 pm Mon.-Fri.
CALIFORNIA RESIDENTS ADD 6% SA LES TAX

132 August 1980 © BYTE Publications Inc Circle 90 on inquiry card.

development of the language and
who is vice-president at FORTH Inc,
should also be mentioned in this con­
text.

Then there is the FORTH Interest
Group (POB 1105, San Carlos CA
94070), without whose efforts low­
cost versions of FORTH would not be
available. Although many people in
the group have contributed to its
working, names that must be men­
tioned are Bill Ragsdale
(coordinator), Dave Boulton, Kim
Harris, John James, and George
Maverick. Over the past two years,
this group has collectively raised its
membership from a few dozen people
in northern California to over a thou­
sand members worldwide . In the pro­
cess, they have also publicized
FORTH at numerous conventions
and have distributed public-domain
versions of FORTH (called fig­
FORTH) for all the major micro­
processors; ie: 8080, 6800, 6502,
9900, PACE, and LSI-l1. Although
they supply only listings and
documentation, versions customized
for various popular microcomputers
are available inexpensively. In addi­
tion, they are working on standard­
izing certain extensions to FORTH
(floating-point numbers , arrays, etc),
and they publish a very professional­
looking bimonthly magazine called
FORTH Dimensions. The group has
monthly meetings at the Liberty
House Department Store in
Hayward, California , on (what else?)
the fourth Saturday of each month.
Membership in the FORTH Interest
Group (which includes a subscription
to its magazine) is $12 per year, $15
overseas.

A final group that must be men­
tioned is Miller Microcomputer Ser­
vices of Natick, Massachusetts,
which sells and supports a version of
FORTH, called MMSFORTH, and
other related FORTH products for the
Radio Shack TRS-80 Model l. Not
only do they provide a fine version of
FORTH with arrays, strings,
graphics, and other extensions, they
are the only microcomputer-FORTH
vendor that supports its product with
both information and new vocabu­
laries of FORTH words. (For exam­
ple, they have a set of FORTH words
that add 6- and IS-digit floating-point
arithmetic, complex numbers, and a
full 280 assembler, all for $29.95.)
They also publish an MMSFORTH
Newsletter that always has some

goodies you'd expect to pay money
for. The people at MMSFORTH are
A Richard (Dick) Miller and Judy
Miller, along with free-lance pro­
grammer Tom Dowling, ' who wrote
MMSFORTH for the TRS-80.

In addition, the major vendors of
FORTH should be commended for
the way they have worked and are
working together to help standardize
the language. The people mentioned
above, along with the European
FORTH Users' Group (EFUG), have
met as the International FORTH
Standards Team to work out a stan­
dard set of FORTH words (with stan­
dard behavior) that can be used to in­
crease the already high portability of
FORTH programs. Once the pro­
posed FORTH-79 standard is ap­
proved by this standards team,
FORTH Inc, the FORTH Interest
Group, and Miller Microcomputer
Services have indicated that they will
bring out new FORTH versions con­
forming to this standard.

Variants of FORTH
A few other FORTH-like languages

should be mentioned here. URTH
(University of Rochester THreaded

language) is simply FORTH by
another name. I am told that CON­
VERS, an experimental language that
was offered by the Digital Group, is a
FORTH-like language.

STOIC is a language that is dif­
ferent from FORTH primarily in
some small syntax rules, although its
enthusiasts claim it is more powerful
than FORTH. From reading the docu­
mentation, I have found that STOIC
interacts differently and has more
sophisticated disk access than
FORTH. CP 1M Users Group (1651
Third Ave, New York NY 10028)
distributes STOIC on two 8-inch
single-density CP 1M floppy disks;
the cost is $20, which includes
postage, documentation (on CPIM
DOC files), and group membership
fees. STOIC was developed by Roger
G Mark and Stephen K Burns in the
Biomedical Engineering Center for
Clinical Instrumentation, funded by
the Harvard-MIT Program in Health
Sciences and Technology in Cam­
bridge, Massachusetts.

Also, I am very excited about a
book nearing publication: Threaded
Interpretive Languages by Ron
Loeliger. This book, to be published

soon by BYTE Books, delves deeper
into the practical aspects of designing
and implementing a threaded lan­
guage than any book I have seen. Not
only does it demonstrate exactly how
the machine code must work, it also
details the specific implementation of
ZIP (which looks like FORTH under
another name) in Z80 assembly
language. The book promises to be
the definitive work on how threaded
languages perform.

Final Notes
As we received more and more

FORTH articles, I realized that we
would soon have too many for this
special August issue. I immediately
scheduled for subsequent non theme
issues those extra articles we could
not use at this time, a process known
as "holding down the FORTH." In
any case, we have several FORTH ar­
ticles that will appear in upcoming
issues of BYTE. These include an arti­
cle on recursion in FORTH by George
Flammer, a tutorial on string­
manipulating FORTH words by John
Cassady, a history of the FORTH
Standards Team by Bill Ragsdale,
and a detailed discussion of the dif­

---, ferent kinds of threaded codes by

NOBODY CAN MATCH OUR
DOLLAR/QUALITY RATIO!

MS-204 PRINTER
INTRODUCTORY PRICE:

$795·
CABLE: $34.50

Compatible with TRS-80, Apple, Pet
or any other Centronics-type system

Features
• 132/ 80 Columns, 63 LPM, Bi-Directional, Nominal Thruput
• 100% Heavy Duty Cycle - High Reliability, 100 Million Character

Print Head Life
• Sprocket Feed; Variable Forms Width, 2.5" - 9.5"
• Double Width Characters: 40,66 Characters per line
• 9 x 7 Dot Matrix Character Font
• 6-Channel Electronic Vertical Format Unit

. • Documentation Included

Ask about our 8-inch Drives & Software

ATCHLESS

134 A ugust 1980 © BYTE Publications Inc

18444 S. Broadway
Gardena, CA 90248
(213) 327-1010
© 1980 Matchless S stems & MarketPlan

Circle 92 on inquiry card .

Terry Ritter and Gregory Walker.
We hope you will enjoy looking at

the FORTH tapestry presented in this
issue .•

Articles Policy
BYTE is continually seeking quality

manuscripts written by individuals
who are applying personal computer
systems, designing such systems, or
who have knowledge which will prove
useful to our readers. For a more for­
mal description of procedures and
requirements, potential authors should
send a large (9 by 12 inch, 30.5 by 22.8
em), self-addressed envelope, with 28
cents US postage affixed, to BYTE
Author's Guide, 70 Main St , Peter­
borough NH 03458,

Articles which are accepted are pur­
chased with a rate of up to $50 per
magazine page, based on technical
quality and suitability for BYTE's
readership. Each month, the authors of
the two leading articles in the reader
poll (BYTE's Ongoing Monitor Box or
"BOMB") are presented with bonus
checks of $100 and $50, Unsolicited
materials should be accompanied by
full name and address, as well as return
postage.

Anatomy
of a
Threaded
Language

Threaded languages (such as
FORTH) are an exciting new class of languages.
They are compact and fast, giving the speed of assembly
language with the programming ease of BASIC, and combine features
found in no other programming languages. An increasing number of people are using
them, but few know much about how they work. Is a threaded language interpreted or compiled?
How much memory overhead does it require? Just what is an "inner interpreter"? Threaded In­
terpretive Languages, by R. G. Loeliger, concentrates on the development of an interactive, ex­
tensible language with specific routines for the ZILOG Z80 microprocessor. With the core inter­
preter, assembler, and data type defining words covered in the text, it is possible to design and im­
plement programs for almost any application imaginable. Since the language itself is highly
segmented into very short routines, it is easy to design equivalent routines for different processors
and produce an equivalent threaded interpretive language for other development systems. If you
are interested in learning how to write better FORTH programs or you want to design your own
powerful, but low-cost, threaded language specific to your needs, this book is for you.

·'1---' ~ l! This and other BYTE/McGraw-Hili ISBN 0-07 -038360-X , •• n ~ books are .;Ivailable from BYTE Price S 18.95 I
fill • • Books or your loca l computer store. I
I I
I Please se nd D copies of Threaded Interpretive Languages I
I I
I I
I Name Title Company I
I I
I I
I Street City State/Province Code I
I n Check enclosed in the amount of S \
I n Bill Visa LJ Bill Master Charge I
IAvaiiable in Nov. 1980 Card No. I
I., Exp. Date. ,
Ij ~II . Add 7S<! per book to cover postage and handling. ,
~[)[)~~ ~~t:~:r~~ h, NH 03458 Please remit in U.S. funds or draw on a U.S Bank. B8 ,

9 -------------------------______ 1

Editor's Note
We are particularly pleased to

include this article by Dick and Jill
Miller in this FORTH theme issue.
One of the problems with past
BYTE language issues has been the
lack of concrete examples of the
language being showcased-name­
ly, a full, nontrivial program that
does something useful or fun and,
at the same time, shows an exam­
ple of the language at its best.

The program BREAKFORTH,
written for the MMSFORTH
language running on the Radio
Shack TRS-80, does show the
language FORTH at its best. This
real-time video game, which is a
version of the arcade-type game
that requires the user to chip away
at a "brick wall" by directing a
bouncing ball at it with a paddle, is
what Dick Miller calls "electronic
flypaper"-a game so addictive
that it keeps people trapped at
their TRS-80, unable to stop play­
ing.

In addition to being playable
(quite a testament to the speed of
FORTH, especially if you have
ever seen the same game written in
TRS-80 BASIC), the game also
gives an example of how a good
FORTH program is put together,

as well as how it can be more
readable when properly written
out with adequate indentation and
comments.

Another departure from
previous language issues is the
availability of the language
FORTH at reasonable cost on a
wide range of microcomputers (see
chart of FORTH sources,
elsewhere in this issue). Miller
Microcomputer Services (MMS)
supplies one of the most complete
and well-supported versions of
FORTH available, along with a
newsletter and other FORTH pro­
ducts available at reasonable
prices. (For example, MMS sells a
FORTH software package that
adds floating-point arithmetic
(both single- and
double-precision), complex
arithmetic, and a full 280
assembler, all on floppy disk for
$29.95.)

This article was produced with
the help of two other people not
yet mentioned. The first is Tom
Dowling, who wrote the
MMSFORTH language for the
TRS-80 and who does a large por­
tion of the FORTH programming
for MMS. The second person is
Arnold Schaeffer, who wrote the

BREAKFOR TH program as his
first FORTH program. If this
achievement were not impressive
enough, then I should add that
Arnold is a high school student.
This is proof that FORTH can be
learned by anyone with sufficient
enthusiasm for the language.

Analyzing the BREAKFOR TH
program is a great way to learn
about FORTH and how to pro­
gram in it. The program can be
typed in as is on a TRS-80 using
MMSFORTH's full-screen editor
and virtual memory, but I suggest
that you first read John James ' arti­
cle in this issue, "What Is FORTH?
A Tutorial Introduction ," before
seriously studying the
BREAKFORTH program.

One final note on alteration: this
program is meant to work on a
TRS-80 Model I running
MMSFORTH. Users of other
FORTH systems having a graphic
display of 48 by 128 resolution or
better can probably get the pro­
gram running by rewriting some
words unfamiliar to their system.
Some information designed to help
in this conversion effort has been
supplied in this article GW

BREAKFORTH Into FORTH!

About the Authors
A Richard (Dick) and Jill Miller founded

Miller Microcomputer Services in 1977 as a
consulting firm specializing in support for the
Radio Shack TRS-BO. After continued
dissatisfaction with other languages available
for the TRS-BO (FORTRAN, COBOL, Pascal,
PILOT, BASIC), they settled on FORTH as a
language that combines the seemingly incom­
patible traits of language complexity, high
operating speed, and low memory overhead.
They released their first version of
MMSFORTH (version 1.5) in June 1979, and
have been improving disk and cassette versions
of the system ever since. MMSFORTH
resembles the FORTH Inc version of the
language called microFORTH, and was written
independently with permission from that com­
pany.

150 August 1980 © BYTE Publications Inc

A Richard Miller and Jill Miller
Miller Microcomputer Services

61 Lake Shore Rd
Natick MA 01760

Introduction to BREAKFORTH
This BREAKFORTH program was

created by Arnold Schaeffer. The
program, which was purchased by
MMS, has received minor modifica­
tions and is now included with the
purchase of MMSFORTH version 1.9
(on a different range of blocks from
those shown here, blocks 69 thru 74).
We think it is a classic game as is, and
fully expect individuals to modify it
in accord with their game
preferences-for their individual use.

The BREAKFORTH program is a
straightforward one, although it is
not a trivial one. It combines many of
the techniques of FORTH and can be

followed easily with a little time and
study. Figure 1 shows a typical
BREAKFORTH video display, with
an operator-controlled game paddle
at the bottom, a bouncing ball, and a
barrier to be knocked out one brick at
a time by successive bounces until all
the bricks have been cleared away.
Each removed brick scores one point
or more depending on its level, and
there is a surprise bonus for a com­
pletely cleared barrier. Ball speed and
number of balls are selectable, but be
warned that, as you bounce your way
up to the higher layers, the ban speed
increases! You might want to start
with short games using five balls and

a ball speed of seven. Fifty balls and a
speed of four will present a challenge
for high scorers.

BREAKFORTH offers some other
features, too. As you and your
friends try for better scores, a BEST
score is kept to challenge your present
effort. In addition, the paddle adds
backspin in certain cases that we will
leave you to discover.

To add sound, plug an external
speaker into the EAR jack of your
cassette tape recorder, attach the mid­
dle cable from the keyboard unit (not
the motor remote cable) to the AUX
jack of the tape recorder, and open
the tape compartment door . While
depressing the write-protect detector
switch at the left side of the back of
this compartment, simultaneously
press the Record and Play keys. This
procedure allows the cassette tape
recorder to be used as an amplifier.
The BREAKFORTH program
manipulates the cassette port (nor­
mally used for writing a program to
tape), causing a sound to be amplified
b.y the recorder and played on the
speaker.

Like other brands of electronic
flypaper, BREAKFORTH may keep
you glued to the keyboard. If you
have to leave but do not want to give
up the game, 'press shift-@ to pause
the game. Pressing any other key will
cause the game to resume where you

BREAKFORTH is
developed in the FORTH
manner, with top-down
design and bottom-up pro­
grammmg.

left off. To start a new game in
midstream while keeping the BEST
score, press the Break key, type in the
word BREAKFORTH , and press the
Enter (Return) key.

BREAKFORTH is developed in the
FORTH manner, with top-down
design and bottom-up programming.
Figure 2 shows the organization of the
program. These modules shown in
figure 2, along with the various
I-byte and single-precision (2-byte)
variables and constants they invoke,
are listed with explanations in table 1,
a directory of the BREAKFORTH
words that this program will add to
the FORTH vocabulary.

The program's source code is on six
consecutive blocks, and in this case
happens to be located on blocks 50
thru 55; see listing 1. In
MMSFORTH, one enters
[50 6 LOADS } to load the pro­
gram-that is, to compile and execute
all the information on blocks 50 thru

BREAKFORTH IN MMSFORTH SCORE : 253 BEST: 352 BALL: 4

Figure 1: One view of the TRS-80 video screen during a BREAKFORTH game.

152 August 1980 © BYTE Publications Inc

55, ending with the immediate execu­
tion of the word BREAKFORTH
from line 15 of block 55 (which causes
the program to be run) . (Other ver­
sions of FORTH that lack the
consecutive-blocks word, LOADS ,
will have another way of doing this .)

The First Block
Let us take a detailed look at block

50 in listing 1. Lines 0 thru 2 are all
comment lines, as are any words sur­
rounded by parentheses. Notice that
because FORTH words are set off by
spaces on either side, the "begin com­
ment" word, [(), must be
separated from the first word of the
comment by at least one space.
(Because of the way [() is defined,
the closing parenthesis need not be
separated from the last word of the
comment by a space.)

Most definitions in FORTH begin
with a colon ([:)) and end with a
semicolon ([;)), where the first
word after the colon is the word being
defined. In line 3, the first word de­
fined is TASK . Since the only word
following TASK is the closing
semicolon, we can conclude that the
word TASK does not do much.
However, it does serve as a
"bookmark," marking the beginning
of the words and variables that are
specific to this application (game).
We will come back to TASK later, at
the end of block 55.

Line 3 also causes two other blocks
on the MMSFORTH system disk to
be loaded into memory. Block 32,
when loaded, adds several special­
purpose words having to do with
random numbers : RANDOMIZE
and RND . Block 33, when loaded,
adds several words that have to do
with graphics: DCLR , DSET ,
{ D? }, ECLR , ESET , and
{ E? } . (The last three are the same
as TRS-80 BASIC words RESET,
SET, and POINT, and the variables
beginning with D are the same, but
referencing double-width characters .)

Lines 4 thru 6 initialize seven
double-byte variables and two single­
byte (CV ARIABLE) variables. In
FORTH, unless specified , all
variables, constants, and stack entries
are 16 bits (2 bytes) long. See table 1
for the meaning of these variables.

Line 7 defines a new word, LINE ,
using a colon to begin the definition
and a semicolon to end it. Several
spaces (usually three) are placed be-

Circle 103 on inquiry card.

MORE FOR YOUR
RADIO SHACK TRS·80

MODEL I !

* MORE SPEED
10·20 times faster than Level II BASIC.

* MORE ROOM
Compiled code plus VIRTUAL
MEMORY makes your RAM act larger.

* MORE INSTRUCTIONS
Add YOUR commands to its large in·
struction set!
Far more complete than most Forths:
single & double precision, arrays,
string-handling , more.

* MORE EASE
Excellent full·screen Editor, structured
& modular programming
Optimized for your TRS-80 with
keyboard repeats , upperllower case
display driver, single- & double-width
graphics, etc.

* MORE POWER
Forth operating system
Interpreter AND compiler
Internal 8080 Assembler (Z80
Assembler also available)
VIRTUAL I/O for video and printer,
disk and tape (10-Megabyte hard disk
available)

m[j[j[j§FORTH
THE PROFESSIONAL FORTH

FOR TRS·80

Prices:
MMSFORTH Disk System V1 .9 (requires 1
disk drive & 16K RAM) just $79.95'
MMSFORTH Cassette System V1.8 (requires
Level II BASIC & 16K RAM) $59.95'

AND MMS GIVES IT
PROFESSIONAL SUPPORT

Source code provided
MMSFORTH Newsletter
Programming staff available
Many demo programs aboard
MMSFORTH User Groups
FLOATING POINT MATH \L.2 BASIC ROM
routines plus Comp ex numbers,
Rectangular-Polar coordinate conversions,
Degrees mode, more), plus a full Z80
ASSEMBLER; all on one diskette ... $29.95'
THE DATAHANDLER, a very sophisticated
database management system operable by
non-programmers (requires 1 drive and 32K
RAM); with manuals $59.95'

Other packages under development

FORTH BOOKS AVAILABLE

MICROFORTH PRIMER - comes with
MMSFORTH; separately $15.00'
USING FORTH - more detailed and advanc·
ed than above $25.00'
URTH TUTORIAL MANUAL - very readable
intro. to UIRochester Forth $19.95'
CAL TECH FORTH MANUAL - good on
Forth internal structure, etc $6.95'

• - Software prices are for single-system
user license and include manuals. Add $2.00
SIH plus $1.00 per additional book; Mass.
orders add 5% tax. Foreign orders add 15%.
UPS COD, VISA & MIC accepted; no unpaid
purchase orders, please.

Send SASE for free MMSFORTH information.
Good dealers sought.

MMSFORTH is available from your
computer dealer or

MILLER MICROCOMPUTER
SERVICES (B1)

61 Lake Shore Road, Natick, MA 01760
(617) 653·6136

Figure 2: A hierarchical diagram of the BREAKFORTH program. Each box contains a
word used within the BREAKFORTH program and is used by the word(s} in the box(es}
above it. See table 1 for a definition of each word.

tween the word being defined and the
first word of the definition; this adds
to the clarity of the definition. PTC
(for "put cursor") places the cursor at
a given point on the screen, much like
the PRINT@ instruction in TRS-80
BASIC. It expects two numbers on
the stack, the row (second-to-top)
and the column (on top) giving the
desired position for the cursor. (For
example, [8 32 PTC J puts the
cursor near the center of the screen, 8
rows from the top and 32 characters
from the left edge of the screen.)

However, our new word LINE ex­
pects only one number on the stack
because the first thing it does when it
is called is to put a zero on top of the
stack. So the words [0 PTC J put
the cursor at the beginning of a given
line (that is, at position (x,O), where x
is the number on top of the stack
when LINE is called).

The FORTH word ECHO (EMIT in
some other versions of FORTH) is
like the PRINT CHR$ function in
BASIC-it outputs the correspon­
ding ASCII character for the number.
In this case, [30 ECHO J outputs a

clear-to-the-end-of-the-line signal on
the TRS-80. (By the way, the 30 is the
decimal number thirty; although you
can change to hexadecimal with the
word HEX or to any other numeric
base, MMSFORTH assumes decimal
numbers unless told otherwise.)

Now we are finally able to say
what the word LINE does: the
phrase [x LINE J clears line x and
leaves the cursor at row x, column o.
[0 PTC J puts the cursor at the
beginning of the line , and
[30 ECHO J clears the line with a
special character (ASCII decimal 30)
and leaves the cursor where it is.

The final word described in block
SO, INIT , begins in line 8. Its defini­
tion is longer than most words, but its
function is not at all mysterious once
you know a few FORTH words. CLS
clears the video screen (as in TRS-80
BASIC), [0 LINE J clears line zero,

. and [" J ([". J in some FORTHs)
causes the character string until the
next quote mark to be printed, just as
PRINT" STRING " does in BASIC.
The word #IN causes a single-

Text continued on page 158

Circle 105 on inquiry card.

HOW TO START YOUR OWN SYSTEMS
HOUSE is a practical step-by-step guide for the
EDP professional or small businessman who
wants to enter the micro-computer systems
business.

Written by the founder of a successful systems
house, this fact-filled 220-page manual covers
virtually all aspects of starting and operating a
small systems company. It is abundant with
useful , real-life samples: contracts, proposals,
agreements and a complete business plan are
included in full , and may be used immediately
by the reader .

Proven , field-tested solutions to the many
problems facing the small systems house are
presented .

From the contents:
• New Generation of Systems Houses • The
SBC Marketplace • Marketing Strategies •
Vertical Markets & lAPs· Competetive Posi­
tion I Plans of Major Vendors Market
Segment Selection & Evaluation • Selection of
Equipment & Manufacturer • Make or Buy
Decision • Becoming a Distributor. Getting
Your Advertising Dollar's Worth • Your Sales­
men : Where to Find Them. Product Pricing
• The Selling Cycle. Handling the 12 Most
Frequent Objections Raised by Prospects •
Financing for the Customer Leasir.g
Questions You Will Have to Answer Before the
Prospect Buys . , Producing the System • In­
stallation , Acceptance, Collection. Docu­
menlation • Solutions to the Service Problem
~ Protecting Your Product • Should You Start
Now? • How to Write a Good Business Plan •
Raising Capital

~~~~~~~~ ____ E~~~ 
Essex Publishing Co. DEPT. 3 
285 Bloomfield Avenue Caldwell, N.J . 07006 

I would like to order HOW TO START YOUR 
OWN SYSTEMS HOUSE at $36.00 (New Jersey 
residents add 5% sales tax) 
o Check Enclosed 0 VISA 0 Mastercharge 
Name ________________________ __ 

Address __ ~-------------------
City ____________________ _ 

State __________ Zip ___ __ 

Card # exp. __ __ 
For immediate shipment on credit card orders 
call (201) 783-6940 

156 August 1980 © BYTE Publications Inc 

Listing 1: The BREAKFORTH program. These six blocks, when loaded into an 
MMSFORTH system, cause the BREAKFORTH program to compile, execute, and , 
once finished , erase itself from the system. Tape-based users should omit the last three 
words in the last block. This program does require that the MMSFORTH words for ran­
dom numbers (block 32 on the MMSFORTH system disk or cassette) and for TRS-80 
graphics (block 33) be available to the FORTH system. If these blocks have already been 
loaded, delete the two LOAD commands in block 50, line 3. Also, the se­
quence [ A MVI 255 I in lines 10 and 11 of block 51 is the notation FORTH uses for 
the 8080 assembly-language statement MVI A,255. [To speed up paddle response, 
you can replace the 3 in block 55, line 8 with a higher value . Personally, I enjoy playing 
the game at speed levell, with a 12 replacing the 3 .... GWI 

BLOCK : 50 

o BREAKFORTH/MMSFORTH, BY ARNOLD SCHAEFFER, PART 1 OF 6 ) 
1 COPYRIGHT 1980 BY MILLER MICROCOMPUTER SERVICES ) 
2 W/SOUND - USE THE LEFT AND RIGHT ARROWS TO MOVE THE PADDLE ) 
3 TASK; 32 LOAD ( RANDOM #'S ) 33 LOAD ( GRAPHICS) RANDOMIZE 
4 0 CVARIABLE SPEED 0 CVARIABLE SPVAR 0 VARIABLE SCORE 
5 0 VARIABLE XPOS 0 VARIABLE YPOS 2 VARIABLE PPOS 
6 1 VARIABLE YDIR 1 VARIABLE XDIR 0 VARIABLE BEST 
7 LINE 0 PTC 30 ECHO ; 
8 INIT CLS 0 LINE" SPEED ( 1 - 10, 1 IS FASTEST )" 
9 #IN 1 MAX 10 MIN 10 u* SPEED C! 

10 0 LINE " NUMBER OF BALLS DESIRED" #IN 
11 CLS 64 0 DO 3 I DSET 4 I DSET LOOP 
12 48 3 DO I 0 DSET I 63 DSET I 1 DSET I 62 DSET LOOP 
13 191 15616 320 FILL 0 SCORE ! 
14 0 LINE" BREAK FORTH IN MMSFORTH SCORE: 0 BEST:" 
15 BEST? 0 54 PTC " BALL:" 

BLOCK : 51 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

BREAKFORTH/MMSFORTH, BY ARNOLD SCHAEFFER, PART 2 OF 6 ) 

PCLR 32 PPOS 
PSET 176 PPOS 

PADDLE 
14400 C@ 32 
14400 C@ 64 

10 CODE lCASSOUT 
11 CODE 2CASSOUT 
12 : BOp 10 0 DO 
13 
14 
15 

BLOCK : 52 

@ 16320 + 8 FILL 
@ 16320 + 8 FILL 

IF PCLR -1 PPOS @ + 2 MAX PPOS PSET THEN 
IF PCLR 1 PPOS @ + 54 MIN PPOS PSET THEN 

1 A MVI 255 OUT NEXT 
2 A MVI 255 OUT NEXT 

lCASSOUT 2CASSOUT 

( THESE 3 LINES 
( PRODUCE THE SOUND. 

LOOP 

0 BREAKFORTH/MMSFORTH, BY ARNOLD SCHAEFFER, PART 3 OF 6 ) 

1 
2 XCHK 
3 XPOS @ 2 < IF XDIR @ MINUS XDIR 2 XPOS BOP THEN 
4 XPOS @ 61 > IF XDIR @ MINUS XDIR 61 XPOS BOP THEN 
5 
6 
7 YCHK 
8 YPOS @ 5 < IF 1 YDIR ! 5 YPOS ! 1 SPVAR C! BOP THEN 
9 YPOS @ 23 < IF SPVAR C@ 4 MIN SPVAR C! THEN 

10 YPOS @ 19 < IF SPVAR C@ 3 MIN SPVAR C! THEN 
11 YPOS @ 15 < IF SPVAR C@ 2 MIN SPVAR C! THEN 
12 
13 
14 
15 

BLOCK : 53 

o ( BREAKFORTH/MMSFORTH, BY ARNOLD SCHAEFFER, PART 4 OF 6 ) 
1 

Listing 1 continued on page 158 



Text continued from page 154: 

precision number to be entered from 
the keyboard and placed on top of the 
stack. The phrase 

{ 1 MAX 1 causes the number to 
be replaced by 1 if the number just 
entered is smaller. Similarly, the 
phrase { 10 MIN 1 limits the 
number on the top of the stack to a 
maximum value of 10. 
{ 10 U* 1 multiplies the number by 
10 (U* is an unsigned single­
precision multiply), and 
{ SPEED C! 1 stores the value 

from the top of the stack in the 
single-byte variable SPEED . 

Each of the above phrases contains 
a number and an operation. Since 
each operation requires two numbers 
on the stack, the number entered by 
#IN is the first number, with the se­
cond number always being supplied 
by the first word of the phrase . 

Using the same words as listed 
above, line 10 again clears line 0, 
prompts for the number of balls to be 
used in the game, putting that 
number on top of the stack with the 
word #IN . 

Line 11 clears the video screen 
again and sets up the back (top) wall 
of the BREAKFORTH "court" using a 
do-loop and double-width graphics. 
In FORTH, the parameters of the 
loop go on the stack before the loop is 
called, so { 64 0 DO 1 begins the 
loop, and the word LOOP ends it. 
The loop will be executed sixty-four 
times, and the word I puts on top-of­
stack the current value of the loop (0, 
1, 2, 3, ... ,63); note that I does not 
take on the limit value of 64 . The 
phrase { 3 I DSET 1 sets a double­
width character at row 3, (double­
width ) column I ; similarly, 
I 4 I DSET 1 sets the double-width 

character on the next row below the 
first. 

Similarly, line 11 sets the right and 
left walls of the BREAKFORTH 
court, columns 0 and 1 for the left 
wall and columns 63 and 64 for the 
right wall . 

The phrase [ 191 15616 
320 FILL 1 in line 13 creates the ini­
tial wall of bricks by using character 
code decimal 191 (a whited-out 
character cell) to fill an area of 
memory (the video display area of the 
TRS-BO) starting at location 15616 
and filling for a total of 320 bytes. 

The phrase ( 0 SCORE ! 1 , also 
in line 13, shows us how we store a 

158 August 1980 © BYTE Publica tions Inc 

Listing 1 continued: 

2 2 CONSTANT 2 -2 CONSTANT - 2 

PCHK 0 YPOS @ 47 >= 
3 
4 
5 
6 
7 
8 
9 

IF 46 YPOS! XPOS @ PPOS @ - DUP 0 >= OVER 8 < AND 
IF -1 YDIR! BOP 

NCASE 0 1 2 3 4 5 6 7 " -2 -1 -1 -1 1 1 1 2 CASEND 

10 
11 
12 
13 
14 
15 

XDIR ! 
ELSE DROP 1+ 
THEN 

THEN 

BLOCK : 54 

o BREAKFORTH/MMSFORTH, BY ARNOLD SCHAEFFER, PART 5 OF 6 ) 
1 
2 CLR 
3 XPOS @ 2 - 124 AND 2+ DUP 4 + SWAP DO YPOS @ I DCLR LOOP 
4 YPOS @ 27 - ABS SCORE +, 0 32 PTC SCORE? BOP 
5 YDIR @ MINUS YDIR ! 
6 
7 
8 BALLCHK YDIR @ YPOS +! XDIR @ XPOS +! XCHK YCHK PCHK 
9 YPOS @ XPOS @ D? IF CLR THEN 

10 
11 
12 BALL YPOS @ XPOS @ DCLR 
13 BALLCHK DUP 0= IF YPOS @ XPOS @ DSET THEN 
14 
15 GAMECHK SCORE @ 1800 MOD 0= IF 191 15616 320 FILL THEN 

BLOCK : 55 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

BREAKFORTH / MMSFORTH, BY ARNOLD SCHAEFFER, PART 6 OF 6 ) 
DELAY SPEED C@ SPVAR C@ U* 0 DO LOOP ; 
BREAK FORTH 
BEGIN I NIT 0 PSET 

DO 2000 SPEED C@ I 0 DO DELAY PADDLE LOOP 
o 60 PTC I 1+ 5 SPVAR C! 
2 RND 1 = IF 1 ELSE -1 THEN XDIR! 
58 RND 2+ XPOS 29 YPOS 

1 YDIR 

BEGIN 3 0 DO PADDLE LOOP 
BALL GAMECHK DELAY 

END 10 
11 
12 
13 
14 

LOOP SCORE @ BEST @ MAX BEST ! 
8 18 PTC " RUN GA~IE AGAIN" Y I N 

END 

15 BREAKFORTH FORGET TASK DIR 

value (0) in a variable ( SCORE ) by 
using the store operator { ! 1 . Two 
points should be mentioned here . 
First, executing a variable name (like 
SCORE ) causes the address of the 
variable, not its value, to be pushed 
onto the top of the stack . Second, the 
store opera tor [ ! 1 requires the value 
to be the second-to-top item in the 
stack and the address of the variable 
receiving the new ·value to be the top 
item in the stack. 

The words in line 14 clear line 0 
and print a message on the same line, 
setting the score to zero but leaving 
the cursor just after the colon that 

ends the message. 
In line 15 , the phrase 

[ BEST ? 1 causes the value of 
BEST to be displayed on the screen, 
and the rest of line 15 completes the 
message that is shown on line 0 of the 
screen. Finally, the semicolon on line 
15 ends the definition of INIT begun 
on line B. 

The Middle Blocks 
Whew, that was a lot of explaining! 

Now you see why FORTH is not very 
easy for beginners to read-you are ' 
packing a lot of work into a small 
space, using an ever-mare-specialized 



YES TOP-OF-STACK 
=0 
~ 

,-, 

START GAME OVER 
AGAIN, RETAINING 
ONLY VALUE OF 
BEST 

ALL BALLS HAVE 
BEEN PLAYED; 
CURRENT GAME 
IS OVER 

I 
I 

,J., 

THIS IS A DO-LOOP 
BEGINNING AND ENDING 
ON LINE 4 ; BEGINNING 
VALUE IS ZERO, ENDING 
VALUE IS (X * - 1) 

TEST OF LOOP 
BEGINNING AT LINE 
3 ; TEST IS : "DID 
PLAYER PRESS 'y' 
KEY?" 

2 

, 
~--------

3 

INIT 

DRAW OUTLINES OF 
GAME AREA, INITIALIZE 
SPEED, SCORE; NI/MBEH 
OF BAllS LEFT (ON TOP 
OF.STACK) = B * 

3 

PSET 

DRAW GAME PADDLE 

l4-----{ B 

BEGIN LOOP AT 
LINE 3, TEST AT 
LINE 13 

THIS IS A DO-LOOP 
(LINE 4) THAT ENDS AT 
LINE 11; BEGINNING 
VALUE IS ZERO, ENDING 
VALUE IS (B * -1) 

PADDLE 

MOVE PADDLE 
AS DIRECTED 
FROM KEYBOARD 

Figure 3: A flowchart for the BREAKFORTH program (given in listing 1, block 55) . The number above each box is the line 
number within block 55 that performs the action of the box. Many calculations in FORTH are done on the stack and do not acquire 
va riable names . Because of this, an asterisk in a variable or procedure name (eg: X* , 3PADDLE*) denotes that the name was given 
only in this flowchart to add clarity. 

instruction set. Experience with 
reading and writing FORTH code 
makes the process easier, but spacing, 
indentation, use of descriptive word 
names, and lots of comments are 
always helpful. A surprise to the 
BASIC user: none of these source-

160 August ]980 © BYTE Publications Inc 

code editing improvements use any 
extra programmable memory space. 

Table 1 explains much of what the 
words in blocks Sl thru S4 do, but let 
us look at some of the interesting 
features contained in these lines of 
FORTH code . 

When the ten-to- twenty times 
speed increase of FORTH over 
BASIC is not enough (or when we 
want to do things that cannot be done 
with existing FORTH words), we can 
redefine some FORTH words in the 
assembly language of the computer 



8 

3PADDLE* 

PADDLE IS PERFORMED 
3 TIMES WITHIN SHORT 
DO-LOOP 

9 

BALL 

MOVE BALL TO NEW 
CALCULATED POSITION 

9 

GAMECHK 

IF WALL IS COMPLETELY 
GONE, DRAWS NEW 
WALL 

N B P * . N BP * + 1 
(INCREMENT NUMBER 
OF BALLS PLAYED 

(in the case of the TRS-80, 8080 or 
Z80 assembly language). When we 
want a FORTH word (program) to 
run f;:lster, usually a short assembly­
language definition of the word that 
gets used the most will speed things 
up sufficiently. Lines 10 and 11 of 
block 51 are the only two words used 
in BREAKFORTH that are defined in 
8080 assembly language . 

CHECKS TO SEE IF 
BALL HAS GOTTEN PAS T 
PADDLE; IF SO, PUTS 1 
ON TOP-OF- STACK; 
ELSE PUTS O(IF BALL 
STILL IN PLAY) 

TEST OF LOOP AT 
BEGINNING OF LINE 8 ; 
TEST IS:"HAS BALL 
GOTTEN PAST PADDLE?" 

THIS IS END OF 
DO-LOOP BEGUN AT LINE 
4 ; GO TO BEGINNING OF 
LOOP FOR LIMIT TEST 

(MMSFORTH comes with a com­
pact 8080 assembler built in, like 
many Z80-based FORTHs. A full Z80 
assembler also is available from MMS 
at a modest price .) 

Inspection of lines 10 and 11 of 
block 51 shows that assembly­
language definitions begin with the 
word CODE (instead of ( : l ) and 
end with the word NEXT (instead 

of ( ; l ). Here, FORTH's 8080 
assembler is used to define a new type 
of word to output to a port. Both 
1CASSOUT and 2CASSOUT drive 
the cassette recorder port (lIO port 
255 on the TRS-80), and the word 
BOP executes both these words in a 
do-loop ten times to create a short 
square-wave sound on the external 
speaker. 

The definition of PCHK ("paddle 
check" of ball location) in block 53 
uses two more constructs. There are 
two if constructs, the inner one begin­
ning in line 6 and ending in line 10, 
the outer beginning in line 5 and end­
ing in line 11. (Notice that only the in­
ner loop uses the optional else clause, 
as in line 9.) The second construct is a 
numeric case construct, NCASE ; as 
shown in line 7. When NCASE is ex­
ecuted, it expects the number on top 
of the stack to be one of the numbers 
listed between NCASE and the dou­
ble quote marks (here, zero thru 
seven) . The value found causes the 
execu tion of the corresponding 
FORTH action word in the series of 
apparent numbers between the dou­
ble quote mark and the word 
CASEND. (Numbers are words but 
are not in FORTH ' s dic­
tionary-when they are "executed," 
they are pushed on top of the stack . 
MMSFORTH case statements require 
their action words to be words in the 
FORTH dictionary and not numeric 
literals, so in block 53, line 2, 2 and 
- 2 are defined as constants (FORTH 
words). 1 and -1 are already defined 
as constants by standard FORTH. 
Taking (2 CONSTANT 2l as an 
example, the first 2 is the value of the 
constant, while the second 2 is the 
name of the constant; we might have 
used the word TWO in its place.) In 
our program, {a NCASE l causes 
the word - 2 to be execu ted. 
{ 1 NCASE } , {2 NCASE } , 
or { 3 NCASE l cause -1 to be 
pushed on top of the stack, and so on. 
Only one of the words is executed; 
execution then continues with the 
fir s t word after CASEND . 
MMSFORTH also has an alpha­
numeric case statement that branches 
on the value of a single character. 
Each may be thought of as a compact, 
structured, many-branched alter­
native to a nested series of if 
statements. 

The Last Block 
Block 55, the last block used to 

August 1980 © BYTE Publ icat ions Inc 161 



Word Name 

SPEED 
SPVAR 
SCORE 
XPOS 
YPOS 
PPOS 
XDIR 
YDIR 
LINE 
INIT 
PCLR 
PSET 
PADDLE 
1CASSOUT 
2CASSOUT 
BOP 
XCHK 
YCHK 
PCHK 

CLR 
BALLCHK 

Usage 

CVARIABLE contains speed of play. 
CVARIABLE contains speed multiplier, depends on height ball reaches . 
VARIABLE contains current score. 
VARIABLE contains current ball X position (range, 2 thru 61). 
VARIABLE contains current ball Y position (range, 5 thru 47). 
VARIABLE contains current paddle position (range, 2 thru 54). 
VARIABLE contains current ball X increment (possible values : - 2, - 1,1,2). 
VARIABLE contains current ball Y increment (possible values: - 1,1). 
Expects n on top of stack; moves cursor to line n, clears line. 
Asks questions and draws display. 
Clears paddle. 
Draws paddle . 
Checks for right- or left-arrow key being pressed and moves paddle appropriately. 
BOBO-code procedure for sound. 
BOBO-code procedure for sound. 
Makes one bounce noise. 
Checks if ball hit either side wall, modifies XDIR and XPOS if necessary. 
Checks if ball hit top wall and modifies YDIR and YPOS if necessary; also sets speed multiplier. 
Checks if ball at paddle level ; if so, did it hit paddle or is it out of play? Leaves F on top of stack; F = 0 if ball still in 
play, else 1. 
Clears brick, modifies score and YDIR. 
Increments ball position and checks for wall, paddle, or brick hits . Leaves F on top of stack; F = 0 if ball still in play, 
else 1. 

BALL Clears old ball pOSition, calls BALLCHK, and draws new ball; see BALLCHK for value left on top of stack. 
GAMECHK Checks if all bricks cleared and draws new barrier if so. 
DELAY Causes a given time delay between ball moves. 
BREAK FORTH Main game loop. 

Table 1: Table of variable names and FORTH words used in the BREAKFORTH program. Note that all variables leave their ad­
dress on the stack, that LINE removes one entry from the stack before executing, and that PCHK , BALLCHK , and BALL add 
one entry to the stack after executing. 

define the word BREAK FORTH , 
defines one last word ( DELAY , in 
line 1), then puts all the words de­
fined so far together to define the 

word (which is also the program) 
BREAKFORTH. This is a good 
demonstration of how FORTH is 
meant to work: first you define 

specialized words that are helpful in 
solving problems of a given class or 
application, then you use them to 
write the specific program needed. 

WHYCAN'T 
MICROPOLIS DO 

THINGSLIKE 
EVERYONE ELSE? 

162 August 1980 © BITE Publications Inc 



(The building words, if chosen and 
defined properly, can be used to help 
write other programs in the same 
class. ) 

The word BREAKFORTH is de­
fined in lines 2 thru 14. A flowchart 
for the program is given in figure 3; 
the number to the left of each box 
gives the line number within block 55 
which the box is associated with. 

Line 15, the last line of block 55, is 
interesting in that it triggers all the 
work done so far. The word 
BREAKFORTH causes the definition 
of the word to be executed. Once the 
game is finished, the nex t 
words, ~ FORGET TASK I, are 
executed; these words cause the word 
TASK (remember block 50?) and 
every word defined after it to be 
erased from the vocabulary of the 
language. This is done to free up the 
computer once we are finished play­
ing BREAKFORTH. You can omit 
these words if you wish, but the disk 
program is recalled into memory so 
easily (with the phrase! 50 6 

LOADS I ) that most people prefer 
to keep the FORTH dictionary as 
uncluttered as possible. The last 
word, DIR , causes the standard disk 

MMSFORTH directory to be 
displayed on the screen. (The last 
three words should be deleted if you 
are running the cassette version of 
MMSFORTH.) 

Summary 
It takes some work to understand 

your first FORTH program. But this 
work is only the flip side of the same 
coin that makes FORTH such a 
powerful language-where else can 
you easily write such a large and 
speedy program in such a small 
space? [The only other candidate 
language I can think of is APL, which 
is also known for its compactness and 
unreadability to the uninitiated . .. 
GWj But, of course, your second 
FORTH program is easier than your 
first , and so on. Better yet, your 
second program may be 90% writ­
ten by your first , thanks to FORTH's 
structured and modular design. 

We hope you have enjoyed this in­
troduction to FORTH . We can assure 
you that it has just scratched the sur­
face of FORTH, which performs 
equally well in process control proj­
ects and business applications. 
FORTH improves our programming 

skills while improving our computer's 
effective speed, memory capacity, 
and instruction set. It is a most satis­
fying language .• 

Miller Microcomputer Services 
offers a number of products and 
services based on the FORTH 
language. Versio'n 1.9 of 
MMSFORTH, the language used 
in this articie, runs on a 16 K-byte 
or larger TRS-80 Model I with 
Level II BASIC. The disk version is 
$79.95, and the cassette version is 
$59.95. Each package contains the 
complete MMSFORTH system (in­
cluding a full-screen editor and an 
8080 assembler), FORTH source 
code, documentation, and the 
micro FORTH PRIMER book from 
FORTH Inc. 

For further information, send a 
self-addressed, stamped business 
envelope to: 

MMSFORTH Information 
Miller Microcomputer Services 

61 Lake Shore Rd 
Natick MA 01760 

To be honest, we could. But our customers 
have come to expect a lot more from us. 

industry standard. And many more will . 

They've come to appreciate our desire to 
innovate, to improve upon, to blaze new trails 
in floppy disk technology. That's how we got 
our reputation as the industry's undisputed tech­
nological leader. 

96 TPI is nothing new for us. 
Consider the current hubbub about "new" 

96 TPI disk drives. You should know that what may 
be new to our competition is anything but new 
to us. 

After all, we brought the 100 TPI MegaFloppyTM 
disk drive to the marketplace more than two years 
ago. And we've delivered more than 50,000 drives 
already. 

To us, a 96 TPI drive is no big deal. So for the 
customer who's looking for a double track drive 
offering compatibility with 48 TPI drives, Micropolis 
can deliver. 

Think of us as double headquarters. 
We shou ld also mention that our double track 

disk drives give you all the storage capacity of an 
8-inch floppy in the body of a 5% -inch floppy. And 
with our double head version, you get up to 1.2 
megabytes. That's more than ten times the capacity 
of other 5% -inch floppies. 

But our innovations don't stop there. Over the 
years, many of our ideas have gone on to become 

Things like stainless steel, precision··ground 
lead screws instead of cheaper. less reliable plastic 
positioners. 

We also developed a special disk centering 
mechanism that is the most accurate in the industry. 

And who do you think successfully adapted 
Group Code Recording technology to the floppy 
disk drive industry? None other than Micropolis. 

Remarkable as our technical achievements 
may be, some people still wonder how we got 
to be number two so rapidly in such a fiercely 

competitive business. 

"" " .. "" 

C". ' ~ 

Obviously, we did 
it by design. 

MICRorOLIS™ 
Where the Sif4-inch OEM drive gJrew up. 

Micrcpolls Corporation. 21329 Nordhoff Street. Chatswortl1. CA 91311. For 
t ile te lephone number of your nearest OEM rep. ca ll 12131 709·3300 

August 1980 © BYTE Publica tions Inc 163 



FORTH Extensibility 
Or How to Write a Compiler in 25 Words or Less 

Kim Harris 
1055 Oregon Ave 

Palo Alto CA 94303 

A computer language should help users solve prob­
lems. Languages bridge the gap between the primitive 
operations the computer can perform (add, fetch from 
memory, etc), and the tasks a user needs (invert a matrix, 
search a file, etc). When the operations of an application 
are well matched to those of a language, the solution can 
be simplified and developed in less time; in addition, the 
resulting program becomes more readable. 

Because all applications have various needs, it is im­
possible for a nonextensible computer language to satisfy 
all needs equally well. Although languages have been 
produced which attempt to include all possible opera­
tions, structures, and facilities, these have not been 
satisfactory . 

FORTH's approach is to provide a few techniques that 
allow a user to quickly add the special operations his par­
ticular application requires. The remainder of this article 
will describe some of these techniques and give, examples 
that add arrays (with and without subscript range check­
ing), virtual arrays, and a case selection control 
structure. 

Extending the Language 
The' ability to add language facilities and compiler 

structures is called extensibility. FORTH is extensible on 
three levels of increasing power: 

• using existing compilers 
• creating new compilers 
• creating new operating systems 

Editor's Note 
In this article, Kim Harris uses the syntax of 

FORTH-79, which is different from that of existing 
FORTH implementations, for his examples . 
FORTH-79 is a standard set of FORTH words that, if 
used to build all other FORTH words needed for a 
given application, insures the complete portability of a 
given program between different versions of FORTH. 
Members from FORTH Inc, the FORTH Interest 
Group, the European FORTH Users ' Group, and 
MMS worked together to define FORTH-79. I have 
noted the differences between the text and existing 
FORTH implementations (in particular, fig-FORTH 
and MMSFORTH) where known ... . GW 

164 August 1980 © BYTE Public. tions Inc 

This article focuses on the second level and demonstrates 
the construction and use of specialized compilers. The 
specialized compilers are usually simple (definable in a 
few source lines), but permit entire new classes of 
language or compiler facilities to be added to a FORTH 
system. 

The compilation of any computer language is dia­
grammed in figure 1. Compilation is the process of con­
verting a source language program into a form that a 
computer can use. 

FORTH uses multiple compilers to implement different 
compiler functions. For example, compiling a data struc­
ture declaration (eg: an array) is distinctly different from 
compiling an executable statement. FORTH uses separate 
compilers for these two activities. Such compilers are 
many times simpler than the compilers for most popular 
languages (eg: BASIC, Pascal, COBOL); however, a 
collection of FORTH compilers can perform all the func­
tions of the other languages' compilers (when these func­
tions are adapted to a FORTH-like environment). 

FORTH uses the English word "word" to mean an ex­
ecutable procedure, not a piece of memory. In this arti­
cle, "word" will be used in the FORTH sense, and storage 
sizes will be specified in terms of 8-bit bytes. 

User-Defined Words 
The input language to the FORTH compilers is a se­

quence of FORTH source language word-names sepa­
rated by spaces. (Unlike other languages, a space in 
FORTH is very important.) The output is one dictionary 
definition for each new word (procedure) compiled . The 
compilation process is controlled by special FORTH pro­
cedures called defining words. A source definition, which 
is a series of FORTH words including defining words, 
specifies a procedure that can be compiled by executing 
(typing in) the sequence. The result of compilation is a 

USER'S 
EXECUTE 

USER'S 
SOURCE OBJECT 
PROGRAM COMPI LER PROGR AM 

Figure 1: Compilation of any computer language. A program in 
some computer language is input to a compiler. The compiler 
produces a functionally equivalent program in a different, ob­
ject language. 



SOURCE 2* DUP + 
DEFINITION 

(0) 
DICTIONARY 
DEFINITION 

NAME CODE PARAMETER 
FIELD FIELD 

I\. 
FIELD 

HEAD BODY 

SOURCE 
DEFINITION 

VARI ABLE % INTEREST 

(b) 
DICTIONARY 
DEFINITION 

FROM DEFINITION 
OF 2* 

NAME CODE PARAMETER 
FIELD FIELD FIELD 

'----~ ~--~) '--....,----J 
HEAD BODY 

Figure 2: Examples of extending the FORTH language. The first source line adds a new operator named 2* (see figure 2a).; the second 
source line adds a new operand named %INTEREST (see figure 2b). 

dictionary definition, which is a block of FORTH-inter­
pretable instructions. All compiled FORTH words are 
kept in this dictionary, which is usually located in the 
computer's memory. 

User-defined words are treated the same as system­
supplied words. If some new words are defined which 
behave like operators (eg: triple-precision versions of the 
FORTH words + , - , * , / ,etc) , then the 
language has been truly extended to include these 
operators. Subsequent words may use these new words 
as system-supplied operators . 

Exam12les of standard, system-supplied defining words 
are { : } (colon), which ~tarts the compilation of subrou­
tine-like procedures, and VARIABLE ,which compiles a 
named memory location for the variable's value . 

A source definition consists of a defining word fol­
lowed by the name of the word being defined and then by 
other FORTH words and numbers. Figure 2 illustrates the 
source definitions and the corresponding dictionary 
definitions for two new words named 2 * and 
%INTEREST . (FORTH word-names may be made of 
any nonblank characters.) The word 2 * simulates a 
multiplication by 2 by adding a value to itself. 

The defining word { : } compiles the words that 
follow it in a definition, which is then added to the dic­
tionary . Each FORTH dictionary definition consists of 
two parts: a head and a body . The head contains system­
internal information including a name field and a code 
field. (A link, which points from a definition to a 
previous definition, is part of the head but will be ignored 
in this article .) The name field contains the name of the 
word. The code field contains a pointer to the instruc­
tions that will be executed when the word is executed. 

For definitions compiled by { : }, the code field points 
to a procedure that begins the execution of the words 
referenced in the definition . The body of this kind of 
definition, called the parameter field, is a series of ad­
dresses that point in order to each FORTH word in the 
definition. The addresses of these referenced words are 
placed in the parameter field by the { : } compiler, and 

166 August 1980 © BYTE Publica tions Inc 

the definition is ended by the FORTH word { ; } 
(semicolon) . The execution of the word EXIT (compiled 
at the reference to { ; }) ends the execution of the word. 

Some Examples 
The word 2 * will leave a result that is twice the value of 

its input. (See figure 2a.) Examples in this article will 
underline the input typed by the user and will end in an 
unseen carriage return; the computer's response follows. 
The following line shows the use of the word 2* 

3 2*. 6 OK 

The use of 2* causes the words in its definition to be ex­
ecuted, as if the user had typed: 

3DUP 
+ 

two copies of 3 on the stack 
add both 3s 
print result from top of stack 

Any subsequently compiled word may call the word 2* 
as if it were any other FORTH word. When called, 2* 
performs its function and then returns. This is analogous 
to the execution of a subroutine call in other languages. 

A word is called by simply using its name, as in the 
following source definition for 4* 

: 4* 2* 2* 

The defining word { : } has been used to compile 
another definition into the dictionary. 

Using 4 * will cause 2 * to be called and executed twice. 
Here is an example of the use of the word 4 * . 

3 4* . 12 OK 

The second word defined in figure 2 uses the defining 
word VARIABLE to compile a dictionary definition that 
contains data. The source word-name %INTEREST is 
compiled into a new dictionary definition containing a 



Level 

II 

III 

Method 

Using standard FORTH defining words to add 
new operations (programs). 
Creating new user-defined defining words that, in 
turn, create new classes of words. 
Creating new FORTH-like systems through 
metaFORTH. 

Table 1: Levels of extensibility in FORTH. Level I refers to 
the act of defining ordinary words in FORTH using standard 
defining words . Level II refers to the creation of new defining 
words that are then used to create a family of ordinary 
FORTH words. Level III refers to the act of altering and rec 
compiling FORTH itself (sometimes called metaFORTH) to 
create significantly different variant FORTH-like systems . 
Higher levels imply greater capability and flexibility . 

2-byte area where the value of the variable will always be 
stored . (The use of the word-name %INTEREST , either 
inside or outside a definition, will cause the address of 
this variable's value to be returned, not the value of the 
variable.) 

The dictionary definition for %INTEREST contains 
the variable's name, a pointer to the instructions executed 
when %INTEREST is executed, and a 2-byte data area. 
The code fields of all words defined by VARIABLE point 
to a procedure which returns the address of the data area 
of the variable when the variable's name is referenced. 
All FORTH words, even data words, have some code 
that is executable . 

The two defining words of this figure are actually dif­
ferent compilers. The defining word { : } compiles pro­
cedure definitions, while the defining word VARIABLE 
compiles data definitions. All user-added operators and 
operands can be used exactly like the system-supplied 
ones. Even new control structures can be added to the 
FORTH cQmpiler by the user. 

Levels of Extensibility in FORTH 
As shown in table 1, there are three levels of exten­

sibility supported by FORTH. The two words defined in 
figure 2 are examples of extensibility level I, the most 
commonly used level. It comprises the "ordinary" act of 
programming in FORTH. Although it is very useful, this 
level is the most restrictive and the least powerful of the 
three. 

The process of writing and using new defining words is 
the second level of extensibility . Level II , which is more 
powerful than level I, allows a new "family" of words to 
be added to the language or compiler. This is done by 
creating a special word, called a defining word, that will 
be used to create FORTH words in the same family . The 
user specifies via the defining word how the compilation 
of a new family member (itself an ordinary FORTH 
word) is to be performed and what the result will be. Also 
the user specifies what a member of ~he family will do 
when it is executed. 

Level III, the highest level of extensibility, is called 
metaFORTH. It uses the entire FORTH system to compile 
a collection of source definitions (including both lower 
levels) in order to produce a clone or a mutation of 
FORTH. 

SSG Writing 
and Mailing 
Systems. 

Take Letteright 
for quick document 

preparation and edit plus NAD 
Name And Address for extensive mailing list 
capabilities. 

Put them together and you've got a flexible, 
powerful solution to big and small correspon­
dence problems. 

With Letteright you create and edit: your 
document right on the screen. It's much easier 
to use than a typewriter. The letters are always 
perfect, and revisions are a snap. 

Letteright's "wild card" slots let you create 
standard letters and forms, then insert informa­
tion selected from your mailing list to address 
and "personalize" the letter. 

The NAD system will store lots of names and 
addresses, with identifying information you 
create. You then print lists, labels, or envelopes 
of virtually any group you 
want from the list, 
or the whole list. 

This pair should be 
working for every 
microcomputer owner. 

Letterlght and NAD ore port of a full line of working sohware solutions from Structured Systems 
Group, all ready 10 run on any CP/M® microcomputer system. CP/M is a registered trademark of 
Oigitol Research. 

Structured Systems 
5204 Cloremont Oakland, Ca 94618 (415) 547-1567 

Circle 110 on inquiry card . 



(Please don't be misled by my use of the word "com­
piler." I have been asked, "Can you write a compiler in 
FORTH that will compile BASIC, Pascal, COBOL. .. 7" 
The answer is not easy. Defining words can compile 
application-oriented languages, but those languages 
should be FORTH-like in nature . Ordinarily, the 
language being compiled satisfies the syntax of 
FORTH-words separated by spaces. The compilation 
will result in FORTH-interpretable instructions that will 
add to its dictionary of word definitions. 

In k'eeping with the FORTH philosophy of keeping all 
definitions small , defining-word definitions are also 
small . This results in compilers (defining words) that are 
simple and specialized, although the range of complexity 
of these compilers can vary greatly. A simple defining 
word such as V ARIABLE may accept only one source 
word and produce a single, simple definition in the dic­
tionary. A more complex defining word such as { : } 
may take several source words and produces a more com­
plex definition.) 

The remainder of this article concentrates on level II, 
defining new families of words. The scope and usefulness 
of new defining words are discussed using functional 
descriptions and examples . New defining words can be 
created which can later compile application-oriented 
languages . 

Creating Families of Words 
The technique of creating new defining words permits 

TIME: 

FORTH 
EVENT: 

SEQVENCE J 

COMPILE A 

NEW DEFINING 
WORD . 

SE'QVENCE 2 

EXECUTE THE 

DEFINING WORD; 
COMPILE A NEW 
MEMBER WORD . 

SEQVENCE .J 

EXECUTE THE 

MEMBER WORD. 

Figure 3: The order of events governing defining words. The 
first event creates a w ord that will define a new family of words; 
this family currently has no members. The second event uses 
this new family-defining word to create a new family member, a 
named FORTH word. The third event occurs when any named 
FORTH word belonging to this family is used. 

The 
Working 
Analyst. 

If you would like to put 
a computer to work 
collecting, organizing, 
and summarizing 

the information 
you need to make 
better decisions, take 

a look at Analyst. 
Analyst is a software 

package designed to let 
you store and analyze 

virtually any information 
involving numbers, dollars, 

dates, and descriptions. Simply 
tell Analyst what kind of informa­

tion you want to store. Analyst creates a com­
puterized file for that information. And Analyst 
creates an information entry program for your 
file that asks you for each entry, and checks your 
data for errors. (You can create any number of 
different files .) 

Then tell Analyst what reports you want from 
your data file. There are all sorts of record 
selection and report formatting options, so you 
can design an unlimited variety of reports to 
focus on different aspects of the same data file. 

Analyst is so flexible, you'll find a million 
ways to use it. It is easy to use, so you don't need 
to be a programmer to make 
your computer really 
work for you. If this bit 
of information 
intrigues you, find out 
the rest. You'll like 
what you see. 

Scructured Systems Croup 
IN~XJIlI>¢RArl!'" 

Analyst is a part of a full line of working software soluti ons f rom 
Structured Systems Group, all ready to run on any CP/ M' microcomputer 
system. For more informati on, see your computer retail e r, or call us. 

· CP/ M is 0 trademark of Digita l Research. 

Structured Systems 
5204 Claremont Oakland, Ca. 94618 (415) 547-1567 

Circle 115 on inquiry card. August 1980 © BYTE Publications Inc 169 



a user to later create a family of FORTH words that can 
have any number of members. Each member shares some 
family traits but can also have individual characteristics. 
The family members are all the words that have been 
compiled by a defining word. Their common traits are 
specified by the defining word. However, each word in 
the family has individual characteristics that are assigned 
when added to the family. 

For example, the defining word VARIABLE defines a 
family with individual members, each of which has a dif­
ferent name and value, but all share the same execution 
trait: specifically, the use of the name of any variable 
returns the address of its value. 

It is important to understand that there are three time­
ordered events related to defining words. These are listed 
in figure 3. These events will be explained using an 
example. 

The compilation of the new words in figure 2 is a se­
quence 2 event (ie: using a defining word to compile 
another word). When the defining word VARIABLE is 
executed, as in: 

VARIABLE % INTEREST 

the source word %INTEREST is compiled. 
Storing a value into the variable is a sequence 3 event. 

r BEGINS 
DEFINITION 

USED AT SEQUENCE 2 

(

COMPILED) I "" , 
AT : defining-word <BUILDS compile-lime words 
SEQUENCE 
1 DOES> execul ion - I ime words ; 

\ . ) 

USED AT S~QUENCE 3 L 
ENDS 

DEFINITION 

Figure 4: The structure of the source definition of a defining 
word. These source lines create a defining word for a new family 
(sequence 1). Execution of the defining word (sequence 2) 
< BUILDS a dictionary definition for a new family member. 
The contents of that definition is constructed by the compile­
time words. Executing any family member (sequence 3) DOES> 
(ie: executes) the execution-time words. 

(
SOURCE FOR) 
SEQUENCE 2 VARIABLE 

I 
I 
I 

EXECUTES 
I 

+ 

The following words store a 5 into the variable. 

5 % INTEREST ! 

Since VARIABLE is system-supplied, the sequence 1 
event (the compilation of VARIABLE ) occurred when 
the FORTH system was generated. 

< BUILDS and DOES> 
To illustrate a simple sequence 1 event, a definition of 

VARIABLE is presented. 

: VARIABLE <BUILDS 2 ALLOT DOES> 

The defining word { : } (colon) is used to compile the 
source definition of VARIABLE . To the word { : }, 
VARIABLE is an ordinary definition (level I), and its 
definition is a sequence 2 event for { : }. VARIABLE is a 
defining word because the special words < BUILDS and 
DOES> are used. (The < and > characters are part of 
the names of the words; they are used like parentheses to 
indicate that <BUILDS comes before DOES> .) 

As illustrated in figure 4, a defining word specifies both 
the compile-time behavior (sequence 2) and the 
execution-time behavior (sequence 3) of all words com­
piled by this defining word. The sequence 2 behavior is 
specified by < BUIILDS and any following words up to 
DOES> . The sequence 3 behavior is specified by 
DOES> and any following words up to { ; }. The 
English meaning of < BUILDS is "compiles" and the 
meaning of DOES> is "executes." 

Figure 5 demonstrates what occurs when VARIABLE is 
executed. The end result of the execution of VARIABLE is 
that a new dictionary definition is created for the word 
%INTEREST . The following describes each step in the 
compilation of %INTEREST : 

1. The execution of VARIABLE causes < BUILDS 
to be executed. < BUILDS reads the next word­
name after the word VARIABLE from the input 
text stream. (In this example, the next word­
name is % INTEREST .) 

2. < BUILDS then adds the head of a new definition 
to the end of the dictionary. Within this head, 
the name field contains the member's word-name 

% INTEREST 
/ 

/ 
/ 

WORD-NAME 

/ 

" (

EXISTING ) 
DICTIONARY 
DEFINITION 

VARIABLE < BUILDS 2 ALLOT DOES> EXIT 

(
RESULT OF ) 
SEQUENCE 2 

I \ 
I \ 

COMPILES COMPILES 
I \ , \ 

DICTIONARY ~ ~ 

% INTEREST I 
NAME CODE 
FIELD FIELD 

PARAMETER 
FIELD 

Figure 5: The result of executing a defining word. The first line is executed, resulting in the compilation of the word-name 
%JNTEREST . The result is a new definition in the dictionary. 

170 August 1980 © BYTE Publications Inc 



( %INTEREST ), and the code field contains a 
pointer to the instructions that will be executed 
when %INTEREST is executed (during sequence 
3). 

3. The two words { 2 ALLOT } are executed next. 
These will reserve 2 bytes of dictionary space for 
the value of the variable. This space is in the 
parameter field of the dictionary definition. 

4. Finally, DOES> terminates the compilation of 
% INTEREST and links the code field of 
%INTEREST to the execution-time part of 
VARIABLE . 

When %INTEREST is executed (sequence 3), DOES> 
is executed, followed by the FORTH words between 
DOES> and the end of the definition. (In this example, 
there are no words following DOES> ; the word EXIT is 
a routine left by the end-of-definition word { ; }.) 
DOES> returns the memory address of the parameter 
field within the dictionary definition of %INTEREST . 
Since the parameter field of a word defined by 
VARIABLE contains only the value of that word, execu­
tion of the word %INTEREST returns the address of its 
value, which is then pushed onto the parameter stack. 
(That is, in fact, the execution-time behavior of a FORTH 
variable.) 

Figure 6 shows an example of the execution of 
%INTEREST . 

[The above definition and usage of the word 
VARIABLE are valid for existing FORTHs. However, the 
definition of VARIABLE supplied with most FORTHs re-

64K MEMORY 
FOR THE 

HEATHKIT H8* 
COMPUTER 

Assembl ed Kit 

$750 
615 
480 
345 

$650 
525 
400 
275 

64K (56K) 
48K 
32K 
16K 

Memory Expansion Kit - 16K $125 
PC Board Only - With Documentation $ 50 

Phone for Free Brochure 714/830-2092 

*HEATHKfT and H8 are Registered Trademarks of the Heath Ca. 

- TRIONYX 
ELECTRONICS 

BOX 5131-C, SANTA ANA, CA 92704 

172 August 1980 © BYTE Publications Inc 

quires the initial value of the variable before the word 
VARIABLE (eg: { 5 VARIABLE %INTEREST } ). 
This definition of VARIABLE is : 
{ : VARIABLE <BUILDS, DOES> ; } 
. ... GW] 

The previous example demonstrated the following 
principles: 

• Sequence 1: the definition of a defining word 
specifies both the compile-time behavior 
and execution-time behavior of all words 
belonging to the family of the defining 
word (ie: all words created using the defin­
ing word). 

• Sequence 2: the execution of a defining word 
causes the compilation of the word-name(s) 
that follow . This creates a new dictionary 

(SEQUENCE 3) 5 % INTEREST 

5 PUSHED ONTO THE STACK ___ ....Jf 

EXECUTES { DOES> } 
WITHIN { VARIABLE} . 
THIS PUSHES THE ADDRESS 
OF THE VALUE ONTO THE STACK --------' 

STORES THE VALUE 5 INTO 
THE ADDRESS RETURNED 
BY { % INTEREST } _____________ --1 

Figure 6: The execution of a family member word . The value 5 is 
stored in the variable %INTEREST . 

Main/Frames from ~~ 

Circle 118 on inquiry card. 



BUSINESS -PROFESSIONAL -GAME 
SOFTWARE FOR APPLE AND TRS-80 

o HOME FINANCE PAK I: Complete package $49.95 Apple, TRS-80 
o BUDGET: The heart of. comprehensivlI home finance Ivs!em. ~llows U58r to define uP , to 20 budget 

items. Actual expense input Cln be by keyboard or by lutomatlc rlldlOg of CHECKBOOK II flies. Costure 
lutomltiCilly sorted and complred with budget. BUDGET produces both monthly actual/budget/variance 
raport and I YIIt·to·dala by month summary of actual costs. Color graphics display of expaolils .. ,524.95 

DCHECKBOOK II : This extensive progr.m keeps complete records of each check/deposit. Unique check 
entry system ,IIoWi user to set up common check purpose .nd racipient categories. Upon entry you select 
from this pr.·defined menua to minimize keying in I lot of dati. Unique names can also be stored for com· 

~~'tt,enU~to ~~8i~h!~k~~:~ ~~~~~ ~~:ige~h~fl~Sr:~~~~ib1!'c~abUD~~~0;r~:::r:~ ~e.v~e~ .. ~~ ~~I,u~,nsf9i,9~ 
OSAVINGS: Allows user to keep trICk of deposits/withdrawals for up to 10 livings accounts. Cpmplete 

records shown via screen or 40 column printer" , . . . .... $14,95 

o CREDIT CARD: Keep control of your cards with this program, Organizes, stores and displ ays purchases, 
payments and service charges. Screen or 40 column printer display. Up to 10 separate cards . .514,95 

OTHE UNIVERSAL COMPUTING MACHINE : $39.95 Apple, TRS-80 
A user programmabllt computing system structured around a 20 row x 20 column table. User defines row 
and column names and equations forming a unique computing machine. Table elements can be multiplied, 
dividad, subtracted or added to any other element. User can define repeated functions common to a row or 
column greatly simplifying tablll setup. Hundreds of unique computing machines can be defined, used, stored 
and recalled, with or without old data, for later use, Excellent for sales forecasts, engineering design analysis,­
budllets, inventory lists, income stltements, production planning, project cost estimates·in short for any 
planning, analysis or reporting problam that can ba solved with a table, Unique curser commands allow you 
to move to any elament, change its value a"d immediately see the effect on other tllble values. Entire table 
can be printed by machine pages (user·defined ]·5 columns) on a 40 column printer. Transform your com· 
puter into a UNIVERSAL COMPUTING MACHINE, 

DCOLOR CALENOAR: HI·RES color grophies display 01 your penon,l "Iend,,_ Automoti, 
mUltiple entry of repetitive events, Review It I glance important dates, appointments, InniverUiries, birth· 
days, action dates, etc, over I 5 yeat period, Graphic calendar marks dates, Printer and sc reen display a 
summary report by month of your full text describing each day 's action item or event. Ideal for anyone with 
a bUlY calendar , . . IApple Only) , ., ......... $19.95 

o BUSINESS SOFTWARE SERIES: Entire package $199.95 Apple, TRS-80 
OMICROACCOUNTANT: The ideal system for the smalt c.uh business. Base d on clusic T·accounts and 

double-entry bookkeeping, this efficient program records and produces reports on account balances, general 
ledger journals, revenue and expenses. Screen or 40 column printer reports, Handles up to 500 journal 
antries per period, up to 100 accounts. Instructions include a short primer in Financial Accounting. $49.95 

OU"\\IERS~L BUSINESS MACHINE : This program is designed to SIMPLiFY and SAVE TIME for the 
serio us busineuman who must periodically Analyze, Plan and Estimate, The program was created using our 
Universal Computing Machine and it is programmed to provide the following planning and forecesting tools. 

CASH FLOW ANAL YSIS PROFORMA BALANCE SHEET SO URCE ANO USE OF FUNDS 
PROFORMA PROFIT & LOSS SALES FORECASTER Joe COST ESTIMATOR 

Price, including documentation and a copy of the bue program. Universal Computing Machine, ., .589 .9 5 

OINVOICE : Throwaway your pens. Use the ELECTRONIC INVOICE facsimile disp layed on your CRT, 

~~~, 'A~:~~~tP~~;:r~~~ J:~ J!II~;~!~~ t:r~'s, ~nhcilpu~~d!,a~gBe;t.f~~~s d~~~rt:~~ \ooa~:;sh~:~~e~~v~l~h 
these descriptions: Item No., No , of units, Unit Price, Product Code, Product Deu:ription, Toul Dollar

~~~uo~~ P~~iil~~~ ~anb~I~~v~~c:itto~:~re~":~dmdi~~\p~:~::a~:s, ~~s~:~Ai~t;ft~~. ~:8dKio.p: . i~~~i~e.s" ~~~:g~ 
D BUSINESS CHECK REGISTER: Expanded version of the Checkbook II program. Handles up to 500 checks 

per month with complete record keeping. (4BK) . . . S29.95 

OSUSINESS BUDGET : As deu:ribed above and companion program to Business Check Reaister. Handles 
500 transactions per month, up to 20 cost categories, Accesses BCR files for actual costs. (4BK) . . , ,$29.95 

DELECTRICAl ENGINEERING SERIES: Both programs $159 ,95Apple 
DlOGIC SIMULATOR: SAVE TIME ANO·MONEV. Simulate your digital logic circuits before you build 

them. CMOS, TTL, or whatever, if it's digital logic, this program can handle it. The program is Bn inter· 
active, menu driven, full ·fledged logic simulator capeble 01 simulating the bit·time by bit·time response of a 

~~~~~r~~r;LOtpk. ~~ ~~e~:s~~cli~i~d ~~~ul~~a~~~~~ Ol~ ~¥IE h~~~~dU~s!~.~~f~~e~a~~~':f~usd,in~ pN~~~SJs~r~d~fin~~: 
random, or binary input patterns. Simulation results displayed on CRT or printer. Accepts network des·
criptions from keyboard or from LOGIC DESIGNER for simulation, Specify 1000 gate version (4 8K reo
quired) or 500 gate version (32K required). .. S89.95

O lOGIC DESIGNER : Interactive HI·RES Graphics program for designing digital logic systems. A menu
driven series of keyboard commands allows you to draw directly on the screen up to 15 different gate types,
including 10 gate shape panerns supplied with th e program and 5 reserved for user specification. Standard
patterns supplied are NAND, NOR, INVERTER, EX·OR, T·FlOP, JK·FLOP, D·FlOP, RS·FlOP, 4 Bit
COUNTER and N·BIT SHIFT REGISTER. User interconnects gates just IS you would normall y draw using
line graphics commands, Network descriptions for LOGIC SIMULATOR generated simultaneously wit h the
CRT diagram being drawn . Drawing is done in pages of up to 20 gates. Up to 50 pages (10 per disc) can be
drawn, saved and recalled , Specify 1000 gBte (4BK) or 500 gate (J2K) system. . . ·S89.95

DMATHEMATICS SERIES: Complete Package $49.95 Apple only
o NUMERICAL ANAL VSIS: HI ·RES 2·0imensional plot of any function. Automatic scaling, At your option,

the program will plot the function, plot the INTEGRAL, plot the DERIVATIVE, determine th e ROOTS,
find the MAXIMA and MINIMA and list the INTEGRAL VALUE. For 16K $19,95

DMATRIX : A general purpose, menu driven program for determininlf the INVERSE and DETERMINANT of
any mltrix, as well es the SOLUTION to any set of SIMULTANEOUS LINEAR EOUATIONS. ~isk I/O for
data save. Specify 55 eqn, set (48K) or J5 eqn. (J2K) S19.95

0]·0 SURFACE PLOTTER : Explore the ELEGANCE and BEAUTY of MATHEMATICS by creating HI ·RES
PLOTS 0' J·dimensional surfaces from any J·variable equation. Disc save and recall routines for plots. Menu
driven to vary suriace parameters. Demos include BLACK HOLE gravitational curvature equations .. S19.95

DACTION AOVENTURE GAMES SERIES: Entire series $29.95 Apple only
D RED BARON : Can you outfly the REO BARON? This fast action geme simul ates a machine·gun DOG ·

FIGHT between your WORLD WAR I BI ·PLANE Bnd the baron's. You can LOOP, OIVE , BANK or CLIMB
in anyone of 8 directions · and so can the BARON. in HI·RES graphics S14.95

o BATTLE OF MIDWAV: You are in command of the U.S.S. HORNETS' DIVE·BOMBER squadron. Your
targets are the Aircraft carriers, Akagi, Soryu and Kaga. You must fly your way through ZEROS and AA
FIRE to make your DlVE·BOMB run, In HI ·RES graphics. . . SI4.95

DSUB ATTACK: It 's April, 1943, The enemy convoy is headed lor the CORAL SEA. Your sub, the
MORAV, has just sighted the CARRIERS and BATTLESHIPS. Easy pickings. But watch out for the DE ·
STROYERS · they're fISt and deadly. In HI·RES grephics . .514.95

o FREE CAT ALOG-All programs are supplied in disc and run on Apple II wlOisc & Applesoh ROM Card &
TRS·80 Level II and require 32K RAM unless otherwise noted. Detail ed instructions included. Orders
shipped within 3 days. Ca rd users include card number. Add S1.50 postage and handling with each order.

._- . California residents add 6%% sales til(. Milke checks payabla to:

_ VISA SPECTRUM SOFTWARE
.• ' DEALER INQUIRIES P.O. BOX 20B4 · 142 CARLOW, SUNNYVALE, CA 940B7

INVITED FOR PHONE ORDERS - 408-73B-4387

174 August 1980 © BYTE Publications Inc Circle 120 on inquiry card_

•

definition and adds a new member word to
the family of the given defining word. It
also extends FORTH because another user­
defined procedure is added to the language.

Sequence 3: the execution of a member word
causes the execution of the execution-time
words within the defining word that
created the member word.

To illustrate the versatility of defining words, examples
of new defining words follow. These examples present
the creation of new data structures, control structures,
and software tools.

Creating a String-Handling Defining Word
To show how defining words can create data struc­

tures, a one-dimensional array of 8-bit values will be
created. A defining word named STRING will be con­
structed. After STRING has been compiled, any number
of strings may be created; each can have a different name
and size. Before the definition for STRING is shown, an
example will first be used to describe how STRING will
be used.

To create a string 5 bytes long with the name BEANS,
the following words would be used (BEANS is the name
of the string, not the value put into the string):

5 STRING BEANS

This is a sequence 2 event that will create a dictionary
definition for BEANS ; this definition will contain 5
bytes of data space for the value of the string.

To fetch or store a character in BEANS , a subscript
will be passed to BEANS . BEANS will return the ad­
dress of the subscripted byte. For example, the words

3 BEANS C@

would fetch character number 3 from BEANS . This is a
sequence 3 event because it is a normal use of a word
defined by STRING. The subscript precedes BEANS
because FORTH prefers to pass data values on a stack.

The definition of STRING can now be written as
shown in listing 1. This definition is similar to that of
VARIABLE.

The parameter for ALLOT is omitted in this definition;
the string size declaration at sequence 2 will supply the
size parameter for ALLOT . (The word ALLOT looks for
the number of bytes to be reserved to already be on the
stack; this is why the string size precedes the word
STRING when the string variable BEANS is defined .)

Following DOES> is the word + . This will add the
address of the start of the string (supplied by DOES>)
to the subscript (supplied to BEANS at sequence 3) .
Figure 7 illustrates how this works.

Listing 1: A user-defined defining word. The word STRING ,
once defined, can be used to define new FORTH words with
unique properties.

defined at)
sequence 1)

used at sequence 2 used at sequence 3

STRING < BUILDS ALLOT DOES> + ;

Circle 121 on inquiry card_

When STRING is executed (sequence 2), it builds a dic­
tionary definition for BEANS , which is allotted 5 bytes
of data space. When BEANS is executed (sequence 3), it
does the addition of the subscript on top of the stack to
the address of the first character within BEANS .

The following examples show how BEANS could be
used in a FORTH program. The word STUFF-BEANS
will store the American Standard Code for Information

Listing 2: Using a FORTH word created by a user-defined defin­
ing word. The 5-character string variable BEANS was previous­
ly defined with the FORTH statement { 5 STRING BEANS }.
Now the word BEANS can be used like any other word in
FORTH. In listing 2a, the five characters of BEANS are filled
with the letters A thru E. In listing 2b, the characters are printed
out. Listing 2c gives the results of executing the words defined in
listings 2a and 2b. (The underline denotes user input followed
by a carriage return; the computer output, not underlined,
follows .)

: STUFF-BEANS 5 0 DO (fo r a ll of 'BEANS')
I 65 + (add 65 decimal to)

(do- loop index , yielding
(a) (an A SCII characte r)

I BEANS C! (store character in the)
(T th byte of 'BEANS')

:SPILL-BEANS

(b)

(e)

LOOP

50 DO
I BEANS C@
EMIT

LOOP SPACE

STUFF-BEANS OK
SPILL -BEANS ABCDE OK

(
SOURCE FOR)
SEQUENCE 2

(for a ll of 'BEANS')
(fetch the T th character)
(print it)
(print a n extra space)

5 STR ING
I
I
I

EXECUTES
I

+

Interchange (ASCII) characters A thru E in the string
variable BEANS. (See listing 2a.) The word SPILL­
BEANS will print the characters in BEANS on the user's
terminal. (See listing 21:>.) Using these words would pro­
duce the results shown in listing 2c.

In a similar way, multidiinensional-array defining
words may be defined; the size of each element can be
any number of bytes.

Since the execution-time function of all family
members is specified only once in the definition of the
family 's defining word, programming time is reduced,
memory space is saved, and readability is improved. By
changing the definition of the defining word and recom­
piling the FORTH words using it, the capabilities of every
member word are changed. This can be done so that the
use of all member words in a user's program is the same.

To illustrate the power of this technique, several varia­
tions on STRING will be presented.

Variations on the Defining Word STRING
The original version of STRING did not initialize the

contents of the array when it created member arrays. The
following version will store blanks in a string when it is
created (at sequence 2) . It is convenient to first define a
word which allocates and blanks dictionary space. The
definition of BLANK&ALLOT is a sequence 2 event. (See
listing 3a.)

Next, we create a new version of STRING that is the
same as the original, except that BLANK&ALLOT is
substituted for ALLOT. (See listing 3b.) (The redefini­
tion of STRING is a sequence 1 event.) This version is
used exactly like the original, but initialized strings are
created automatically.

Another variation of STRING checks if a subscript ex­
ceeds the string size when member strings are executed
(at sequence 3). If the subscript is less than the string size,
the result is the same as before; but, if the subscript is
negative or greater than the string size, an error message

BEANS
/

/
/

WORD-NAME

/
~

(

EXISTING)
DICTIONARY
DEFINITION

STRING < BUILDS ALLOT DOES> I + EXIT

(
RESULT OF)
SEQUENCE 2

(SEQUENCE 3)

I \
I \

COMPILES COMPILES
I \

; \
DICTIONARY ~ \

BEANS I 5 BYTES

NAME CODE PARAMETER
FIELD FIELD FIELD

~
\

EXECUTES
I
I
I

3 BEANS

Figure 7: The creation and use of a character array. The defining word STRING is executed, causing the compilation of a dictionary
definition for BEANS containing 5 bytes of data space. Wh en BEANS is executed (last line) , the DOES> part of the definition of
STRING adds the address of the parameter field of BEANS to the subscript (which is 3) , returning the address of the desired character
within BEANS .

176 August 1980 © BYTE Publica tions Inc

Listing 3: A more sophisticated definition of STRING . The
word BLANK&ALLOT (shown in listing 3a) allocates space for
and assigns blanks to a newly defined string. The new definition
of STRING (shown in listing 3b) uses BLANK&ALLOT to blank
out a string when it is created.

BLANK&ALLOT
HERE

(a) OVER BLANK
ALLOT

g et the address of the)
start of the string)
store blanks in the str ing
allocate space for the a rray

: STRING
(b)

< BUILDS BLANK&ALLOT
DOES> +

used at sequence 2
used a t seque nce 3

Listing 4: Another definition of STRING . This definition stores
the size of the string variable when the variable is created and
checks for a correct subscript when a character within the string
variable is referenced.

STRING
(used at sequence 2 :
<BUILDS DUP

ALLOT
(used at seque nce 3:
DOES > 2DUP

@ U< IF

+
2+

ELSE

(
(
(
(
(
(
(
(
(

. " RANGE ERROR" (
OVER @ (

2 +

THEN

(
(
(

store string .size in)
membe r 's parameter fie ld
a llocate string space)

d up licate both the subscript
& parame te r fi eld add ress)
if the subscript is less)
than the string size)
add subscr ip t to ad d ress
step over the stri ng size)
stored in the fi rst 2 b ytes)
othe rwise the subscript)
is too large or negat ive)
print e rror message)
p rint st r ing size a nd)
and ba d subscri p t)
leave a ddress of fir st b yte ,
a "safe " address)

is produced and the illegal subscript is printed. The string
size must be stored in the dictionary definition of member
strings when they are compiled (at sequence 2) so that the
range check can be made when they are executed (at se­
quence 3).

A new definition of STRING (a sequence 1 event) that
does the subscript checking defined previously is given in
listing 4.

The range check slows the execution of every reference
to a member string, but such checking may be useful dur­
ing program development. Since this version and the
original version defining STRING are used exactly the
same, it is possible to compile this definition of STRING
while debugging (then compile all references to it or its
member strings). After the program has been debugged,
the original version can be compiled (followed by the
compilation of all references to it or its members)' and the
program will run faster.

The next version of STRING allows very large strings
to be created and used.

Circle 122 on inquiry card.

CP/M(R) SOFTWARE TOOLS
NEW ED-80 TEXT EDITOR

ED-80 offers a refreshing new approach fOf the creation and editing of program and data
files cOllVl!l$3tionally nd it saves you money. Its powerful editing capabilities will satisfy
the most demanding professional-yet it can still be used by the inelperienced beginner.
Look at TII.s. Outstanding F.atur.s:

• FULL SCREEN window displays with forward and backward scrolling for edit­
ing your data a page-at-a-time, rather than line-by-line.

• ~~~;~eJ;io~~ ,~~~~:;~~~~Nr~l~~n8o"~. ~~da~~~~.inframe and minicom-

• Commands include forward or backward LOCATE, CHANGE, and FIND; and
INSERT, DELETE, REPLACE. APPEND. SAVE, PRINT, WINDOW, MACRO.
TABSET, SCALE, DUMP, and others.

• Compatible with existing CP/ M edit and text formatted files , with CBASIC, and
with Microsoft's MBASIC, FORTRAN, COBOL, and ASSEMBLER.

• CHANGE commands allow you 10 make conditional changes and 10 use vari­
able length strings .

• DeSigned for CP/ M and derivative operating systems, including LIFEBOAT.
COOS, IMDOS, DOS-A, ADOS, etc.

• GET and PUT commands lor concatenating, moving, duplicating, and merging
your edit liles on the same or different diskettes.

• Provides you with last memory-Io-memory COPY commands, and an inter­
mediate buffer lor copying lines over-and-over.

• Saves your last LOCATE, CHANGE, FIND, and APPEND command lor easy
re-execution .

• Simple line-oriented commands lor character string editing.
• Saleguards 10 prevent catastrophic user errors that result in the loss 01 your

edillile.
• INLINE command lor your character-oriented editing.
• Designed lor today's CRT's , video monitors. and teletypewriter terminals.
• Thoroughly lield tested and documented with a comprehensive User's Manual

and self-instructional tutorial .

And remember - in today's interactive programming environment - your most impor­
tant software tool is your text editor. ED-80 is already workin, in industry. government.
universities. and In personal computing to signHicantly cut program development time
and to reduce high labor costs. Why not let ED-80 belin salvi", your telt editing prob·
lems today? ED·80 Is protected by copyright and lurnished under a paid·up license lor
use on a single computer system. Single Density Diskette and Manual: $99.00. or the
Manual alone: $20.00 (cnedited with purchase of the Diskette). Specify Disk make/model.
S'" or 8'". hard or soft sectored. ORDER NOW and we'/I pay the posta,e!

SOFTWARE DEVELOPMENT & TRAINING, INC.
Post Office Box 4511 Huntsville, Alabama 35802

'~' Dealer Inquiries Welcomed :'. -
~: ® CP/ M is a trademark 01 Digital Research : '

The 2nd
Generation ...

It's all that it's
Cracked up to be.

MEASUREMENT
systems &. controls

incorporated

August 1980 © BYTE Publications Inc 177

Virtual Strings in FORTH
If the maximum string size exceeds the amount of pro­

grammable memory in the computer, the only solution is
to write your program using virtual memory manage­
ment. This means that data stored on disk or tape is con­
sidered part of the memory of the computer, and that all
operations working on these data take care of reading
and writing data between main memory and the magnetic
storage device .

Using virtual memory management, a program can
operate on a string array that is larger than main
memory; pieces of the string can be read into memory
and written back to disk or tape when required. And,
although this technique will slow the execution rate of a
program using it, it may be the only way to get a problem
solved-and better a slow solution than none at all .

(It is more common to need to manipulate large arrays
of numbers rather than strings. Still, the same technique
described here can be applied to numeric or any other
kind of array.)

With most traditional languages, it would be necessary
to rewrite the user program so that all array references
would call some function that could perform the disk
read operations. Execution time could be decreased if fre­
quently referenced array elements were kept in memory
as much as possible. Therefore, it would help if our
virtual-memory-array program could keep track of what
data is in memory as the program executes.

To show the difficulty of implementing this technique
in traditional languages, a FORTRAN example will be
used. In standard FORTRAN, the statement:

Marymac Industries Inc

ltadl8/haeK
AUTHORIZED SALES CENTER

Save 10% 15%
• OR MORE

DELIVERED TO YOUR DOOR ...
O~ned and operated by Marymac Industries Inc. Houstons only independen.t

RadiO Shack® dealer. Warranties will be honored by all company owned Radio
Shack® stores and most franchise and dealer authorized sales centers. Store open
Mon.-Sat. 10-7 . We pay freight and insurance. Save state sales tax. Texas
residents add only 5% sales tax . Brand new in factory sealed cartons. Reference:
Kat~ National Ba~k . Call us for a customer reference near your city. Offered ex­
f~uoS~~~~Yn) bfexR:sd~7~~~Ck® Authorized Sales Center 21969 katy Fwy .• Katy

Telephone 1-713-392.(1747 TRS-aO"

II

FOR BUSINESS,
LEARNING

AND
ENTERTAINMENT

Special Limited Time Only
Disk Dri ve .. $424,90

Delivered,
ICoI.#26· 1160. 26· 11611

Meet TRS-80's Big Brother!
The New TRS-80 Model II

We are located just 5 hours
from the giant Tandy Com­
puterware House in Ft.
Worth, Texas,

Call
Joe McManus

We'lie added a Digger, more
powerful "brolher" to Ihe
TAS-SO family. Irs TA S-80
Model II - a completely
new microcompu ter lor
bUSiness applications,

CHARGE IT
Today ~. I ~ -~

178 August 1980 © BYTE Publications Inc Circle 123 on inquiry card.

ARRAY(5, 7,2) = AR1(1,2) + AR2(10,20,30)
is equivalent to the FORTH words :

1 2 AR1 @ 10 20 30 AR2 @ +
5 7 2 ARRAY

In either FORTRAN or FORTH, if the arrays could not
fit into memory and were instead on disk, the array
references would have to be changed so that some addi­
tional procedures read and wrote selected pieces of data
between disk and memory. But in FORTRAN, the entire
source program would have to be changed. (In FORTH,
the body of the program would remain the same; only the
appropriate defining word would be changed .)

The following might be the simplest modification
possible in standard FORTRAN to do the previous state­
ment using virtual memory management of the arrays:

TEMP = FETCH2(AR1(1, 1), 1,2) + FETCH3(AR2(1, 1, 1),
10,20,30)

CALL STORE3(ARRAY(1,1,1), 5,7,2, TEMP)

The functions FETCH2 and FETCH3 are user-written
procedures to read the referenced array elements. The
subroutine STORE3 is a user-written procedure to write a
given value into an assigned array element. If a large pro­
gram using many normal array references had to be
changed to use FETCH and STORE calls, a lot of work
would be required.

FORTH's separation of control between defining
words and their members permits the necessary changes
to be made in the definition of the defining word; in this

GENERAL LEDGER
PAYROLL

ACCOUNTS RECEIVABLE & PAYABLE

Flexible and sophisticated business software that is
among the highest quality on the market. Originally
developed by OSBORNE & ASSOCIATES and rapidly becom·
ing a standard. Our service is support. We will send you
these programs with the proper I/O and CRT specific
subroutines for your hardware configuration. Get back to
business and leave the programming to us. Include hard·
ware description with order.

• Accounts Receivable and Payable 145.00
• Payroll (California) 145.00
• Non California state tax calculations

(please inquire) 15-250.00
• General Ledger 145.00
• Multiple profit center option for GIL 25.00
• Manuals (each) 20.00

All programs in CBASIC under CPIM (includes source)

These programs are up and running on the follow·
ing computer systems: Altos, TRS·80 MOD II (under
CP/M), Northstar, Vector Graphics, Intertec Super
Brain,. Cromemco, and others.

Synergetic Computer Products
508 UniverSity Ave • Palo Alto, CA 94301

(415) 328·5391
. Visa • Mastercharge • COD • Certified Check

CP/M is a trademark of Digital Research

Circle 124 on inquiry card.

(SEQUENCE 3) subscript BEANS

START
BUFFER
ADDRESS

1
subscript
MOD 1024

1

MEMORY
BUFFER

Figure 8: Accessing a virtual array. The data for a large array is
kept on a disk. When a byte is referenced, BEANS is executed.
One block containing the byte is read into a memory buffer (if it
is not already present) . Finally , the memory address of the
referenced byte is returned by BEANS .

tt:
WE ..

DELIVER! >~ \
Osborne Business)1 11

Software t2J
• Ready to (un - no recompiling !
• Custom configured for your terminal.
• We ore committed to fully 5uppoHing our users.
• One year maimenance included in price .
• Source programs, w ith enhancements .

.... $95 General Ledger w ith Cosh Journal
Accounts Payable .• •.... $95
Accounts Receivable .
Payroll w ith Cost Accoun ting

All four packages

.. $95
.$95

......... $295

Formats: 8", NorthStor. TRS -80 MOD II 1m . Manuals o re not included in the above prices -
odd i20 per manual desired (AR/AP orE' in one manual) . CP / M and C[}ASIC2 required .
Users must sign licensing ogreemem . Dealer inquiries invi ted .

Other high-quality CP/M software available - contact us for our com·
plete price list. Some examples:

WORDSTAR $435 TEXTWRITER III
PEARL II $345 PEARL III
PASCAL/ Z $385 TINY·C
CP / M and COASIC2 for TRS·80 MOD II ,. (P&T)

To o rder call , (206) 542 ·8370
o r w rite , VANDATA

17541 SlOne Avenue North
Seattle . WA 98133

$120
$645
$ 95
$285

VISA / MCleOD Welcome - Tn.S ·80 I~ 0 rE'gl~ t ered . 01 RadiO Shacl\ Inc

180 August 1980 © BYTE Publications Inc

way, the program that uses the arrays does not have to be
changed ,

Furthermore, FORTH's virtual memory facility for
disk reading and writing automatically keeps track of
what data has been read into memory and tries to keep
frequently referenced sections in memory,

Figure 8 illustrates how the array will be read in blocks
of 1024 bytes into memory buffers, The new definition
for the defining word STRING is given in listing 5,

Adding New Control Structures
with Defining Words

The next example illustrates the use of defining words
to add control structures to the FORTH compiler,
FORTH supplies { IF .,' ELSE ... THEN } compiler
structures and also loop structures like { DO , ..
LOOP }, { BEGIN , .. UNTIL }, and {BEGIN
... WHILE .,. REPEAT} loops,
In this example, we will create a case (choose one of n

alternatives) selection mechanism. A case number will
designate one of several words to be executed. Figure 9
presents how a case statement selects one of several pro­
cedures for execution, No matter which one is chosen, ex­
ecution continues with one common procedure that
follows the case structure.

The new defining word will be named { CASE: }
and can be used similarly to { : }, as the following

Listing 5: Another definition of STRING . This definition
creates a virtual string array that stores the string on disk and
reads it into main memory when necessary . With this definition
of STRING , it is possible to manipulate a string that is larger
than main memory without changing the program that uses the
long string. The disk operations are transparent-that is, the
programmer does not know he is using the disk except for
response time.

STRING
(used at sequence 2)
< BUILDS NEXT -BLOCK# (get the next available)

(disk block #)
(store it in the member's
(parameter field)

DISK-ALLOT (reserve d isk space for
(the array)

(used at sequence 3
DOES> @

SWAP

1024 /MOD

ROT +

BLOCK

+

(get start-block #
(subscript on top,)
(star t-block # beneath
(divide subscript by)
(# bytes in a d isk b lock;
(the quotient is the b lock)
(index within the array;)
(the remainder is the byte
.(index within the block)
(add start-block # to the)
(b lock index)
(call the FORTH virtual)
(disk manager to read the
(referenced block;)
(if it is already in memory
(no read is performed)
(add the byte index to the
(memory address of the)
(buffer where the block is
(located, the result is)
(a memory address of the)
(byte specified by the)
(subscript before BEANS)

example shows . (In this implementation of the case con­
struct, the selection of a case causes the execution of one
FORTH word. Since there is no restriction as to the inter­
nal complexity of a given word, the selection of one case

Listing 6: Example of a new user-defined programming con­
struct. In listing 6a, we define the words we want to execute
when the numbers 0, 1, and 2 are on top of the parameter stack.
In listing 6b , the user-defined defining word
{ CASE: } defines the word ANIMAL , which will execute

OPET , 1PET , or 2PET , depending on the value on top of the
parameter stack. Listing 6c illustrates what happens when the
case-word ANIMAL is executed. See listing 7 for the definition
of { CASE: } .

: OPET
JPET
2PET

(a)

." AARDVARK "
." BEAVER " ;
." COUGAR" ;

(pr int the q uoted string
(when executed)

(sequence 2) CASE: ANIMAL OPET IPET 2PET ;
(b)

(sequence 3)

(c)

o ANIMAL
J ANIMAL
2 ANIMAL

AARDVARK OK
BEAVER OK
COUGAR OK

Listing 7: Definition of the defining word { CASE: } in
FORTH-79. This word allows the user to create case-words that
execute one of several FORTH words depending on the value on
top of the parameter stack.

: CASE:
(used a t sequence 2

< BUILDS
J

used at sequence 3)
DOES>

SWAP 2·

+ @

EXECUTE

(create head for member
(begin ' :' compilation)

(convert case number to
(a byte index)
(fetch the address of the)
(indexed case word)
(execute the selected word

can cause any combination of conditional, loop , or case
structures to be executed.)

In our example, let us first define three words,
OPET , 1PET ,and 2PET, that are to be executed

when the value on top of the stack is 0, 1, or 2, respec­
tively. This is done in listing qa . Then we use the
{ CASE: } defining word (which we will look at later) to
define the word ANIMAL (listing 6b). Now that
ANIMAL and the case words it uses are defined, calling
ANIMAL with the appropriate value on the stack ex­
ecutes the proper case word (listing 6c). For example,
pushing a 2 onto the stack and calling ANIMAL causes
word 2PET to be executed; this causes the English word
COUGAR to be printed.

Since { CASE: } is a defining word, ANIMAL is a
member of the { CASE: } family . The definition of
ANIMAL consists of a list of addresses for the case words
associated with ANIMAL.

The definition of { CASE: } is a sequence 1 event.
Listing 7 shows the definition of {CASE:} in
FORTH-79. [Listings 8a and 8b show the same definition
for fig-FORTH and MMSFORTH, respectively GWj
Figure 10 shows how the word ANIMAL is built using

{ CASE: }. The { : } compiler is used to compile the
words following ANIMAL. When ANIMAL is

CASE NUMBER ------

OCASE lCASE 2 CASE •••

Figure 9: The function of a case control structure. The case
number selects one of several procedures for execution, then
continues along a single exit path.

(
SOURCE FOR)
SEQUENCE 2 CASE :

\
ANIMAL

\
OPEl lPET 2PET
'----....-----'

(

EXISTING)
DICT IONARY
DEFINITION

(
RESULT OF)
SEQUENCE 2

\
\

EXECUTES
\ •

CASE :

DICTIONARY

\
\

WORD-~AME

\

\

I < BUILDS

I
I

COMPILES ,

NAME
FIELD

/

CODE
FIELD

I
I
I

WORD- NAMES

I
t

, ,
DOES>

COMPILES ,
I .. . I EXIT I

PARAMETER
FIELD

.. .

Figure 10: The creation of a case control word. The execution of { CASE: } causes a definitionfor ANIMAL to be appended to the
dictionary . The']' word uses the { : } compiler to compile the addresses of the case words following ANIMAL .

182 August 1980 © BYTE Publications Inc

Listing 8: Definition of the defining word { CASE: } in fig­
FORTH (listing Ba) and in MMSFORTH (listing Bb) .

(CASE: as implemented in fig-FORTH)
: C ASE: < BUILDS SMUDGE 1

(a)
D O E S> SWAP 2*

+ @
EXECUTE

(CASE: as implemented in MMSFORTH)
(new word)) replaces SMUDG E)
:)) I STATE C ! 21144 ;
: CASE < BUILDS))

DO ES> SWAP 2*
(b) + @ 2+

EXEC UTE

Listing 9: Definition of a defining word that acts as a program­
ming tool. The word LOADED-BY allows the user to execute
(or load) a screen by name rather than by number. For example,
if you define { 125 LOADED-BY ACCOUNTING}, ex­
ecuting the word ACCOUNTING will have the same effect as
executing the phrase { 125 LOAD }.

(sequence 1) : LO ADED-BY < BUILDS , (store screen #)
(in members def.)

DOES> @ (fetch screen #)
LO AD (load it)

HAZELTINE
1420

OED TERMINAL

HAZELTINE
1500

VIDEO TERMINAL
$84995

184 August 1980 © BYTE Publica tions Inc

$77500

executed, the case number that precedes it (which is now
on top of the stack) is used just like an array subscript to
calculate the address of the case word to be executed. Its
compiled address is then fetched and executed.

As with array-defining words, many variations of
{ CASE: } can be constructed. A case number-range

check may be added. An "otherwise" case word can be
specified to be executed whenever the case number is out
of range.

Defining Words as Programming Tools
The final example applies defining words to the crea­

tion of software tools. Such tools are conveniences for
the user. Good tools can increase a programmer's pro­
ductivity, reduce errors, and improve program read­
ability. Defining words can be used to add powerful tools
to the FORTH language and operating system.

In FORTH, the word LOAD will compile source defini­
tions from the disk starting at a specified screen number.
A screen is a block of disk space where source text can be
stored using an editor. Additional screens may be loaded
if the initial screen contains more LOAD commands.

Application programs and utility programs begin on
various screen numbers determined by the user . The
defining word LOADED-BY allows words to be defined
which will LOAD a screen without calling it by number.

For example, assume a business application starts on
screen 125. Then the defining word LOADED-BY can be
used to define a word that will load screen 125 when the
member word is executed. When we define:

125 LOADED-BY ACCOUNTING

screen 125 will be loaded when the single word AC­
COUNTING is executed. (If LOADED-BY looks strange,
think of it as a FORTH word like VARIABLE .)

The definition of LOADED-BY is given in listing 9.
This definition is similar to the definition of the word
CONSTANT except that, rather than returning the value
stored in the definition of the member word, LOADED­
BY uses that value to provide a parameter to the word
LOAD .

Summary
FORTH exploits its own extensibility to support a

user's need for a variety of language facilities and com­
piler structures.

A defining word controls the compilation and execu ..
tion of all words compiled by it. New defining words that
define a new family of capabilities may be constructed.
Subsequently, any number of individual members can be
added to the family.

The source definitions of most defining words are short
and simple . Proper use of defining words in a software
development project reduces program development time,
improves program readability, and makes program mod­
ification and maintenance easier.

Defining words are applicable to data structures, con­
trol structures used by the FORTH compiler, and soft­
ware tools. The ability to create new kinds of defining
words (which are, in their own way, small compilers) is a
unique feature of FORTH and is one of the most powerful
programming tools in the language .•

Gregg Williams
Editor

This glossary is a compilation of most of the FORTH
words used in the listings and figures of all the FORTH
articles in this issue. It does not include all the standard
words in FORTH (there are quite a few), nor does it
include user-defined words required by each article . The
pronunciations of some words are given in parentheses.
Wherever possible, an example is given showing the use
of the defined word. The words "before" and "after"
show the stack before and after the word is executed. In
these representations of the stack, the top of the stack is
the rightmost number, and the words influenced by the
defined word are depicted in boldface.

The columns marked "uses" and "leaves" show how
the execution of a FORTH word affects the top entries of
the stack . FORTH words remove the stack entries they
use and sometimes leave one or more entries on the stack.
Therefore, the number under "uses" and "leaves" should

equal the number of entries in boldface in the "before"
and "after" stacks . Asterisks in both columns mean that
the numbers are not given for multiword constructs for
the purpose of clarity.

Multiword constructs, like the fo1lowing example:

{ IF ELSE THEN)

are enclosed in braces with the keywords separated by
ellipses that represent zero or more FORTH words . Also,
these constructs are listed only under the first word of the
construct. In general , all the words in this table are sorted
by ascending ASCII value - for example, the word *
(ASCII hexadecimal 2A) is listed before the word +
(ASCII hexadecimal 28).

This glossary assumes that the output device used by
the FORTH system is a video terminal. When any defini­
tion refers to the video display or display . it actually
refers to whatever output device or devices are currently
enabled.

FORTH Glossary
Word
{ ! } (store)

{ " }

{ , } (tic)

{ (}

*

+

{ , }

{ . }

Uses
2

o

o

o

2

2

1

Leaves Notes
o Sees top-of-stack as address of a 2-byte variable and stores second-on-stack in this

variable; for example, suppose that address 20000 points to a 2-byte variable;
then:

before: 9 9 -1150 20000
after: 9 9 (-1150 is stored in a I-byte variable.)

o {" HI THERE!" }, when executed, prints HI THEREI on the video display.

1 Puts onto top-of-stack the address of the word that follows it.

o {(THIS IS A COMMENT) } , if included in a definition, will not be compiled;
{ (} requires a {) } to end the comment.

1 Multiplication; example:
before: 9 9 3 5
after: 9 9 15

The word * multiplies 5 and 3, leaving 15.

1 Addition; example:
before: 9 9 3 5
after : 9 9 8

The word + adds Sand 3, leaving 8.

o Embeds the number on the top of the stack into a dictionary definition, increment­
ing the dictionary pointer.

2 1 Subtraction; example:
before : 9 9 3 5
after: 9 9 -2

The word - subtracts S from 3, leaving - 2.

1 o Displays the number on the top of the stack; example:
before: 9 9 3 5
after : 9 9 3 (S is printed on screen.)

186 August 1980 © BYTE Publications Inc

/

0<

1+

{ }

<

2

1

1

*

1 Division; example:
before: 9 9 13 2
after: 9 9 6

The word / divides 13 by 2, leaving 6. (Remainder is lost.)

1 If top-of-stack is <0, it is replaced with a 1 (true); if top-of-stack is ~ 0, it is
replaced with a 0 (false); example:

before: 9 9 3 5
after: 9 9 3 0

1 Adds 1 to top-of-stack; example:
before: 9 9 3 5
after: 9 9 3 6

* { } begins the definition of a word; { } ends the definition; example :
{ : 3* 3 * ; }
defines the word 3 * .

2 1 If the two top items on the stack are exactly equal, both of them are removed and

2

replaced with a single 1 (true); if not, both are replaced with a single 0 (false);
example:

before: 9 9 3 5
after: 9 9 0

1 If the second item on the stack is less than the top item on the stack, both of them
are removed and replaced with a single 1 (true); if not, both of them are replaced
with a single 0 (false); example:

before: 9 9 3 5
after: 9 9 1

f-TARGET HOST-TARGET HOST TARGET HOST
~ ~ AIVIVOUIVCIIVG: IVEW!
~ CROSS COMPILE ~
~ FORTH! ~

• • f- CROSS COMPILING IS THE MOST CONVENIENT WAY f-
CJ) CJ)

0 TO IMPLEMENT AND EXTEND FORTH . NOW YOU CAN 0 :c: CROSS COMPILE AN ENTIRE FORTH SYSTEM WITH :c:
f- ALL FORWARD REFERENCES RESOLVED IN A SINGLE f-
~ ~
<!l PASS TO PRODUCE AN EXCUTABLE IMAGE IN MEM- <!l ex: ORY OR ON DISK AND A LOAD MAP OF ALL DEFINED ex:
<C <C
f- SYMBOLS. THE CROSS COMPILER IS WRITTEN IN f-

• HIGH LEVEL FORTH INTEREST GROUP (FIG) FORTH . A
f- A COMPLETE DESCRIPTION OF EACH WORD IN THE f-
CJ)

CROSS COMPILER IS GIVEN WITH STEP BY STEP
CJ)

0 0 :c: STACK CONTENTS. FORTH INTERNALS (NEXT. BUILD. :c:
f- DOES . CREATE. ETC) ARE ALSO COMPLETLY DE- f-
~ SCRIBED. A CROSS COMPILABLE VERSION OF THE ~
<!l <!l ex: FIG MODEL 1.0 IS PROVIDED FOR THE 8080 WITH AN ex:
<C ASSEMBLER / DISASSEMBLER. THIS MAY BE EASILY <C f-

CONVERTED TO ANY MACHINE. A DETAILED DE-
f-

• • f- SCRIPTION IS GIVEN FOR FIRST TIME IMPLEMENTA-
t-

CJ) TIONS. THE ENTIRE PACKAGE IS AVAILABLE FOR $70. CJ)

0 FROM: 0 :c: :c:
f- f-
~ Nautilis Systems ~
<!l <!l ex: P.O. Box 1098 ex:
<C Santa Cruz, CA. 95061 <C f- f-
A • f- FOR THE SERIOUS FORTH USER f-

CJ) CJ)

0 0 :c: :c:
TARGET HOST - TARGET HOST .. TARGET HOST

188 August 1980 © BYTE Publications Inc Circle 131 on inquiry card .

MICROSTAT
A complete statistics package for business. scientific.
education and research work. No other package has
the features of MICROSTAT. For example:

• File oriented with COMPLETE editing
• A Data Management Subsystem for editing. sort­
ing. ranking. lagging. data file transfers PLUS 11 data
transformations (e.g .• linear. reciprocal. exponential.
etc.) • Frequency distributions • Simple and mUltiple
regression • Time series (including exponential smooth­
ing) • 11 Non-parametric tests • Crosstabs/Chi-square
• Factorials (up to 1.ooo.ooo!). permutations. combinations
• 8 Probability distributions • Scatterplots
• Hypothesis test (Mean. proportion) • ANOVA
(one and two-way) • Correlation • Plus many
other unique features

Users manual: $10.00 (credited towards purchase)
and includes sample data and printouts. Uses
NORTH STAR BASIC 32K of memory. one or two disk
drives (2 recommended). Printer optional. Price: $200.00

•
ECOSOFT

Phone orders:
P.O. Box 68602

(317) 253-6828
Indianapolis. IN 46268

Circle 132 on inquiry card .

{ <BUILDS
DOES> } * * Used to define new defining words; see "FORTH Extensibility" article, figure 4 .

> 2 1 Similar to entry for < ; example:
before : 9 9 3 5
after : 9 9 0 (3 is not less than 5.)

{ ? } 1 o Sees top-of-stack as address for 2-byte variable; displays value of that variable;
using the example for { ! } , then:

before : 9 9 20000
after : 9 9 (-1150, contents of 20000, prints on screen.)

@ (fetch) 1 1 Sees top-of-stack as address for 2-byte variable and replaces it with value of that
variable; using the example in { ! } :

before: 9 9 20000
after: 9 9 -1150 (-1150 is contents of 2-byte variable at 20000.)

ALLOT 1 o Sees top-of-stack as number of bytes to be reserved (and filled in later) during the
definition of a word.

AND 2 1 Does an AND operation on the corresponding bits of the top two stack entries
(both 16-bit numbers); example:

before : 9 9 3 5
after: 9 9 1 (3 AND 5, in binary, is 1.)

BASE o 1 BASE is a I-byte variable that contains the number base being used; for example,
{ 2 BASE C! } causes all subsequent input and output to be in binary (base 2);

execution of this word causes the address of this I-byte variable to be placed on
top-of-stack.

SURPLUS

"SELECTRIC" SPECIALI
"SELECTRIC" TYPEWRITER TERMINAL

Just imag ine; an IBM Model 725 "SELECTRIC" typewriter built into
a complete table-top RS-232 terminal! These surplus terminals were
formerly on lease and appear to be in good condition (we test 'em to
make sure the printer is func tional!) These fantasti c BC~-Coded
term inals feature:

-15" CARRIACE -134.5 BAUD 110
- 725 'SELECTRIC' -BB Character Sel
-RS-232 1/0 -6 Bit BCD CODE
-132 COLUMNS -Attractive Case
-Sim. 10 IBM 2741 -Upper/Lower SHIFT
- Std. Typewriter Kbd.
-MAX: 15 CPS RATE ONLY
-10 Chars.llnch $46900 I
- Removeable Type Sphere Ea . •

While we will check out each unit, we MUST offer these unique
bargains "AS- IS ": Meaning they may need some se rvice but are
basically operational. Add $20.00 for packing c rate , you pay
shipping on delivery.
ALSO INCLUDES: Type ba ll , I/ O circuit boards. power supply & some data. Sorry, no power
cord included.

-SPECIAL OFFER!!-
Buy 2, take 20% Off the Full Price- 2 f $ 75000 You Pay Only... o.r

"SELECTRIC"" PRINTER MAINTAINANCE MANUAL
JUST IN!! We now have available some excellent printer mainlainance manuals. These are
the most thorough manuals we've seen. Well worth the price! ONL Y 125.0000 .

• "S ELECTRIC" is an IBM Trademark

~ CFR Associates, Inc.
MAIL ADDRESS WAREHOUSE (617)372-8536

PO 80x 144 18 GRANITE STR EE T ".......-.;; ;;;;:, /"""" ",,/, ,
NEWTON Nil 03858 IIAVERlllll MASS 01830 "-.e.Ji!!!;;;! ,,, <Y, /, ,,""

190 August 1980 © BYfE Publications Inc Circle 134 on inquiry card. Circle 135 on inquiry card.

{ BEGIN
UNTIL}

{ BEGIN
WHILE
REPEAT}

{ C; }

CI }

C@

{ CODE
NEXT}

CONSTANT

* *

* *

* *

2 o

1 1

* *

1 o

Looping construct that tests at the end of the loop; see "What Is FORTH?" article ,
figure 4. .

Looping construct that tests at the beginning of the loop; see "What is FORTH?"
article, figure 5; other forms are { BEGIN ... PERFORM ... PEND } and

{ BEGIN ... IF ... WHILE }.

Sometimes used to end a machine-code word definition; most versions use NEXT.

Similar to { I } except that only low byte of second-to-top is stored in I-byte
variable pointed to by top-of-stack; for example, suppose that address 21000
points to a I-byte variable; then:

before : 9 9 103 21000
after: 9 9 (103 is stored in I-byte variable.)

Note that the maximum value that can be stored in 1 byte is 127.

Same as the word @, only for I-byte variable; using the example of { Cl } ,
then :

before: 9 9 21000
after: 9 9 103 (103 is contents of I-byte variable at 21000.)

Defining words, used like { : } and { ; } , used when defining a new
word using assembly language only.

Creates a constant that has the value of top-of-stack; for example, before ex­
ecuting the phrase { CONSTANT CON } , the stack looks like:

9 9 25140

MICRO MISCELLANY
APPLE II PARALLEL INTERFACE

$79.95

Interfaces printers, synthesizers
keyboards, and JBE A·D D·A Converter
& Switches. This Interface has 4 110
ports with handshaking logiC, 2·6522

. VIA's and a 74LS74 for timing. Inputs
and outputs are TIL compatible.

79·295K Complete Kit $69.95
79·295A Assembled $79.95

AtoD DtoA CONVERTER

SOLID STATE SWITCH

$44.95

$12.50
Your computer can control power
(120VAC) to your printer, lights, and
other 120VAC appliances up to 720
watts (6AMPS at 120VAC).lnput 3 to 15
VDC, 2·13 MA TIL compatible, Isola·
tlon 1500V.

79·282 1 Channel Kit $ 9.95
Assm. $12.50

79·282 4 Channel Kit $34.95
Assm. $44.95

BARE BOARDS
SINGLE BOARD COMPUTERS

8088 5·CHIP SYSTEM $29.95
8085 3·CHIP SYSTEM $24.95

$69.95r-----M-E-M-O-RY--BO-A-R-D----~

Analog to Digital, Digital to Analog
Converter, AtoD conversion time 20us.
OloA conversion 5us. Uses Include
speech and music synthesizing and
slow scan TV. Single power supply
(5V), 8 Bits wide, latched 110, strobe
lines.

79·287K Complete Kit $49.95
79·287 A Assembled $69.95

8208 64K DYNAMIC $39.95

ALL PRODUCTS AVAILABLE FROM:

JOHN BELL ENGINEERING
P.O. Box 338

Dept. 4
Redwood City, CA 94064

(415) 367·1137

Add 6% sales tax In California and
$1.00 shipping and handling for orders
less than $20. Add 4% for VISA or M.C.

JOHN BELL ENGINEERING
192 August 1980 © BYTE Publications Inc Circle 137 on inquiry card.

480xS 12 Computet-generated

• Highest possible qua~ 48Ox5121<B digital \ldeo
Image presently available on the marl<et

• Input capablDty from TV camera or other sources
• Variety of synchronization choices
• 2 selectable \ldeo AID coll\lel'Slon circuits
• Choice of 1. 2, 4. 8, 16 or 32 bits per pixel
• 32K-byte Image memory on the basic system
• 32, 64. 128 & 2.561< byte system capacity
• Llghtpen Input
• Photographic trigger control Input
• Software selectable system parameters
• Interfaces .lor TR5-80 and other processora
• Comprehensive Hne of accessories. monitors and

support software

SEND FOR ~E CATALOG

•
DIGITAL GRAPHIC SYSTEMS
441 ·California Ave., Palo Allo, CA 94306 415/494-6088

Circle 138 on inquiry card.

Circle 140 on inquiry card.

r
COLOR SOFTWARE

Unless otherwise noted all programs are $15 each, for Apple II,
Atari 16K, TI 99/4

UNITS: Practice converting yards· feet ·
inches, pounds · ounces, metric units, etc.

FRACTIONS: Practice adding, subtracting,
multiplying and comparing fractions.

NUCLEAR REACTOR: Realistic dynamic
model of nuclear power plant in operation.

3-0 STARTREK: Discover new planets, fight ROADRACE: Race around 2.25 mile course.
Klingons in 3·dimensional galaxy. 1 or 2 players. Not for TI 99/4.

MAJOR LEAGUE BASEBALL: Manage Major BLACKJACK: Popular card game hit , to 3
League teams and make all lineup, batting, players. Not for Apple II .
pitching and running decisions. $25. Apple II
with 48K, Applesoft ROM and one disk.

COLOR SOFTWARE, 5410 w. 20th St., Indianapolis, IN 46224

After the phrase has been executed, the stack looks like:
9 9

and the word CON , when executed, will place 25140 on the top of the stack .

CR o o Causes the cursor to jump to the beginning of the next line of the display.

{ DO
LOOP}

2

DROP 1

DUP 1

ECHO 1

FILL 3

FORGET o

5·100 8086
CPU with $450.
Vectored Interrupts
PROM-I / O $495.
RAM $395.
8K x 16/ 16K x 8
Parallel 110 $350.
and Timer

o Looping construct that specifies a beginning and an ending-value-plus-one; see
"What Is FORTH?" article, figure 3.

o Drops top entry from stack; example:
before: 9 9 3 5
after: 9 9 3

2 Duplicates item on top-of-stack; example:
before : 9 9 3 5
after : 9 9 3 5 5

o Isolates the low-order by te of the 2-byte entry on top of the stack and writes it to
the video display; example:

before: 9 9 32
after : 9 9 (A space, ASCII decimal 32, is printed.)

ECHO is named EMIT in some versions.

o Fills an area of memory with a given value; for example,
{ 255 3000 100 FILL } fills memory locations from 3000 thru 3099 (100 bytes)

with the value 255.

o Causes system to delete all definitions including and after the word following
FORGET ; for example, { FORGET BASEPGM } causes the system to delete
BASEPGM and all FORTH words, variables, and constants defined after it.

I IN STOCK I
AID - D/A

5·100 AID
8 Ch . Differential or
16 Ch . Single-Ended,
12 Bit , High Speed $495.

5·10001 A 4 Chann el
12 Bit , High Speed $395.

TR5·S0 A/D·DI A
12-Bit, High Speed

Available Soon

5·100 VIDEO
DIGITIZA TION

Real Time Video $850.
Di git izer and Displ ay
Computer Portrait
System $4950.

5-100 Boards
Video and/or Analog

Data Acquisition
Microcomputer Systems

IIEclllAR •
INC.

The High Performance S-100 People

TECMAR, INC.
23414 Greenlawn. Cleveland .OH 44122
(216) 382-7599

194 August 1980 © BYTE Publications Inc Circle 141 on inquiry card .

H

HERE

I

IF .. . ELSE
THEN}

KEY

MAX

MIN

MINUS

OVER

PAD

SWAP

U*

VARIABLE

{ I }

o 1

o 1

o 1

1 o

o 1

2 1

2 1

1 1

2 3

o 1

2 2

2 1

1 o

* *

196 August 1980 © BYrE Publications Inc

2-byte variable containing address of the top of the dictionary; execution of this
word causes the address of the variable H (not its value, which equals the address
of the top of the dictionary) to be placed on top of the stack .

Places the address of the next byte to be used in the dictionary (the value of H) on
top of the stack.

When executed within a {DO .. . LOOP}, the word I pushes onto the
top of the stack the value of the index counter; for example,

{ 10 0 DO I . LOOP} prints the numbers from 0 thru 9.

Conditional execution of words depending on value of top-of-stack. If nonzero,
execute words between IF and ELSE. If zero, execute words between ELSE and
THEN ; for example, {IF " NUMBER ON TOP IS NONZERO"
ELSE " NUMBER ON TOP IS ZERO" THEN } prints the appropriate message
depending on the value on top of the stack.

Gets a single character from the keyboard; for example, if the stack before we
press the space bar is:

9 935
Then, after we press the space bar (ASCII value decimal 32), the stack is:

9 9 3 5 32

Compares the two top entries on the stack and leaves only the larger; example:
before: 9 9 3 5
after: 9 9 5

Compares the two top entries on the stack and leaves only the smaller; example:
before: 9 9 3 5
after: 9 9 3

Changes the sign of the entry on top of the stack; example:
before: 9 9 3 5
after : 9 9 3 -5

Copies the second-to-top entry onto the top of the stack; example :
before: 9 9 3 5
after: 9 9 3 5 3

PAD is a 2-byte variable that points to the beginning of a 64-byte area for tem­
porary storage of character strings; execution of this word causes the address of
this 2-byte variable to be placed on top of the stack.

Exchanges the two top entries on the stack; example :
before: 9 9 3 5
after: 9 9 5 3

The lower 8 bits of the two top entries on the stack are isolated and multiplied
together, leaving their unsigned 16-bit product; example:

before: 9 9 3 5
after: 9 9 15

Each factor will effectively be 255 or less, giving a product that will not overflow
in 16 bits.

Creates a variable that has the value of top-of-stack; example, before executing the
phrase { VARIABLE V AR } , the stack looks like:

9 9 -14017
After the phrase has been executed, the stack looks like:

9 9
and the word V AR , when executed, will place the address of the variable on the
stack. (The 2-byte number stored at that address will contain the value -14017.)
Unlike a constant, the value of a variable can be changed using { ! } (store) .

Resumes compilation of a colon, definition .•

	Cover

	Contents

	Editorial

	Letters

	Ciarcia's Circuit Cellar: Build you own modem

	The
Ohio Scientific Telephone Interface
	The Heath H-89 Computer

	The Hard Disk Explosion

	Programming Quickies

	The Evolution of FORTH

	BYTELines

	What is FORTH?

	BREAKFORTH Into FORTH

	FORTH Extensibility

	FORTH Gloassary

	Khachiyan's Algorithm, Part I

	Construction of a Fourth Generation Video Terminal, part I

	Clubs and Newsletters

	BYTE's Bits
	Event Queue

	Ask BYTE

	Whats New

	Peripherals

	Miscellaneous

	Software

	Systems

	Unclassified Ads

	BOMB

